SISTEM Pendeteksi Ketinggian Muatan Roket Berbasis Mikrokontroler

Gelar Kharisma Rhamdani / 0522092

Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha,
Jln. Prof. Drg. Surya Sumantri 65, Bandung 40164, Indonesia
Email : gelar_kharisma@yahoo.com

ABSTRAK

Teknologi roket sebagai wahana luar angkasa, peluru kendali, atau kendaraan terbang kian hari kian berkembang. Indonesia merupakan salah satu negara yang sedang mengembangkan teknologi roket. Salah satu yang menjadi perhatian peneliti di bidang roket adalah seberapa jauh roket tersebut dapat terbang. Untuk menjawab pertanyaan tersebut dibutuhkan suatu sistem yang dapat mendeteksi ketinggian dari roket yang diluncurkan.

Pada tugas akhir ini, telah dibuat sebuah sistem pendeteksi ketinggian jarak jauh berbasis mikrokontroler dimana piranti ini menggunakan dua buah sensor yang dapat dirancang untuk memperoleh data ketinggian pada roket uji muatan, yaitu Global positioning system (GPS) dan sensor tekanan. Selain dapat mendeteksi ketinggian, sistem ini juga dapat mengirimkan data ketinggian tersebut melalui radio frekuensi ke penerima yang ada di stasiun pemantau. Pada bagian penerima, data tersebut dapat ditampilkan pada PC melalui program Visual Basic 6.0 sehingga data yang diterima dapat dibaca dengan mudah.

Setelah dilakukan pengujian pada sistem maka didapat kesalahan rata-rata pengukuran ketinggian dari GPS adalah 1,798 m. Sedangkan kesalahan rata-rata pada sensor tekanan adalah 1,935 m.

Kata Kunci: Mikrokontroler, GPS.
ALTITUDE DETECTOR SYSTEM OF ROCKET PAYLOAD BASE ON MICROCONTROLLER

Gelar Kharisma Rhamdani / 0522092

Department of Electrical Engineering, Faculty of Engineering, Maranatha Christian University, Jln. Prof. Drg. Surya Sumantri 65, Bandung 40164, Indonesia
Email : gelar_kharisma@yahoo.com

ABSTRACT

Rocket Technology as a space vehicle, a controlled projectile, or flying vehicle, is growing now. Indonesia is one of most country that already become participant in developing rocket. One of the concern of this field is to tell how far the rocket can fly. Answering the problem, there will be a need of system that has capability for detecting the altitude the launched rocket.

In this final project, A detector system of altitude is built using microcontroller which in order for getting a data in the trial rocket, two sensors are needed. They are Global Positioning System (GPS) and pressure sensor. Beside of detecting altitude, the system also is able to send a data of altitude in frequency of radio to the receiver in the base. In the receiving part, the data is shown in the PC monitor through application built in Visual Basic 6.0, so the data can be easily be read.

After testing the system, the Average error measurements of GPS altitude 1.798 m. While the average error in pressure sensor 1.935 m.

Key Word: Microcontroller, GPS.
DAFTAR ISI

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK .. i</td>
</tr>
<tr>
<td>ABSTRACT .. ii</td>
</tr>
<tr>
<td>KATA PENGANTAR .. iii</td>
</tr>
<tr>
<td>DAFTAR ISI ... v</td>
</tr>
<tr>
<td>DAFTAR TABEL ... viii</td>
</tr>
<tr>
<td>DAFTAR GAMBAR .. ix</td>
</tr>
</tbody>
</table>

BAB I PENDAHULUAN

I.1 Latar Belakang ... 1
I.2 Identifikasi Masalah .. 1
I.3 Perumusan Masalah .. 2
I.4 Tujuan ... 2
I.5 Pembatasan Masalah .. 2
I.6 Spesifikasi Alat .. 2
I.7 Sistematika Penulisan ... 3

BAB II LANDASAN TEORI

II.1 Pengertian Roket ... 4
II.2 GPS (Global Positioning System) 5
 II.2.1 Cara Kerja GPS ... 6
 II.2.2 Akurasi Alat Navigasi GPS 8
 II.2.3 Format Data GPS ... 9
 II.2.4 Manfaat GPS ... 11
II.3 Mikrokontroler AVR ... 12
 II.3.1 AVR ATMega 128 .. 12
 II.3.2 Deskripsi Pin AVR ATMega 128 13
II.4 Sensor Tekanan .. 14
II.4.1 Tata Letak Komponen DT-Sense Barometric Pressure 15
II.4.2 Konektor dan Pengaturan Jumper .. 15
II.5. Radio ... 17
 II.5.1 Gelombang Radio ... 17
 II.5.2 Penemuan Gelombang Radio ... 18
 II.5.3 Penggunaan Radio ... 19
 II.5.4 Frekuensi Radio ... 19
II.6. Visual Basic ... 21
 II.6.1 Antar Muka Visual Basic 6.0 .. 22
 II.6.2 Konsep Dasar Pemrograman Dalam Visual Basic 6.0 24

BAB III PERANCANGAN DAN REALISASI
III.1. Deskripsi Kerja Sistem ... 25
III.2. Perancangan Sistem Bagian Objek ... 26
 III.2.1 GPS Argent Data System (AGS-GM1) 27
 III.2.2 Perancangan Mikrokontroler AVR ATmega 128 28
 III.2.3 Cara Kerja Mikrokontroler AVR ATmega 128 29
 III.2.4 DT-SENSE Barometric Pressure Sensor 31
 III.2.4.1 Spesifikasi DT-SENSE Barometric Pressure Sensor 31
 III.2.4.2 Mendapatkan Data Tekanan .. 32
 III.2.4.3 Rumus Tekanan Terhadap Ketinggian 33
 III.2.5 Rangkaian Komunikasi Serial (RS-232) 35
 III.2.6 Radio Modem ... 36
 III.2.6.1 Spesifikasi .. 36
 III.2.6.2 Dimensi YS-1020U ... 37
 III.2.6.3 Pin Antarmuka .. 37
 III.2.6.4 Pengaturan Channel, Antarmuka, dan Format Data 38
III.3. Perancangan Sistem Pemantau ... 39
 III.3.1 Spesifikasi Komputer/laptop .. 39
 III.3.2 Diagram Alir Program Visual Basic 40
 III.3.3 Koneksi Radio Modem dan PC ... 40
 III.3.4 Perancangan Tampilan Pada Visual Basic 6.0 41
III.4. Realisasi Sistem Pendeteksi Ketinggian Muatan Roket Berbasis Mikrokontroler ... 42

BAB IV PENGUJIAN DAN ANALISA DATA

IV.1 Pengujian Perangkat Yang Digunakan .. 45
IV.2 Pengujian Sensor Tekanan ... 45
IV.3 Pengujian GPS Argent Data ... 46
IV.4 Pengujian Perangkat Lunak Visual Basic 47
IV.5 Pengujian Sistem ... 48
IV.6 Analisa Hasil Pengujian Sistem .. 58

BAB V KESIMPULAN DAN SARAN

V.1 Kesimpulan ... 59
V.2 Saran ... 59

DAFTAR PUSTAKA ... 60

LAMPIRAN A GAMBAR SISTEM
LAMPIRAN B PROGRAM AVR ATMEGA 128
LAMPIRAN C CODE VISUAL BASIC
LAMPIRAN D DATA SHEET
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Format data GPS dengan Header $GPGGA$</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Konfigurasi pin ATMega128</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Konektor interface</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Alamat I2C untuk kombinasi jumper</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Pembagian Band Frekuensi Radio</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Konversi tekanan udara terhadap ketinggian</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Pin antarmuka yang terdapat pada YS-1020U</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Frekuensi yang sesuai pada 433MHz dari 1-8 channel</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Frekuensi yang sesuai pada 868MHz dari 1-8 channel</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Hasil Pengujian sistem di Stasiun Geofisika Klas 1 Bandung</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Hasil Pengujian sistem di POS Observasi Geofisika Lembang</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Hasil Pengukuran Gedung GWM</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Selisih pengukuran tiap lantai gedung GWM dengan GPS</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Selisih pengukuran tiap lantai gedung GWM dengan sensor tekanan</td>
<td>57</td>
</tr>
<tr>
<td>Gambar</td>
<td>Deskripsi</td>
<td>Halaman</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2.1</td>
<td>Cara satelit GPS mengirim sinyal</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Penjelasan sinyal satelit terhadap kondisi geografi</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Penjelasan tampilan layar GPS tentang sinyal satelit</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Pin Konfigurasi Output pada ATMEGA128</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Tata letak komponen DT-Sense Barometric Pressure Sensor</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Jumper PULL-UP J2</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Diagram Transmisi Radio</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Antar muka Visual Basic 6.0</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Komponen standar dalam Toolbox</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Blok Diagram Sistem</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>GPS Argent Data Sytem (AGS-GM1)</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Skematik perancangan mikrokontroler AVR ATMega128</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Skematik port mikrokontroler AVR ATMega128</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Diagram alir sistem</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>Diagram alir GPS</td>
<td>31</td>
</tr>
<tr>
<td>3.7</td>
<td>Diagram alir Sensor Tekanan</td>
<td>31</td>
</tr>
<tr>
<td>3.8</td>
<td>Bentuk dan Penjelasan Serial Port</td>
<td>36</td>
</tr>
<tr>
<td>3.9</td>
<td>Dimensi dari YS-1020U</td>
<td>37</td>
</tr>
<tr>
<td>3.10</td>
<td>Tampilan program YSPRG.EXE</td>
<td>38</td>
</tr>
<tr>
<td>3.11</td>
<td>Diagram alir program visual basic</td>
<td>40</td>
</tr>
<tr>
<td>3.12</td>
<td>Gambar rangkaian konverter Radio Modem</td>
<td>41</td>
</tr>
<tr>
<td>3.13</td>
<td>Gambar Aplikasi Visual Basic</td>
<td>41</td>
</tr>
<tr>
<td>3.14</td>
<td>Konstruksi Akhir Perancangan Hardware Tampak Luar</td>
<td>42</td>
</tr>
<tr>
<td>3.15</td>
<td>Konstruksi Akhir Perancangan Hardware Tampak Dalam</td>
<td>43</td>
</tr>
<tr>
<td>3.16</td>
<td>Realisasi software</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Hasil pengujian Sensor Tekanan</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Data keluaran GPS Argent Data</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Tampilan bagian navigasi</td>
<td>47</td>
</tr>
</tbody>
</table>
Gambar 4. Hasil Pengujian sistem di Stasiun Geofisika Klas 1 Bandung
Gambar 4.5 Hasil Pengujian sistem di POS Observasi Geofisika Lembang
Gambar 4.6 Gedung GWM
Gambar 4.7 Hasil Pengujian sistem di Lantai 1 gedung GWM
Gambar 4.8 Hasil Pengujian sistem di Lantai 2 gedung GWM
Gambar 4.9 Hasil Pengujian sistem di Lantai 3 gedung GWM
Gambar 3.10 Hasil Pengujian sistem di Lantai 4 gedung GWM
Gambar 3.11 Hasil Pengujian sistem di Lantai 5 gedung GWM
Gambar 3.12 Hasil Pengujian sistem di Lantai 6 gedung GWM
Gambar 4.13 Hasil Pengujian sistem di Lantai 7 gedung GWM
Gambar 3.14 Hasil Pengujian sistem di Lantai 8 gedung GWM
Gambar 3.15 Hasil Pengujian sistem di Lantai 9 gedung GWM
Gambar 3.16 Hasil Pengujian sistem di Lantai 10 gedung GWM
Gambar 4.17 Hasil Pengujian sistem di Lantai 11 gedung GWM
Gambar 3.18 Hasil Pengujian sistem di Lantai 12 gedung GWM