PERANCANGAN DAN REALISASI ROBOT KRSBI BERODA
2017 MENGGUNAKAN SISTEM GERAK HOLONOMIC

Nama : Gerry Arisandy
NRP : 1322004
Email : gerryarisandy@gmail.com

ABSTRAK

Kata Kunci : holonomic, mecanum drive, inverse kinematic
DESIGN AND REALIZATION OF KRSBI 2017 WHEELED ROBOT USING HOLONOMIC MOTION

Name: Gerry Arisandy
NRP: 1322004
Email: gerryarisandy@gmail.com

ABSTRACT

In Kontes Robot Sepak Bola Indonesia (KRSBI) division of Kontes Robot Indonesia 2017 Event, a robot needs to be able to play soccer in a field and get the ball into the enemy’s goal. Some problems that need to be solved are tuning and bad robot motion control. Other problem includes the configuration of conventional wheel, which inhibits the freedom of motion for the robot.

In this finals paper, three systems, including image processing system, motions system, and also dribbling and shoot system is designed into one system. The focus in this discussion is the movement system of the robot. To identify the ball used in the game, Thresholding method in image processing is used. The devices that are used here includes Logitech C930e Webcam and Lattepanda Single Board Computer powered by Intel Cherrytrail Z8300 processor. Holonomic motion system is implemented in the motion systems of the robot, with the help of mecanum drive to overcome problems related to robot motions. To create robot motions, such as forward, reverse, left, right, and diagonal direction, inverse kinematics formulae is used in order to enable the robot move without changing it’s orientation. In order to give input to the inverse kinematics formulae, rotary encoder sensor is used. Dribbling and shooting system adopts the crossbow mechanism which is combined with crank and slider mechanism.

Design and realization of holonomic motion system using mecanum drive is successfully done. Inverse Kinematics formulae can be used to determine motor speed needed. The rate of success of the robot to approach the ball reaches 40 to 100 %, excluding the scenario when the ball is directly at the back of the robot. Travelling time of the robot is lower when using mecanum wheel if compared to the conventional wheel.

Keyword: holonomic, mecanum drive, inverse kinematic
DAFTAR ISI

HALAMAN JUDUL .. i
LEMBAR PENGESAHAN .. ii
PERNYATAAN ORISINALITAS LAPORAN TUGAS AKHIR iii
PERNYATAAN PERSETUJUAN PUBLIKASI LAPORAN TUGAS AKHIR iv
KATA PENGANTAR .. i
ABSTRAK .. iii
ABSTRACT .. iv
DAFTAR ISI .. v
DAFTAR GAMBAR .. vii
DAFTAR TABEL .. ix
DAFTAR LAMPIRAN ... x
BAB I PENDAHULUAN .. 1
I.1 Latar Belakang ... 1
I.2 Identifikasi Masalah .. 2
I.3 Perumusan Masalah .. 2
I.4 Tujuan .. 2
I.5 Pembatasan Masalah ... 2
I.6 Sistematika Laporan ... 3
BAB II LANDASAN TEORI ... 4
II.1 Sistem Gerak Omnidirectional .. 4
II.2 Sistem Gerak Holonomic dan Non-Holonomic ... 5
II.3 Mecanum Drive ... 6
II.4 Kinematik Robot Mecanum Beroda Empat ... 6
II.5 OpenCV .. 8
II.5.1 Thresholding .. 9
II.5.2 Moments ... 9
II.5.3 findContours ...10
II.5.4 BGR2HSV ...10
II.5.5 Morphology .. 11
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.6</td>
<td>LattePanda Single Board Computer</td>
<td>12</td>
</tr>
<tr>
<td>II.7</td>
<td>Arduino Mega</td>
<td>14</td>
</tr>
<tr>
<td>II.8</td>
<td>Vex Mecanum Wheels</td>
<td>15</td>
</tr>
<tr>
<td>II.9</td>
<td>Vex 2-Wire Motor 393</td>
<td>16</td>
</tr>
<tr>
<td>II.10</td>
<td>Rotary Encoder</td>
<td>17</td>
</tr>
<tr>
<td>II.11</td>
<td>Motor Driver</td>
<td>17</td>
</tr>
<tr>
<td>II.12</td>
<td>Webcam Logitech C930e</td>
<td>18</td>
</tr>
<tr>
<td>BAB III</td>
<td>PERANCANGAN DAN REALISASI</td>
<td>20</td>
</tr>
<tr>
<td>III.1</td>
<td>Perancangan Sistem Robot KRSBI Beroda</td>
<td>20</td>
</tr>
<tr>
<td>III.1.1</td>
<td>Elektronika Robot</td>
<td>22</td>
</tr>
<tr>
<td>III.1.2</td>
<td>Proses Pencarian Bola</td>
<td>23</td>
</tr>
<tr>
<td>III.1.3</td>
<td>Perancangan Pengolahan Citra</td>
<td>24</td>
</tr>
<tr>
<td>III.1.4</td>
<td>Perancangan Sistem Tracking Bola</td>
<td>25</td>
</tr>
<tr>
<td>III.1.5</td>
<td>Perancangan Sistem Gerak Robot</td>
<td>26</td>
</tr>
<tr>
<td>III.1.6</td>
<td>Perancangan Sistem Penggiring Bola</td>
<td>36</td>
</tr>
<tr>
<td>III.1.7</td>
<td>Perancangan Sistem Penendang Robot</td>
<td>36</td>
</tr>
<tr>
<td>III.2</td>
<td>Realisasi Sistem Robot KRSBI Beroda</td>
<td>38</td>
</tr>
<tr>
<td>BAB IV</td>
<td>DATA PENGAMATAN DAN ANALISIS</td>
<td>42</td>
</tr>
<tr>
<td>IV.1</td>
<td>Pengaruh Intensitas Cahaya Terhadap Pendeteksian Bola</td>
<td>42</td>
</tr>
<tr>
<td>IV.2</td>
<td>Pengaruh Jarak Terhadap Pendeteksian Bola</td>
<td>44</td>
</tr>
<tr>
<td>IV.3</td>
<td>Pengujian Sensor Rotary Encoder</td>
<td>46</td>
</tr>
<tr>
<td>IV.4</td>
<td>Pengujian Ketepatan Jarak Perpindahan Robot</td>
<td>47</td>
</tr>
<tr>
<td>IV.5</td>
<td>Pengujian Kecepatan Gerak Robot</td>
<td>48</td>
</tr>
<tr>
<td>IV.6</td>
<td>Pengujian Rumus yang Digunakan</td>
<td>49</td>
</tr>
<tr>
<td>IV.7</td>
<td>Pengujian Keberhasilan Robot Mendekati Bola</td>
<td>50</td>
</tr>
<tr>
<td>IV.8</td>
<td>Perbandingan Mecanum Wheels dengan Roda Konvensional</td>
<td>55</td>
</tr>
<tr>
<td>IV.9</td>
<td>Pengujian Keberhasilan Robot Menendang Bola</td>
<td>57</td>
</tr>
<tr>
<td>BAB V</td>
<td>SIMPULAN DAN SARAN</td>
<td>58</td>
</tr>
<tr>
<td>V.1</td>
<td>Simpulan</td>
<td>58</td>
</tr>
<tr>
<td>V.2</td>
<td>Saran</td>
<td>58</td>
</tr>
<tr>
<td>DAFTAR REFERENSI</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td></td>
<td>A-1</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

Gambar II.1 Sistem Gerak Diferensial (Kiri) dan Omnidirectional (Kanan) 5
Gambar II.2 Mecanum Drive .. 6
Gambar II.3 Konfigurasi Roda dan Definisi Parameter 7
Gambar II.4 Segmentasi Citra Thresholding ... 9
Gambar II.5 Lattepanda Single Board Computer 12
Gambar II.6 Pinout Lattepanda ... 14
Gambar II.7 Vex Mecanum Wheels ... 16
Gambar II.8 Vex 2-Wire Motor 393 ... 16
Gambar II.9 Vex Integrated Encoder ... 17
Gambar II.10 VNH2SP30-Monster Driver Module 18
Gambar II.11 Webcam Logitech c930e ... 19
Gambar III.1 Diagram Blok Sistem Robot KRSBI Beroda 20
Gambar III.2 Flowchart Sistem Robot KRSBI Beroda 21
Gambar III.3 Diagram Blok Elektronika Robot ... 22
Gambar III.4 Flowchart Pencarian Bola ... 23
Gambar III.5 Langkah-Langkah Pengolahan Citra 24
Gambar III.6 Diagram Blok Sistem Tracking Bola 25
Gambar III.7 Pembagian Frame Kamera ... 25
Gambar III.8 Diagram Blok Sistem Pergerakan Robot 26
Gambar III.9 Flowchart Robot Mendekati Bola 28
Gambar III.10 Perhitungan Jarak Bola Terhadap Robot 29
Gambar III.11 Grafik Hubungan Nilai PWM Terhadap Kecepatan Motor 32
Gambar III.12 Flowchart Menghitung Kecepatan Motor 33
Gambar III.13 Definisi Parameter yang Digunakan 34
Gambar III.14 Diagram Blok Penggiring Bola ... 36
Gambar III.15 Diagram Blok Penendang Robot 37
Gambar III.16 Crank and Slider Mechanism .. 37
Gambar III.17 Crossbow Mechanism .. 38
Gambar III.18 Realisasi Robot KRSBI Beroda .. 38
Gambar III.19 Gambar Original ...39
Gambar III.20 Gambar Hasil \textit{Thresholding} ..39
Gambar III.21 Mekanika Sistem \textit{Tracking} Bola40
Gambar III.22 Mekanika Sistem Penendang Bola40
Gambar III.23 Mekanika Sistem Penggiring Bola40
Gambar III.24 Mekanika Sistem Pergerakan Robot41
Gambar IV.1 Kondisi Ruangan Tanpa Pencahayaan42
Gambar IV.2 Pencahayaan \textit{Flashlight HP} ...42
Gambar IV.3 Pencahayaan Lampu ..43
Gambar IV.4 Pencahayaan Lampu dan \textit{Flashlight HP}43
Gambar IV.5 Jarak Bola 1 Meter ...44
Gambar IV.6 Jarak Bola 2 Meter ...44
Gambar IV.7 Jarak Bola 3 Meter ...45
Gambar IV.8 Jarak Bola 4 Meter ...45
Gambar IV.9 Jarak Bola 4,8 Meter ...45
Gambar IV.10 Pengujian Menggunakan Roda Konvensional56
DAFTAR TABEL

Tabel II.1 Parameter Robot ... 8
Tabel II.2 Spesifikasi Arduino Mega .. 15
Tabel III.1 Pembagian Frame Gambar .. 26
Tabel III.2 Tabel Arah Gerak Berdasarkan Parameter yang Ditentukan 30
Tabel III.3 Kecepatan Motor yang Digunakan 31
Tabel IV.1 Kecepatan Motor Tinggi .. 46
Tabel IV.2 Kecepatan Motor Menengah .. 46
Tabel IV.3 Kecepatan Motor Rendah ... 47
Tabel IV.4 Pengujian Jarak Pindah ... 48
Tabel IV.5 Pengujian Kecepatan Gerak ... 49
Tabel IV.6 Pengujian Rumus yang Digunakan 49
Tabel IV.7 Keberhasilan Mendekati Bola Sudut 0° Jarak 1,5m 51
Tabel IV.8 Keberhasilan Mendekati Bola Sudut 90° Jarak 1,5m 51
Tabel IV.9 Keberhasilan Mendekati Bola Sudut -90° Jarak 1,5m 51
Tabel IV.10 Keberhasilan Mendekati Bola Sudut 180° Jarak 1,5m 51
Tabel IV.11 Keberhasilan Mendekati Bola Sudut 45° Jarak 1,5m 52
Tabel IV.12 Keberhasilan Mendekati Bola Sudut -45° Jarak 1,5m 52
Tabel IV.13 Keberhasilan Mendekati Bola Sudut 135° Jarak 1,5m 52
Tabel IV.14 Keberhasilan Mendekati Bola Sudut -135° Jarak 1,5m 52
Tabel IV.15 Keberhasilan Mendekati Bola Sudut 0° Jarak 3m 53
Tabel IV.16 Keberhasilan Mendekati Bola Sudut 90° Jarak 3m 53
Tabel IV.17 Keberhasilan Mendekati Bola Sudut -90° Jarak 3m 53
Tabel IV.18 Keberhasilan Mendekati Bola Sudut 180° Jarak 3m 54
Tabel IV.19 Keberhasilan Mendekati Bola Sudut 45° Jarak 3m 54
Tabel IV.20 Keberhasilan Mendekati Bola Sudut -45° Jarak 3m 54
Tabel IV.21 Keberhasilan Mendekati Bola Sudut 135° Jarak 3m 54
Tabel IV.22 Keberhasilan Mendekati Bola Sudut -135° Jarak 3m 55
Tabel IV.23 Waktu Tempuh Mecanum Wheels dan Roda Konvensional 56
Tabel IV.24 Keberhasilan Robot Menendang Bola 57
DAFTAR LAMPIRAN

Lampiran A Program *Image Processing* .. A-1
Lampiran B Program Pengiriman Data Arduino Leonardo B-1
Lampiran C Program Robot KRSBI Beroda ... C-1