LAMPIRAN
LAYOUT DENGAN KURSI RAPAT.

COMPARTMENT LAYOUT.
LAYOUT DENGAN KURSI RENGGANG.
Trans-Asian Railway

From Wikipedia, the free encyclopedia

The Trans-Asian Railway (TAR) is a project to create an integrated freight railway network across Europe and Asia. The TAR is a project of the United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP).

Contents

[hide]

- 1 Overview
- 2 Agreement
 - 2.1 The network
 - 2.1.1 Standards
 - 2.2 Participating nations
- 3 Progress
- 4 Maps
- 5 See also
- 6 References
- 7 External links

[edit] Overview

See also: Japan-Korea Undersea Tunnel

The project was initiated in the 1960s, with the objective of providing a continuous 8,750 miles (14,080 km) rail link between Singapore and Istanbul, Turkey, with possible further connections to Europe and Africa. At the time shipping and air travel were not as well developed, and the project promised to significantly reduce shipping times and costs between Europe and Asia. Progress in developing the TAR was hindered by political and economic obstacles throughout the 1960s, 1970s and early 1980s. By the 1990s, the end of the Cold War and normalisation of relations between some countries improved the prospects for creating a rail network across the Asian continent.

The TAR was seen as a way to accommodate the huge increases in international trade between Eurasian nations and facilitate the increased movements of goods between countries. It was also seen as a way to improve the economies and accessibility of landlocked countries like Laos, Afghanistan, Mongolia, and the Central Asian republics.

Much of the railway network already exists as part of the Eurasian Land Bridge, although some significant gaps remain. A big challenge is the differences in rail gauge across Eurasia. Four
different major rail gauges (which measures the distance between rails) exist across the continent: most of Europe, as well as Turkey, Iran, China, and the Koreas use the 1435 mm gauge, known as Standard gauge; Russia, and the former Soviet republics use a 1520 mm gauge; Finland use a 1524 mm gauge; most of the railways in India, Pakistan, Bangladesh and Sri Lanka use a 1676 mm gauge, and most of Southeast Asia has metre-gauge. For the most part the TAR would not change national gauges; mechanized facilities would be built to move shipping containers from train to train at the breaks of gauge.

A big obstacle is also the need of sea transport to Japan and South Korea. A container ship has room for many more containers than a train. Therefore ships must go less regularly than trains, creating a big delay. There are hopes to create an overland connection through North Korea, however there is still a break-of-gauge.

By 2001, the four corridors had been studied as part of the plan:

- **The Northern Corridor** will link Europe and the Pacific, via Germany, Poland, Belarus, Russia, Kazakhstan, Mongolia, China, and the Koreas, with breaks of gauge at the Polish-Belarusian border (1435 mm to 1520 mm), the Kazakhstan-Chinese border (1520 mm to 1435 mm), and the Mongolian-Chinese border (1520 mm to 1435 mm). The 5,750 miles (9,250 km) Trans-Siberian Railway covers much of this route and currently carries large amounts of freight from East-Asia to Moscow and on to the rest of Europe. Due to political problems with North Korea, freight from South Korea must currently be shipped by sea to the port of Vladivostok to access the route.

- **The Southern Corridor** will go from Europe to Southeast Asia, connecting Turkey, Iran, Pakistan, India, Bangladesh, Myanmar, and Thailand, with links to China's Yunnan Province and, via Malaysia, to Singapore. Gaps exist between India and Myanmar, between Myanmar and Thailand, between Thailand and Cambodia, between Cambodia and Vietnam and between Thailand and Yunnan. The section in eastern Iran between Bam and Zahedan has been completed. Breaks of gauge occur, or will occur, at the Iran-Pakistan border (1435 mm to 1676 mm), the India-Myanmar border (1676 mm to 1000 mm), and to China (1000 mm to 1435 mm).

- **A Southeast Asian network**: this primarily consists of the Kunming-Singapore railway.

- **The North-South Corridor** will link Northern Europe to the Persian Gulf. The main route starts in Helsinki, Finland, and continues through Russia to the Caspian Sea, where it splits into three routes: a western route through Azerbaijan, Armenia, and western Iran; a central route across the Caspian Sea to Iran via ferry; and an eastern route through Kazakhstan, Uzbekistan and Turkmenistan to eastern Iran. The routes converge in the Iranian capital of Tehran and continue to the Iranian port of Bandar Abbas.

[edit] Agreement

The Trans-Asian Railway Network Agreement is an agreement signed on 10 November 2006, by seventeen Asian nations as part of a United Nations Economic and Social Commission for
Asia and the Pacific (UNESCAP) effort to build a transcontinental railway network between Europe and Pacific ports in China. The plan has sometimes been called the "Iron Silk Road" in reference to the historical Silk Road trade routes. UNESCAP’s Transport & Tourism Division began work on the initiative in 1992 when it launched the Asian Land Transport Infrastructure Development project.

The agreement formally came into force on 11 June 2009.

The network

The Trans-Asian Railway system will consist of four main railway routes. The existing Trans-Siberian railway, which connects Moscow to Vladivostok, will be used for a portion of the network in Russia. Another corridor to be included will connect China to Korea, Mongolia, Russia and Kazakhstan. In 2003, the president of Kazakhstan proposed building a standard gauge link from Dostyk (on the Chinese border) to Gorgan in Iran; it has not yet been built.

Standards

Complicating the plan is the differences in rail gauges currently in use across the continent. While China, Iran and Turkey currently use 1,435 mm (4 ft 8 ½ in) standard gauge tracks, Russia's tracks are gauged at 1520 mm (5 ft), India's and Pakistan's tracks are 1676 mm (5 ft 6 in) gauge, the tracks covering an area from Bangladesh east to Vietnam and south to the tip of the Malay Peninsula are 1,000 mm (3 ft 3 ¾ in) gauge with some dual gauge track near the China-Vietnam border and within Bangladesh, and tracks in Indonesia and Japan are 1067 mm (3 ft 6 in) gauge. This leads to time consuming interchanges to handle the break of gauge at main connecting points in the network.

Other standards to consider are:

- **railway electrification** - 25 kV AC the world standard for new long distance and heavy duty construction since the 1950s.
- **Couplings** - Buffers & Chains, Alliance, or SA2. Some dual fitment or transition couplings are possible.
- **Brakes** - air, with or without Electronically controlled pneumatic brakes (ECP).
- **Loading gauge** and **Structure gauge** - able to take tallest possible shipping container.
- **Signalling systems** - where signals are electronic, not physically visible, and must be ‘read’ by equipment in the locomotives, or where the train must interact in different ways with the infrastructure
- **Electromagnetic interference** - where radio waves (noise) from electric motors can interact with different signalling systems
- **Rules and regulations.**
- **Language, including say Seaspeak.**

Participating nations
Transportation and railway ministers from forty one nations participated in the week-long conference held in Busan, South Korea, where the agreement was formulated. The proposed 80,900-km railway network will originate from the Pacific seaboard of Asia and end on the doorsteps of Europe. The agreement's cosigners included:

- Armenia
- Azerbaijan
- Cambodia
- India
- Indonesia
- Iran
- Kazakhstan
- Laos
- Mongolia
- Nepal
- Pakistan
- People's Republic of China
- South Korea
- Russia
- Sri Lanka
- Tajikistan
- Thailand
- Turkey
- Uzbekistan
- Vietnam

The 24 countries that did not sign the agreement at the conference have until 31 December 2007, to join and ratify the agreement.[9]

On 5 May 2007, officials in Bangladesh announced that the nation will sign on to the agreement at an upcoming meeting in New York City. The plan for the network includes three lines between India and Myanmar that traverse Bangladesh.[10] India made a similar announcement on 17 May 2007. As part of the agreement, India will build and rehabilitate rail links with neighboring Myanmar in projects that are estimated to cost more than ₹29.41 billion (US$730 million).[11]

Bangladesh finally signed the agreement on 10 November 2007.[12]

[edit] Progress

The Trans-Asian Railway Project has not been a great success so far. Very little railway has been built along the corridors during the 40 years. The Northern Corridor was working already in the 1960s, although only for Soviet Union-China trade. Successes so far include:

- A train ferry across Lake Van, allowing rail services between Turkey and Iran
• link from China to Kazakhstan (Turkestan–Siberia Railway and Lanxin railway, connected in 1990).
• link from Iran to Central Asia (Trans-Caspian railway plus branch).
• Bosphorus tunnel connecting European Turkey and Asian Turkey is under construction As of 2011.
• Iran-Pakistan: A Bam - Zahedan link, with a break-of-gauge at Zahedan (Pakistan railway use broad gauge 1676 mm & Iran railway use Standard gauge 1435 mm). In August 2009 a goods train carrying containers traveled from Islamabad, Pakistan to Istanbul, Turkey; by April 2011, trains were running regularly. [13]

Technically it is possible to introduce a train service on the rail route between Istanbul (Turkey) to Dhaka (Bangladesh), with a break of gauge at Zahedan on Iran - Pakistan border.

[edit] Maps

• Trans-Asian Railway Map
• Wordpress Map
• PolishMarket SUW 2000 Map

[edit] See also

• Asian Highway Network
• Northern East West Freight Corridor
• African Union of Railways
• Japan-Korea Undersea Tunnel
• Transcontinental Railway
• Transmountain railroad
• Trans Global Highway

[edit] References

Jenis / Klasifikasi Kebakaran dan Cara Menanganinya

Definisi Alat Pemadam Api Ringan - Banyak diantara kita tidak mengetahui bahwa kebakaran dikategorikan menjadi berbagi jenis katagori, dan penanganannya pun disesuaikan dgn jenis katagori tersebut.

Kebakaran Kelas A
Alat Pemadam Api kelas A adalah jenis Alat Pemadam Kebakaran dari bahan biasa yg mudah terbakar seperti kayu, kertas, pakaian dan sejenisnya.

Kebakaran Kelas B
Alat Pemadam Api kelas B adalah jenis Alat Pemadam Kebakaran dari bahan cairan yg mudah terbakar seperti minyak bumi, gas, lemak dan sejenisnya.

Kebakaran Kelas C
Alat Pemadam Api kelas C adalah jenis Alat Pemadam Kebakaran dari listrik (seperti kebocoran listrik, korsleting) termasuk kebakaran pada alat-alat listrik.

Kebakaran Kelas D
Alat Pemadam Api kelas D adalah jenis Alat Pemadam Kebakaran dari logam seperti Zeng, Magnesium, serbuk Aluminium, Sodium, Titanium dan lain-lain

Beikut beberapa tips memadamkan api dan bahan-bahan tuk memadamkan api tersebut:

Methode penguraian yaitu cara memadamkan dgn memisahkanatau menjauhkan bahan / benda-benda yg dapat terbakar

Methode pendinginan yaitu cara memadamkan kebakaran dgnmenurunkan panas atau suhu. Bahan airlah yg paling dominandigunakan dalam menurunkan panas dgn jalanmenyemprotkan atau menyiramkan air ketitik api.

Methode Isolasi / lokalisasi yaitu cara pemadaman kebakaran dengan mengurangi kadar / prosentase O2 pada benda-bendayg terbakar.

Bahan Tuk Memadamkan Api
1. Bahan pemadam Air
2. Bahan pemadam Busa (Foam)
3. Bahan pemadam Gas CO2
4. Bahan pemadam powder kering (Dry chemical)
5. Bahan pemadam Gas Halon (BCF)
PORTABLE FIRE EXTINGUISHER

1). Portable Fire Extinguisher / alat pemadam portable, alat pemadam api ini dibagi dalam jen-jenis didasarkan atas klasifikasi kebakaran tertentu yang dapat dipadamkan.

2). Klasifikasi kebakaran digolongkan menjadi 4 (empat) kelas, antara lain A, B, C, D didasarkan atau macam bahan yang mula-mula terbakar pada saat awal terjadinya kebakaran.

3). Untuk semua jenis alat pemadam portable, biasanya dikemas dalam bentuk tabung, harus memenuhi syarat.

Klasifikasi Kebakaran dan Jenis Bahan Pemadam Kebakaran

a. Klasifikasi Kebakaran:
 - Kebakaran kelas A adalah kebakaran bahan biasa / benda padat yang mudah terbakar seperti kertas, kayu, tekstil, dan sejenisnya;
 - Kebakaran kelas B adalah kebakaran cairan dan gas yang mudah terbakar seperti bensin, solar, avtur, alkohol, LPG, LNG, dan sejenisnya;
 - Kebakaran kelas C adalah kebakaran yang di sebabkan oleh listrik seperti hubungan pendek;
 - Kebakaran kelas D adalah kebakaran logam seperti magnesium, aluminium, titanium, dan sejenisnya.

b. Jenis Bahan Pemadam Kebakaran yang di pakai:
 - Terhadap kebakaran kelas A, jenis bahan pemadam yang di pakai adalah air sebagai alat pemadam pokok, CO2, dan bahan pemadam kimia lainya di pakai secara terbatas;
- Terhadap kebakaran kelas B, jenis bahan pemadam yang di pakai adalah busa (foam) sebagai alat pemadam pokok, dan jenis pemadam kimia sebagai pelengkap;
- Terhadap kebakaran kelas C, jenis bahan pemadam yang di pakai adalah CO2 sebagai bahan pemadam pokok, dan jenis pemadam kimia sebagai pelengkap, sedangkan jenis bahan pemadam busa (foam) tidak boleh di gunakan karena konduktif terhadap listrik;
- Terhadap kebakaran kelas D, jenis bahan pemadam khusus / metal powder

Gambar Komponen Apar Menggunakan Cateridge

RIWAYAT PENULIS

<table>
<thead>
<tr>
<th>Nama</th>
<th>Eliza Tri Wahyuni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempat Tanggal Lahir</td>
<td>Bandung, 21 Juli 1990</td>
</tr>
<tr>
<td>Jenis Kelamin</td>
<td>Perempuan</td>
</tr>
<tr>
<td>Agama</td>
<td>Islam</td>
</tr>
<tr>
<td>Kewarganegaraan</td>
<td>Indonesia</td>
</tr>
<tr>
<td>No. Identitas</td>
<td>1050016107903001</td>
</tr>
<tr>
<td>Alamat</td>
<td>Jl. Sarimanah XIX Blok. 8 No. 49 RT. 08 RW. 09 Kelurahan Sarijadi Kecamatan Sukasari Bandung 40151</td>
</tr>
<tr>
<td>Telp.</td>
<td>+62 22 200 02 97</td>
</tr>
<tr>
<td>HP</td>
<td>+62 82 11 52 53 068</td>
</tr>
<tr>
<td></td>
<td>+62 85 62 23 35 40</td>
</tr>
<tr>
<td>Email</td>
<td>elizabethtriwahyuni@ymail.com</td>
</tr>
</tbody>
</table>

Pendidikan Formal

<table>
<thead>
<tr>
<th>Universitas Kristen Maranatha (Jurusan Teknik Industri)</th>
<th>2008 – 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA Negeri 15 Bandung</td>
<td>2005 – 2008</td>
</tr>
<tr>
<td>SMP Taruna Bhakti Bandung</td>
<td>2002 – 2005</td>
</tr>
<tr>
<td>SD Gita Kirti Bandung</td>
<td>1996 – 2002</td>
</tr>
<tr>
<td>TK Seruni (Kartika) Bandung</td>
<td>1995 – 1996</td>
</tr>
</tbody>
</table>

Tugas Akhir

<table>
<thead>
<tr>
<th>PT. Kereta Api (Persero) Jl. Stasiun Timur No. 14, Bandung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERBAIKAN SERTA INOVASI PERANCANGAN FASILITAS KERETA API PENUMPANG GERBONG EKSEKUTIF DITINJAU DARI SEGI ERGONOMI (STUDI KASUS DI PT. KERETA API INDONESIA–PERSERO)</td>
</tr>
</tbody>
</table>