Penerapan Metode Random Forest untuk Analisis Risiko pada Dataset Peer to Peer Landing

Renata, Erick and Ayub, Mewati (2020) Penerapan Metode Random Forest untuk Analisis Risiko pada Dataset Peer to Peer Landing. Jurnal Teknik Informatika dan Sistem Informasi, 6 (3). pp. 462-474. ISSN 2443-2229

[img]
Preview
Text
14 Penerapan Metode Random Forest untuk Analisis Risiko pada dataset Peer to peer lending.pdf

Download (2456Kb) | Preview
[img]
Preview
Text
14. Peer Review_Penerapan Metode Random Forest untuk Analisis Risiko pada dataset Peer to peer lending.pdf

Download (257Kb) | Preview
[img]
Preview
Text
14 turnitin Penerapan Metode Random Forest untuk Analisis Risiko.pdf

Download (3672Kb) | Preview

Abstract

Peer to peer lending (P2PL) is one of financial technology (fintech) that develops very fast in society. On the other side, the P2PL project has many risks. The risk of the P2PL project can be analyzed using classification. There are two conditions of a loan, namely a good loan and a bad loan. This study uses two methods to analyze a P2PL dataset, which are Random Forest method and Logistic Regression method. Data is taken from P2PL loan dataset provided by Data World, which contains 887.379 entries with 74 features. The result of experiments is a model that can be used to predict and classify a P2PL loan as a good or bad one.

Item Type: Article
Uncontrolled Keywords: Fintech; Logistic Regression; Peer to Peer Lending; Random forest
Subjects: T Technology > T Technology (General)
Depositing User: Perpustakaan Maranatha
Date Deposited: 26 Oct 2021 22:26
Last Modified: 26 Oct 2021 22:26
URI: http://repository.maranatha.edu/id/eprint/27994

Actions (login required)

View Item View Item