REALISASI ROBOT HUMANOID BERBASIS AVR

Disusun Oleh:
Andrew Jonathan Setiadi
0522050
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha,
Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung, Indonesia,

ABSTRAK

REALIZATION OF
HUMANOID ROBOT BASED ON AVR

Composed by:
Andrew Jonathan Setiadi
0522050
Electrical Engineering, Maranatha Christian University,
Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung, Indonesia,

ABSTRACT

Robotic has been developed rapidly. This development produces robots with various skills. The point of interest from robot is its structure. In essence, people want to create a perfect robot with great skills. Nowadays, humanoid robot is being developed. This robot has not only a human form but also been created so as to has human skills.

This Final Project realize a humanoid robot. The movement system is created like human movement. This robot uses twelve servos for the structure. The legs use six Hitec HS-475 HB servos and the arms use five Hitec HS-422 servos and a Hitec HS-475 HB servos. The robot is 27 centimeter tall and created from aluminium sheet with 1 mm thickness. This robot controlled by microcontroller AT MEGA 16. This robot also equipped with an infrared sensor. The movements are walking, get up, push up and avoid an obstacle. With a percentage of success for get up is 100 % and 90 % for push up. A robot step is between 3 to 4 centimeter.

DAFTAR ISI

ABSTRAK .. i
ABSTRACT .. ii
KATA PENGANTAR .. iii
DAFTAR ISI .. v
DAFTAR TABEL .. viii
DAFTAR GAMBAR .. ix

BAB I PENDAHULUAN ... 1
I.1 Latar Belakang Masalah ... 1
I.2 Identifikasi Masalah ... 1
I.3 Perumusan Masalah ... 2
I.4 Tujuan ... 2
I.5 Batasan Masalah .. 2
I.6 Spesifikasi Alat ... 3
I.7 Sistematika Penulisan ... 3

BAB II LANDASAN TEORI ... 5
II.1 Definisi Robot ... 5
II.1.1 Perkembangan Robot Jaman Sekarang .. 5
II.1.2 Penelitian di Bidang Robotik ... 6
II.1.3 Sistem Robot dan Orientasi Fungsi ... 7
II.1.4 Klasifikasi Robot Berdasarkan Proses Kendali .. 10
II.1.5 Klasifikasi Robot Berdasarkan Konfigurasi Koordinat 10
II.1.6 Geometri Robot dan Istilah - Istilahnya .. 13
II.1.7 Klasifikasi Robot Berdasarkan Konstruksi Robot 14
II.2 Motor Servo .. 17
II.3 Sensor .. 20
II.3.1 Sensor Infrared .. 20
II.4 Pengontrol Mikro .. 22
II.4.1 Pengontrol Mikro ATMEGA 16 ... 22
II.4.1.1 Fitur ATMEGA 16 ... 22
BAB IV DATA PENGAMATAN DAN ANALISA... 66
IV.1 Pengujian Sudut Servo... 65
IV.2 Pengujian Sensor Infrared.. 67
 IV.2.1 Pengukuran Jarak Pada Objek Kayu... 68
 IV.2.2 Pengukuran Jarak Pada Objek Plat aluminium...................................... 69
IV.3 Pengujian Pola Gerak Robot Humanoid.. 70
 IV.3.1 Berjalan.. 70
 IV.3.2 Berdiri dari Posisi Telungkup... 71
 IV.3.3 Push Up.. 73
 IV.3.4 Menghindari Rintangan ... 76
 IV.3.4.1 Menghindari Rintangan di Depan dan Kiri Robot......................... 76
 IV.3.4.2 Menghindari Rintangan di Depan dan Kanan Robot...................... 78
IV.4 Pengujian Jarak Tempuh Robot dan Sudut Penyimpangan......................... 81
 IV.4.1 Pengujian Jarak Tempuh dan Sudut Penyimpangan Pertama................. 81
 IV.4.2 Pengujian Jarak Tempuh dan Sudut Penyimpangan Kedua.................... 84

BAB V KESIMPULAN DAN SARAN... 87
DAFTAR PUSTAKA
LAMPIRAN A FOTO ROBOT HUMANOID
LAMPIRAN B PROGRAM PADA PENGONTROL MIKRO ATMEGA 16
LAMPIRAN C DATASHEET SERVO
LAMPIRAN D DATASHEET INFRARED
DAFTAR TABEL

Tabel 2.1 Fungsi Khusus Port B ... 24
Tabel 2.2 Fungsi Khusus Port D ... 25
Tabel 2.3 Fungsi Khusus Port C ... 25
Tabel 2.4 Fungsi Khusus Port A ... 26
Tabel 2.5 Konfigurasi Port ATMEGA 16.. 32
Tabel 3.1 Daerah Kerja Motor Servo ... 45
Tabel 3.2 Rentang Nilai Duty Cycle... 51
Tabel 3.3 Perubahan Sudut Motor Servo Bagian Kaki dalam Berjalan.......... 58
Tabel 3.4 Perubahan Sudut Motor Servo Bagian Tangan dalam Berjalan 58
Tabel 3.5 Perubahan Sudut Motor Servo Bagian Kaki dalam Proses Berdiri ... 59
Tabel 3.6 Perubahan Sudut Motor Servo Bagian Tangan dalam Proses Berdiri ... 59
Tabel 3.7 Perubahan Sudut Motor Servo Bagian Kaki dalam Proses Push Up ... 60
Tabel 3.8 Perubahan Sudut Motor Servo Bagian Tangan dalam Proses Push Up ... 61
Tabel 3.9 Perubahan Sudut Motor Servo Bagian Kaki dalam Proses Belok 1 ... 63
Tabel 3.10 Perubahan Sudut Motor Servo Bagian Tangan dalam Proses Belok 1 .. 63
Tabel 3.11 Perubahan Sudut Motor Servo Bagian Kaki dalam Proses Belok 2 ... 63
Tabel 3.12 Perubahan Sudut Motor Servo Bagian Tangan dalam Proses Belok 2 .. 63
Tabel 4.1 Pengujian Sudut Servo HS-422 .. 65
Tabel 4.2 Pengujian Sudut Servo HS-475 HB ... 66
Tabel 4.3 Pengujian Jarak pada Objek Kayu .. 68
Tabel 4.4 Pengujian Jarak pada Objek Aluminium 69
Tabel 4.5 Pengujian Pola Gerak Berdiri dai Posisi Telungkup 73
Tabel 4.6 Pengujian Pola Gerak Push Up .. 76
Tabel 4.7 Pengujian Jarak Tempuh dan Sudut Penyimpangan Pertama 82
Tabel 4.8 Pengujian Jarak Tempuh dan Sudut Penyimpangan Kedua 84
DAFTAR GAMBAR

Gambar 2.1 Robot ASIMO ... 6
Gambar 2.2 Sistem Robot dan Orientasi Fungsi............................... 7
Gambar 2.3 Konfigurasi Koordinat Kartesius 11
Gambar 2.4 Konfigurasi Koordinat Silinder 11
Gambar 2.5 Konfigurasi Koordinat Polar .. 12
Gambar 2.6 Konfigurasi Koordinat Articulate 12
Gambar 2.7 SCARA (Selective Compliance Assembly Robot Arm) 13
Gambar 2.8 Contoh Robot dengan 6 Derajat Kebebasan 14
Gambar 2.9 Komponen Motor Servo ... 17
Gambar 2.10 Bentuk Motor Servo .. 18
Gambar 2.11 Mode Pensinyalan Motor Servo 19
Gambar 2.12 Contoh Posisi dan Waktu Pemberian Pulsa 20
Gambar 2.13 Bentuk Sensor Infrared ... 21
Gambar 2.14 Pengaruh Jarak Terhadap Besarnya Sudut 21
Gambar 2.15 Konfigurasi Pin ATMEGA 16 24
Gambar 2.16 Blok Diagram ATMEGA 16 .. 27
Gambar 2.17 Arsitektur Pengontrol Mikro AVR RISC 28
Gambar 2.18 Proses Pengambilan dan Pengeksekusian Instruksi Secara Paralel ... 29
Gambar 2.19 General Purpose Register ATMEGA 16 29
Gambar 2.20 Peta Memori Program ATMEGA 16 30
Gambar 2.21 Peta Memori Data ATMEGA 16 31
Gambar 2.22 Pulse Width Modulation .. 33
Gambar 2.23 Modulasi Lebar Pulsa dengan Gelombang Kotak 33
Gambar 2.24 Perhitungan Duty Cycle .. 34
Gambar 2.25 Sendi Peluru ... 36
Gambar 2.26 Sendi Engsel ... 36
Gambar 2.27 Sendi Putar ... 37
Gambar 2.28 Postur Tubuh dalam Berjalan 38
Gambar 2.29 Gerakan Kaki dalam Berjalan 38
Gambar 2.30 Gerakan Tangan dalam Berjalan 39
Gambar 4.12 Gambar Lintasan 5 Langkah Pengujian Kedua................................. 85
Gambar 4.13 Gambar Lintasan 10 Langkah Pengujian Kedua................................. 85
Gambar 4.14 Gambar Lintasan 20 Langkah Pengujian Kedua................................. 86