LAMPIRAN

Lampiran 1. Foto-foto Penelitian

Alat dan Bahan Penelitian

Gelas-gelas Percobaan
Lampiran 2. Perhitungan Konsentrasi

Dari minyak atsiri selasih 5 ml = 1.000.000 ppm = 100% ditambahkan alkohol 95% sebagai pelarut dalam air, dengan perbandingan minyak dan alkohol 1:7. Larutan minyak atsiri yang didapatkan setelah ditambah alkohol sangat mudah larut dalam air. Untuk mengencerkan hanya ditambahkan air sumur sesuai konsentrasi yang diinginkan.

Teknik perhitungan konsentrasi minyak atsiri selasih yang dipakai:
Terlebih dahulu dibuat konsentrasi dasar 500 ppm dari minyak atsiri selasih 100%, yaitu:
I. 500 ppm = 0,125 ml dari minyak selasih diencerkan sampai 250 ml air

II. Dibuat konsentrasi yang dipakai:
 1. 10 ppm = 1 ml dari larutan I diencerkan sampai 50 ml air
 2. 40 ppm = 4 ml dari larutan I diencerkan sampai 50 ml air
 3. 70 ppm = 7 ml dari larutan I diencerkan sampai 50 ml air
 4. 100 ppm = 10 ml dari larutan I diencerkan sampai 50 ml air
 5. 130 ppm = 13 ml dari larutan I diencerkan sampai 50 ml air
 6. 160 ppm = 16 ml dari larutan I diencerkan sampai 50 ml air
 7. 190 ppm = 19 ml dari larutan I diencerkan sampai 50 ml air
 8. 220 ppm = 22 ml dari larutan I diencerkan sampai 50 ml air
Lampiran 3. Hasil Konversi dengan Ln (x+1)

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
<th>130</th>
<th>160</th>
<th>190</th>
<th>220</th>
<th>(-)</th>
<th>(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>0,69</td>
<td>1,38</td>
<td>2,56</td>
<td>2,70</td>
<td>2,99</td>
<td>3,29</td>
<td>3,40</td>
<td>0</td>
<td>3,43</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>1,09</td>
<td>1,38</td>
<td>2,07</td>
<td>2,70</td>
<td>3,09</td>
<td>3,40</td>
<td>3,36</td>
<td>0</td>
<td>3,43</td>
</tr>
<tr>
<td>III</td>
<td>1,09</td>
<td>0,69</td>
<td>2,07</td>
<td>2,56</td>
<td>2,83</td>
<td>3,09</td>
<td>3,36</td>
<td>3,43</td>
<td>0</td>
<td>3,43</td>
</tr>
</tbody>
</table>

Keterangan:
Satuan dalam ppm (part of million)
(-) = Kontrol Negatif
(+)= Kontrol Positif
Lampiran 4. ANAVA Satu Arah

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>47.169</td>
<td>9</td>
<td>5.241</td>
<td>74.722</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>1.403</td>
<td>20</td>
<td>.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48.572</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I) perlakuan</td>
<td>(J) perlakuan</td>
<td>Mean Difference (I-J)</td>
<td>Std. Error</td>
<td>Sig.</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Kontrol (-)</td>
<td>10 ppm</td>
<td>-.36333</td>
<td>.21624</td>
<td>.794</td>
<td>-1.1291</td>
</tr>
<tr>
<td></td>
<td>40 ppm</td>
<td>-.82333*</td>
<td>.21624</td>
<td>.029</td>
<td>-1.5891</td>
</tr>
<tr>
<td></td>
<td>70 ppm</td>
<td>-1.61000*</td>
<td>.21624</td>
<td>.000</td>
<td>-2.3757</td>
</tr>
<tr>
<td></td>
<td>100 ppm</td>
<td>-2.39667*</td>
<td>.21624</td>
<td>.000</td>
<td>-3.1624</td>
</tr>
<tr>
<td></td>
<td>130 ppm</td>
<td>-2.74333*</td>
<td>.21624</td>
<td>.000</td>
<td>-3.5091</td>
</tr>
<tr>
<td></td>
<td>160 ppm</td>
<td>-3.05667*</td>
<td>.21624</td>
<td>.000</td>
<td>-3.8224</td>
</tr>
<tr>
<td></td>
<td>190 ppm</td>
<td>-3.35000*</td>
<td>.21624</td>
<td>.000</td>
<td>-4.1157</td>
</tr>
<tr>
<td></td>
<td>220 ppm</td>
<td>-3.39667*</td>
<td>.21624</td>
<td>.000</td>
<td>-4.1624</td>
</tr>
<tr>
<td></td>
<td>Kontrol (+)</td>
<td>-3.43000*</td>
<td>.21624</td>
<td>.000</td>
<td>-4.1957</td>
</tr>
<tr>
<td>10 ppm</td>
<td>Kontrol (-)</td>
<td>.36333</td>
<td>.21624</td>
<td>.794</td>
<td>-.4024</td>
</tr>
<tr>
<td></td>
<td>40 ppm</td>
<td>-.46000</td>
<td>.21624</td>
<td>.531</td>
<td>-1.2257</td>
</tr>
<tr>
<td></td>
<td>70 ppm</td>
<td>-1.24667*</td>
<td>.21624</td>
<td>.000</td>
<td>-2.0124</td>
</tr>
<tr>
<td></td>
<td>100 ppm</td>
<td>-2.03333*</td>
<td>.21624</td>
<td>.000</td>
<td>-2.7991</td>
</tr>
<tr>
<td></td>
<td>130 ppm</td>
<td>-2.38000*</td>
<td>.21624</td>
<td>.000</td>
<td>-3.1457</td>
</tr>
<tr>
<td></td>
<td>160 ppm</td>
<td>-2.69333*</td>
<td>.21624</td>
<td>.000</td>
<td>-3.4591</td>
</tr>
<tr>
<td></td>
<td>190 ppm</td>
<td>-2.98667*</td>
<td>.21624</td>
<td>.000</td>
<td>-3.7524</td>
</tr>
<tr>
<td></td>
<td>220 ppm</td>
<td>-3.03333*</td>
<td>.21624</td>
<td>.000</td>
<td>-3.7991</td>
</tr>
<tr>
<td></td>
<td>Kontrol (+)</td>
<td>-3.06667*</td>
<td>.21624</td>
<td>.000</td>
<td>-3.8324</td>
</tr>
<tr>
<td>40 ppm</td>
<td>Kontrol (-)</td>
<td>.82333*</td>
<td>.21624</td>
<td>.029</td>
<td>.0576</td>
</tr>
<tr>
<td></td>
<td>10 ppm</td>
<td>.46000</td>
<td>.21624</td>
<td>.531</td>
<td>-.3057</td>
</tr>
<tr>
<td></td>
<td>70 ppm</td>
<td>-.78667*</td>
<td>.21624</td>
<td>.041</td>
<td>-1.5524</td>
</tr>
<tr>
<td></td>
<td>100 ppm</td>
<td>-1.57333*</td>
<td>.21624</td>
<td>.000</td>
<td>-2.3391</td>
</tr>
<tr>
<td></td>
<td>130 ppm</td>
<td>-1.92000*</td>
<td>.21624</td>
<td>.000</td>
<td>-2.6857</td>
</tr>
</tbody>
</table>

Lampiran 5. Uji Komparasi Multiple *Tukey HSD*
<table>
<thead>
<tr>
<th>ppm</th>
<th>Kontrol (+)</th>
<th>Kontrol (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 ppm</td>
<td>-2.23333*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>190 ppm</td>
<td>-2.52667*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>220 ppm</td>
<td>-2.57333*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>Kontrol (+)</td>
<td>-2.60667*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>70 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrol (-)</td>
<td>1.61000*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>10 ppm</td>
<td>1.24667*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>40 ppm</td>
<td>.78667*</td>
<td>.21624 .041</td>
</tr>
<tr>
<td>100 ppm</td>
<td>- .78667*</td>
<td>.21624 .041</td>
</tr>
<tr>
<td>130 ppm</td>
<td>-1.13333*</td>
<td>.21624 .001</td>
</tr>
<tr>
<td>160 ppm</td>
<td>-1.44667*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>190 ppm</td>
<td>-1.74000*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>220 ppm</td>
<td>-1.78667*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>Kontrol (+)</td>
<td>-1.82000*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>100 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrol (-)</td>
<td>2.39667*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>10 ppm</td>
<td>2.03333*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>40 ppm</td>
<td>1.57333*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>70 ppm</td>
<td>.78667*</td>
<td>.21624 .041</td>
</tr>
<tr>
<td>130 ppm</td>
<td>-.34667</td>
<td>.21624 .832</td>
</tr>
<tr>
<td>160 ppm</td>
<td>-.66000</td>
<td>.21624 .129</td>
</tr>
<tr>
<td>190 ppm</td>
<td>-.95333*</td>
<td>.21624 .008</td>
</tr>
<tr>
<td>220 ppm</td>
<td>-1.00000*</td>
<td>.21624 .005</td>
</tr>
<tr>
<td>Kontrol (+)</td>
<td>-1.03333*</td>
<td>.21624 .004</td>
</tr>
<tr>
<td>130 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrol (-)</td>
<td>2.74333*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>10 ppm</td>
<td>2.38000*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>40 ppm</td>
<td>1.92000*</td>
<td>.21624 .000</td>
</tr>
<tr>
<td>70 ppm</td>
<td>1.13333*</td>
<td>.21624 .001</td>
</tr>
<tr>
<td>100 ppm</td>
<td>.34667</td>
<td>.21624 .832</td>
</tr>
<tr>
<td>ppm</td>
<td>160 ppm</td>
<td>190 ppm</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>-.31333</td>
<td>-.60667</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.897</td>
<td>.200</td>
</tr>
<tr>
<td></td>
<td>-1.0791</td>
<td>-1.3724</td>
</tr>
<tr>
<td></td>
<td>.4524</td>
<td>.1591</td>
</tr>
<tr>
<td>10 ppm</td>
<td>3.05667</td>
<td>2.69333</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>2.2909</td>
<td>1.9276</td>
</tr>
<tr>
<td></td>
<td>3.8224</td>
<td>3.4591</td>
</tr>
<tr>
<td>40 ppm</td>
<td>2.69333</td>
<td>2.23333</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>1.9276</td>
<td>1.4676</td>
</tr>
<tr>
<td></td>
<td>3.4591</td>
<td>2.9991</td>
</tr>
<tr>
<td>70 ppm</td>
<td>2.23333</td>
<td>1.44667</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>1.4676</td>
<td>1.7609</td>
</tr>
<tr>
<td></td>
<td>2.9991</td>
<td>3.3391</td>
</tr>
<tr>
<td>100 ppm</td>
<td>1.44667</td>
<td>1.74000</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>1.7609</td>
<td>1.0209</td>
</tr>
<tr>
<td></td>
<td>2.9991</td>
<td>3.3391</td>
</tr>
<tr>
<td>130 ppm</td>
<td>1.74000</td>
<td>1.78667</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>1.4676</td>
<td>1.7609</td>
</tr>
<tr>
<td></td>
<td>2.9991</td>
<td>3.3391</td>
</tr>
<tr>
<td>160 ppm</td>
<td>2.98667</td>
<td>2.52667</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>2.2209</td>
<td>1.7609</td>
</tr>
<tr>
<td></td>
<td>3.7524</td>
<td>3.2924</td>
</tr>
<tr>
<td>190 ppm</td>
<td>2.52667</td>
<td>1.74000</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>1.7609</td>
<td>1.0209</td>
</tr>
<tr>
<td></td>
<td>3.2924</td>
<td>2.5524</td>
</tr>
<tr>
<td>220 ppm</td>
<td>2.52667</td>
<td>1.74000</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>1.7609</td>
<td>1.0209</td>
</tr>
<tr>
<td></td>
<td>3.2924</td>
<td>2.5524</td>
</tr>
<tr>
<td>Kontrol (+)</td>
<td>.31333</td>
<td>.100000</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>2.6309</td>
<td>2.2676</td>
</tr>
<tr>
<td>Kontrol (-)</td>
<td>.68667</td>
<td>.100000</td>
</tr>
<tr>
<td></td>
<td>.21624</td>
<td>.21624</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>2.6309</td>
<td>2.2676</td>
</tr>
<tr>
<td>Concentration</td>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>130 ppm</td>
<td>.65333</td>
<td>.21624</td>
</tr>
<tr>
<td>160 ppm</td>
<td>.34000</td>
<td>.21624</td>
</tr>
<tr>
<td>190 ppm</td>
<td>.04667</td>
<td>.21624</td>
</tr>
<tr>
<td>Kontrol (+)</td>
<td>-.03333</td>
<td>.21624</td>
</tr>
<tr>
<td>Kontrol (+)</td>
<td>3.43000</td>
<td>.21624</td>
</tr>
<tr>
<td>Kontrol (-)</td>
<td>3.06667</td>
<td>.21624</td>
</tr>
<tr>
<td>10 ppm</td>
<td>2.60667</td>
<td>.21624</td>
</tr>
<tr>
<td>40 ppm</td>
<td>1.82000</td>
<td>.21624</td>
</tr>
<tr>
<td>100 ppm</td>
<td>1.03333</td>
<td>.21624</td>
</tr>
<tr>
<td>130 ppm</td>
<td>.68667</td>
<td>.21624</td>
</tr>
<tr>
<td>160 ppm</td>
<td>.37333</td>
<td>.21624</td>
</tr>
<tr>
<td>190 ppm</td>
<td>.08000</td>
<td>.21624</td>
</tr>
<tr>
<td>220 ppm</td>
<td>.03333</td>
<td>.21624</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.
Lampiran 6. Homogeneous Subsets

Tukey HSD\(^a\)

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol (-)</td>
<td>3</td>
<td>.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ppm</td>
<td>3</td>
<td>.3633</td>
<td>.3633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 ppm</td>
<td>3</td>
<td></td>
<td>.8233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 ppm</td>
<td>3</td>
<td></td>
<td></td>
<td>1.6100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 ppm</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2.3967</td>
<td></td>
</tr>
<tr>
<td>130 ppm</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2.7433</td>
<td>2.7433</td>
</tr>
<tr>
<td>160 ppm</td>
<td>3</td>
<td></td>
<td></td>
<td>3.0567</td>
<td>3.0567</td>
<td></td>
</tr>
<tr>
<td>190 ppm</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3.3500</td>
<td></td>
</tr>
<tr>
<td>220 ppm</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3.3967</td>
<td></td>
</tr>
<tr>
<td>Kontrol (+)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4300</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.794</td>
<td>.531</td>
<td>1.000</td>
<td>.129</td>
<td>.103</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

\(^a\) Uses Harmonic Mean Sample Size = 3,000.