PROCEEDINGS
Printed Version
ISBN: 979-15263-0-3

IJJSS 2006
The 2nd Indonesia Japan Joint Scientific Symposium 2006
September 6 – 8, 2006
Center of Japanese Studies,
University of Indonesia, Indonesia

Organized by:
University of Indonesia, Indonesia
Chiba University, Japan

Panasonic
ideas for life
Mainly Sponsored by
PT. Gobel International

Supported by:
Lembaga Teknologi – FTUI
Program/Contents

Day 1, 6 September 2006
Opening Ceremony

Speech by General Chairman of IJJSS 2006
Speech by Rector UI
Speech by Minister of Research and Technology, Indonesia
Speech by Prof. Hiroshi Amano, Vice President Chiba University, Japan
Speech by Prof. Dr. Bagio Budiardjo, University of Indonesia

TECHNICAL PROGRAM

13.00 - 14.45 : Image and Signal Processing , location Room 1
Moderator: Prof. Dadang Gunawan (University of Indonesia, Indonesia)

IJJSS06-201 Rokhmatullah, et al., "Global percent tree cover mapping using regression tree method: an advantageous of quick bird images as training data", Chiba University, Japan

IJJSS06-202 Marzuki, Multiple peaks character of raindrop size distribution from two dimensional video disdrometer, Andalas University, Indonesia

IJJSS06-203 Hamid, EY., "Performance of wavelet as pulse shaping filter in Gaussian channel", ITB, Indonesia

IJJSS06-204 Rio Harlan, et al., "Analysis of Real Time Audio Effect Design Using TMS320 C6713 DSK", Electrical Engineering Department, University of Indonesia, Indonesia

13.00 - 14.45 : Antenna and Microwave, location Room 2
Moderator: Dr. Jospahat Tetuko (Chiba University, Japan)

IJJSS06-205 Fitri Yuli Zulkifii, et al., "Trimmed equilateral triangular microstrip patch antenna for wireless LAN application", Electrical Engineering Department, University of Indonesia, Indonesia

IJJSS06-206 Basari, et al., "Circularly polarized triangular microstrip array antenna using single fed proximity coupled for mobile satellite communications applications", Chiba University, Japan

IJJSS06-207 Muhamad Fauzan Edy P., et al., "Circularly polarized equilateral triangular antenna for mobile satellite communications", Chiba University, Japan

IJJSS06-208 Rahardjo, ET., et al., "A modified direct feed Y shaped slot circularly polarized equilateral triangular microstrip antenna with a single stub tuner for quazy zenith application", Electrical Engineering Department, University of Indonesia, Indonesia
IJSS06-234 Muis, A., et al., "Bilateral Control with Transformer and Gyrator Analogy", Electrical Engineering Department, University of Indonesia, Indonesia

IJSS06-235 Subiantoro, A., et al., "Design and Implementation of adaptive control system on pressure process RIG (feedback 38-714) using recursive least square and generalized predictive control method", Electrical Engineering Department, University of Indonesia, Indonesia

IJSS06-236 Ferdinando, F., et al., "The implementation of PID controller in the pick and place robot", Petra University, Surabaya, Indonesia

08.30 - 10.00: Environment and Power System, Location Room 3
Moderator: Dr. Uno Bintang Sudibyo. (University of Indonesia, Indonesia)

IJSS06-237 Iwa Gamiwa, et al., "Analysis of connection temperature due current affected by surface factors and torque", Electrical Engineering Department, University of Indonesia, Indonesia

IJSS06-238 Iwa Gamiwa, et al., "Heat transfer analysis for coil inside the transformer oil", Electrical Engineering Department, University of Indonesia, Indonesia

IJSS06-239 Iwa Gamiwa, et al., "Effect of pollutant type and concentration on harmonic characteristic of leakage current on reson epoxy insulator", Electrical Engineering Department, University of Indonesia, Indonesia

IJSS06-240 Herawati Yusuf, "Band gap on switching power supply 75 V DC/400 mA from 15 V DC with low ripple", Electrical engineering Department, University of Indonesia, Indonesia

IJSS06-241 Agus R. Utomo, et al., "Studies on Fuel Cell tech. to produce electricity using supercritical water gasification of biomass empty fruit bunch palm oil as hydrogen production", Electrical Engineering Department, University of Indonesia, Indonesia

10.15 - 12.00: Environment Science, Location Room 1
Moderator: Dr. Josaphat Tetuko (Chiba University, Japan)

IJSS06-242 Josaphat Tetuko, et al., "Retrieving of Geological Characteristics of Krakatau Volcanoes Complex Using synthetic aperture radar", Chiba University, Japan

IJSS06-243 A. Hemmati, et al., "3-D nonlinear analysis for seismic assessment of vertically mixed structures", Semnati University, Iran

IJSS06-244 Yesy Arvelyna, et al., "Wavelet transform analysis for oceanic feature detection in SAR and optical image", Tokyo Univ., of Marine, Japan

IJSS06-245 Kusuma Dewi, "Pedestrian detection using discrete wavelet transform optimized by genetic algorithms", Chiba University, Japan

IJSS06-246 Sulaiman A., et al., "On nonlinear internal waves propagation in the narrow strait of the Indonesian seas", BPPT, Indonesia
BANDGAP ON SWITCHING POWER SUPPLY 75 V DC / 400 mA FROM 15 V DC WITH LOW RIPPLE VOLTAGE

Herawati Y’s, Student Member, IEEE. Eko Cipto, Member IEEE. Iwa Gamiwa
Department of Electrical Engineering, University of Indonesia.
Siti_herawati_aminah @ yahoo.com, eko @ ee.ui.ac.id, iwa @ ee.ui.ac.id

ABSTRACT — the fact, electric or electronic systems can’t be operated directly with electric source. Because it’s needed a converter to convert electric source from one voltage form and level to another voltage form and level, as the boost converter or step up converter. Boost converter or step-up converter has an output voltage that is always greater than the input voltage. Output voltage can be differentiated depend on the duty cycle. It’s needed a pulse width modulation (PWM) generator. In design, the output voltage of boost converter has voltage about 5 times than the input voltage. Because of that, the duty cycle is 0.8. The output voltage of boost converter is about 74 V DC with error percentage 0.8 % and the output current of boost converter is 396 mA with error percentage 0.8 % with ripple 6.504 mVP-p obtained is efficiency 98 %.

Keywords — Bandgap, switching, Converter power supply, low ripple.

I. INTRODUCTION

The power supply is a system which could feed the load with efficient and softly cited. The part off power supply is the simple boost converter circuit, the simple converter with filter from core of toroid with two bandgaps as filter CLC. It be calculate with approach magnetic circuit to circuit electric. Bandgap can change the system.

Switching boost converter [3], the output voltage 75V/400mA DC. Win 15 VDC with ripple maximum 0.2Vp-p Switching on Boost Converter

Switching on Boost converter (is IGBT). The IGBT have duty cycle which one to operate the power supply so the voltage output have low ripple. See fig. 1

\[V_d t_{on} + \left(V_d - V_a \right) t_{off} = 0 \]

The effect of on and off switching on converter like eq. 2.

\[\frac{V_a}{V_d} = \frac{T_s}{t_{off}} = \frac{1}{1 - D} \]

From eq. 2. The characteristic of duty cycle see fig. 2.

The figure 2. To show the ratio of voltage with duty cycle the maximize duty cycle is 1.

II. THE CURRENT DISCONTINUE WITH \(V_D \) CONSTANT

Switching on or off with discontinuity to show the integrated voltage see figure 3.

\[V_d DT_s + \left(V_d - V_a \right) \Delta t_s T_s = 0 \]

From fig 3. The duty cycle is

\[\frac{V_a}{V_d} = \frac{\Delta t_s + D}{\Delta t} \]

Fig.1 The simple boost converter circuit

Fig. 1. the simple boost converter circuit it takes the duty cycle, the duty cycle reduce the output voltage. The duty cycle make the IGBT on and off as eq. 1.
With assumption there aren't power losses ($P_L = P_a$), so the ratio current discontinues is the eq. 5:

$$\frac{I_o}{I_d} = \frac{\Delta_1}{\Delta_1 + D}$$

(5)

From the fig. 3. The current is physical defect so the average current is different with duty cycle. The eq. 4. So the peak current is eq. 6:

$$I_{peak} = \frac{V_d D T_s}{L}$$

(6)

And the average input current in eq. 7:

$$I_d = \frac{V_d D T_s}{2L} (D + \Delta_1)$$

(7)

Use the equation 7 and 5 so the average current in eq 8.

$$I_o = \left(\frac{V_d D}{2L} \right) D \Delta_1$$

(8)

<table>
<thead>
<tr>
<th>Components</th>
<th>Component parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2,307 mH</td>
</tr>
<tr>
<td>R_s</td>
<td>187.5 Ω</td>
</tr>
<tr>
<td>C_4</td>
<td>4 μF</td>
</tr>
<tr>
<td>MOSFET</td>
<td>IRF150</td>
</tr>
<tr>
<td>D_1</td>
<td>D1N4002</td>
</tr>
</tbody>
</table>

The complete converter is shown in fig. 4.

![Fig. 4. the boost converter. [4]](image)

TABLE 1

List of the simple boost Converter.

<table>
<thead>
<tr>
<th>Components</th>
<th>Component parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2,307 mH</td>
</tr>
<tr>
<td>R_s</td>
<td>187.5 Ω</td>
</tr>
<tr>
<td>C_4</td>
<td>4 μF</td>
</tr>
<tr>
<td>MOSFET</td>
<td>IRF150</td>
</tr>
<tr>
<td>D_1</td>
<td>D1N4002</td>
</tr>
</tbody>
</table>

The complete converter is shown in fig. 4.

III. BANDGAP AS FILTER CLC

The Filter CLC like fig. 5. From the core type with two bandgaps material.

![Fig. 5. circuit filter CLC](image)

If the voltage is:

$$V_{dc} = \frac{R_3}{R_3 + r_L} \cdot V_{dc}$$

(9)

The voltage average is:

$$V_{r,\text{ave}} = \frac{0.2}{2 \sqrt{3}}$$

(10)

So the ripple is:

$$r = \frac{V_{r,\text{ave}} \times 100\%}{V_{dc}}$$

(11)

Thus $r = 0.577 \times 100\% = 0.0577 \times 100\%$

(12)

Chose $L_1 = 250$ mH and $C_3 = 4 \mu F$, this parameter it takes from core type band gap as fig. 6.

IV. BANDGAP IN THE TOROID CORE

Bandgap in fig 5. As capacitor and the inductor it takes from winding, material and also two bandgap fig. 4.

![Fig. 6. Two band gap in the toroid core](image)

The coupling electromagnetic is

$$k_i = \frac{\alpha \sqrt{\mu_0 \mu_i 2\rho}}{2\rho}$$

(12)

The coupling equation 12, used in equation 14 to find self inductance eq. 14 or mutual inductance equation 15 the resistant material magnet permanent, in primer

$$R_{D1} = \frac{l}{(\pi a^2)}$$

(13)

Self inductance L_1 is

$$L_1 = L_i + \frac{\mu_0 (2\pi l)}{\log (2l/a)} - \frac{1}{1}$$

(14)

The mutual inductance is eq. 15

$$M = \frac{\mu_0 (2\pi l)}{\log (2l_0 (a + b) - 1)}$$

(15)

Calculate the reluctance from the material and band gap as eq. 16:
\[R_g = \frac{g}{\mu Ag} \]

(16)

Count self inductance like eq. 14, mutual inductance eq 15, reluctants, from the band gap and the material so it found the accumulation magnetoimens as winding eq 17.

\[N^2 = \frac{2\pi \rho x L}{\mu \omega A} \]

(17)

Current and magnetic fluxes was generate from fig. 5 has difference so it makes more strongly or weakness so the parameter \(\Delta B \) like eq. 18.

\[\Delta B = \frac{(V1 - VQ - V0)(V0 + VD)T_5}{AN(V1 - VQ + VD)} \]

(18)

So flux density maximum \(B_m \) from eq. 19.

\[B_m = B_r + \frac{\mu \omega N P_0}{I V_0} + \frac{\Delta B}{2} \]

(19)

Fluxes density residual is eq.20

\[B_r = B_m - \frac{\mu \omega N P_0}{I V_0} - \frac{\Delta B}{2} \]

(20)

Fluxes density minimum eq. 21

\[B_A = B_m - \frac{\mu \omega N P_0}{I V_0} - \frac{\Delta B}{2} \]

(21)

The reactants current) rms is eq. 22

\[I_{Rms} = \frac{P_0}{V_0} \left[\frac{1}{12} \frac{W_0(V_1 - V_0)(V_0 + V_0) T_5}{\mu \omega AN^2 P_0 (V_1 - V_0 + V_0)} \right]^\frac{1}{2} \]

(22)

The peak reactance current in eq. 23.

\[I_{X_B} = \frac{I (B_m - B_A)}{\mu \omega N} \]

(23)

The reactance current minimum in eq. 24

\[I_{X_A} = \frac{I (B_m - B_A)}{\mu \omega N} \]

(24)

The integration toroid core was converting in boost converter in table II.

<table>
<thead>
<tr>
<th>(g) (mm)</th>
<th>(l) (cm)</th>
<th>(A_{e}) (cm(^2))</th>
<th>(\gamma_{ma}) (AT/Wb)</th>
<th>(\gamma_{m}) (AT/Wb)</th>
<th>(\gamma_{m}) (AT/Wb)</th>
<th>(\gamma_{ma}) (AT/Wb)</th>
<th>(\gamma_{m}) (AT/Wb)</th>
<th>(\gamma_{m}) (AT/Wb)</th>
<th>(\gamma_{ma}) (AT/Wb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>4.68</td>
<td>0.07</td>
<td>5.325</td>
<td>188</td>
<td>22</td>
<td>45.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>4.66</td>
<td>0.07</td>
<td>5.3</td>
<td>183.6</td>
<td>43</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>4.64</td>
<td>0.07</td>
<td>5.28</td>
<td>189.4</td>
<td>64</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>4.62</td>
<td>0.07</td>
<td>5.25</td>
<td>190.6</td>
<td>91</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.6</td>
<td>0.07</td>
<td>5.23</td>
<td>191.2</td>
<td>113</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>4.58</td>
<td>0.07</td>
<td>5.2</td>
<td>192.3</td>
<td>136</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>4.56</td>
<td>0.07</td>
<td>5.19</td>
<td>192.6</td>
<td>199</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>4.54</td>
<td>0.07</td>
<td>5.16</td>
<td>193.7</td>
<td>181</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. ANALYSIS THE PROTOTYPE

The output power supply with initial condition like fig 6, we find the average voltage on switching power supply 74 V DC. We can see the ripple more than 3%. after using 6 core with bandgap see figure 7, the ripple output voltage about 73 Volt with a time stabled about 25 ns have, with Vin/Vout have the duty cycle about 0.8 in.

![Fig 6. Voltage output power supply in initial condition.](image)

The output power supply with bandgap as fig. 7.

![Fig 7. Output voltage power supply with bandgap](image)

V. CONCLUSION

- Boost converter is an important system it makes the power supply more efficient. With Duty Cycle \(D = 0.8 \).
- The ripple voltage 0.2 % with modifies core type from converter so the output voltage is 73 V DC with ripple 7mVp-p.
- The ripple 0.2 % and output current is 389 mA and efficiency 94 %.

REFERENCES

