Lampiran 1
Jaringan Limpa Mencit Kelompok Kontrol Negatif
Lampiran 2
Jaringan Limpa Mencit Kelompok Kontrol Buah Merah
Lampiran 3
Jaringan Limpa Mencit Kelompok Kontrol AOM + DSS
Lampiran 4
Jaringan Limpa Mencit Kelompok AOM + DSS + Buah Merah
Perhitungan Statistik SPSS 11.5
Data Berat Limpa pada Berbagai Perlakuan

Oneway

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>6 180,00000</td>
<td>58,309519</td>
<td>23,804761</td>
<td>118,80791</td>
<td>241,19209</td>
<td>120,000</td>
</tr>
<tr>
<td>2,000</td>
<td>6 273,33333</td>
<td>105,007936</td>
<td>42,869310</td>
<td>163,13426</td>
<td>383,53240</td>
<td>130,000</td>
</tr>
<tr>
<td>3,000</td>
<td>6 361,66667</td>
<td>108,704492</td>
<td>44,378423</td>
<td>247,58830</td>
<td>475,74504</td>
<td>260,000</td>
</tr>
<tr>
<td>4,000</td>
<td>6 130,00000</td>
<td>26,832816</td>
<td>10,954451</td>
<td>101,84069</td>
<td>158,15931</td>
<td>80,000</td>
</tr>
<tr>
<td>Total</td>
<td>24 236,25000</td>
<td>118,718245</td>
<td>24,233260</td>
<td>186,11968</td>
<td>286,38032</td>
<td>80,000</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>189345,833</td>
<td>3</td>
<td>63115,278</td>
<td>9,363</td>
</tr>
<tr>
<td>Within Groups</td>
<td>134816,667</td>
<td>20</td>
<td>6740,833</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>324162,500</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Post Hoc Tests

Multiple Comparisons

Dependent Variable: hasil
Tukey HSD

<table>
<thead>
<tr>
<th>Mean Difference</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I) perlakuan</td>
<td>(J) perlakuan</td>
<td>(I-J)</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>2,000</td>
<td>-93.33333</td>
<td>47.401946</td>
</tr>
<tr>
<td>3,000</td>
<td>1,000</td>
<td>93.33333</td>
<td>47.401946</td>
</tr>
<tr>
<td>4,000</td>
<td>2,000</td>
<td>181.66667(*)</td>
<td>47.401946</td>
</tr>
<tr>
<td>2,000</td>
<td>1,000</td>
<td>93.33333</td>
<td>47.401946</td>
</tr>
<tr>
<td>3,000</td>
<td>1,000</td>
<td>181.66667(*)</td>
<td>47.401946</td>
</tr>
<tr>
<td>4,000</td>
<td>1,000</td>
<td>-50.00000</td>
<td>47.401946</td>
</tr>
<tr>
<td>4,000</td>
<td>2,000</td>
<td>-143.33333(*)</td>
<td>47.401946</td>
</tr>
<tr>
<td>3,000</td>
<td>2,000</td>
<td>-231.66667(*)</td>
<td>47.401946</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the .05 level.

Homogeneous Subsets

hasil

Tukey HSD

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4,000</td>
<td>6</td>
<td>130,00000</td>
</tr>
<tr>
<td>1,000</td>
<td>6</td>
<td>180,00000</td>
</tr>
<tr>
<td>2,000</td>
<td>6</td>
<td>273,33333</td>
</tr>
<tr>
<td>3,000</td>
<td>6</td>
<td>361,66667</td>
</tr>
<tr>
<td>Sig.</td>
<td>.720</td>
<td>.233</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 6,000.
Lampiran 6
Perhitungan Statistik SPSS 11.5
Data Luas Zona Marginalis Limpa pada Berbagai Perlakuan

Oneway

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standard Error</td>
<td>Raw</td>
<td>Raw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Post Hoc Tests

Multiple Comparisons

Dependent Variable: hasil

Tukey HSD

<table>
<thead>
<tr>
<th>(I) perlakuan</th>
<th>(J) perlakuan</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>2,000</td>
<td>-.01167</td>
<td>.046616</td>
<td>.994</td>
<td>-.14214</td>
<td>.11881</td>
</tr>
<tr>
<td>3,000</td>
<td></td>
<td></td>
<td>.046616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td></td>
<td>.00167</td>
<td>.046616</td>
<td>1.000</td>
<td>-.13214</td>
<td>.12881</td>
</tr>
<tr>
<td>2,000</td>
<td>1,000</td>
<td>.01167</td>
<td>.046616</td>
<td>.994</td>
<td>-.11881</td>
<td>.14214</td>
</tr>
<tr>
<td>3,000</td>
<td></td>
<td></td>
<td>.046616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td></td>
<td>.01000</td>
<td>.046616</td>
<td>.996</td>
<td>-.12048</td>
<td>.14048</td>
</tr>
<tr>
<td>3,000</td>
<td>1,000</td>
<td>.49167(*)</td>
<td>.046616</td>
<td>.000</td>
<td>.36119</td>
<td>.62214</td>
</tr>
<tr>
<td>2,000</td>
<td></td>
<td></td>
<td>.48000(*)</td>
<td></td>
<td>.34952</td>
<td>.61048</td>
</tr>
<tr>
<td>4,000</td>
<td></td>
<td>.49000(*)</td>
<td>.046616</td>
<td>.000</td>
<td>.35952</td>
<td>.62048</td>
</tr>
<tr>
<td>4,000</td>
<td>1,000</td>
<td>.00167</td>
<td>.046616</td>
<td>1.000</td>
<td>-.12881</td>
<td>.13214</td>
</tr>
<tr>
<td>2,000</td>
<td></td>
<td></td>
<td>-.01000</td>
<td>.996</td>
<td>-.14048</td>
<td>.12048</td>
</tr>
<tr>
<td>3,000</td>
<td></td>
<td></td>
<td>-.49000(*)</td>
<td>.000</td>
<td>-.62048</td>
<td>-.35952</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the .05 level.

Homogeneous Subsets

hasil

Tukey HSD

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>n</th>
<th>N</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>6</td>
<td></td>
<td>.26667</td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td>6</td>
<td></td>
<td>.26833</td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>6</td>
<td></td>
<td>.27833</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>6</td>
<td></td>
<td>.75833</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td>.994</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 6,000.
Lampiran 7
Perhitungan Dosis

- **Dosis buah merah**
 Dosis manusia 70 kg = 30 cc
 Dosis untuk mencit 20 g = 30 cc x 0,0026 = 0,078 cc
 Dosis untuk mencit 24 g = $\frac{24}{20} \times 0,078$ cc = 0,0936 cc ~ 0,1 cc

- **Dosis azoxymethane (AOM)**
 Dosis AOM = 12 mg/kgBB
 Untuk mencit 20 – 25 gram = $\frac{12mg \times 40}{40} - \frac{12mg \times 50}{50}$ / mencit
 = 0,24 – 0,3 mg / mencit
 Untuk dosis intraperitoneal → 0,4 mL mengandung 0,24 – 0,3 mg.
 Jadi setiap mencit disuntik 0,4 mL yang mengandung 0,24 mg AOM.

Stok [AOM] = 1 gram / mL
Untuk pembuatan 0,24 mg AOM / 400 μL sebanyak 10 mL maka dibutuhkan AOM dari stok sebanyak :

$$= \frac{10mL \times 0,24mg / 400\mu L}{1g / mL}$$

$$= \frac{10000\mu L \times 0,24mg / 400\mu L}{1000mg / 1000\mu L}$$

= 6μL

AOM yang ditambahkan untuk mencit 20 gram = 6 μL
AOM yang ditambahkan untuk mencit 24 gram = 7,2 μL

- **Dosis dextran sulfate sodium (DSS)**
 Garam DSS yang dipakai adalah 2,5 g dilarutkan dengan aquadest 100 mL sehingga didapatkan larutan DSS 2,5%.
 Larutan ini diberikan melalui air minum pada mencit.
Lampiran 8
Surat Keputusan Komisi Etik Penelitian Hewan Coba

SURAT KEPUTUSAN
NO. 012/KEP FK UKM-RSI/III/2010

Menimbang:
a) Bahwa dalam upaya melindungi hak asasi dan kesejahteraan subjek penelitian kesehatan harus mendapat penilaian dan rekomendasi etik penelitian kesehatan dari Komite Etik Penelitian Kesehatan
b) bahwa sehubungan dengan butir (a) tersebut diatas telah diajukan permohonan penilaian dan rekomendasi etik penelitian kesehatan berikut:
Pengaruh Sari Buah Merah terhadap Berat Limpa dan Gambaran Histopatologis Limpa dan Berat Limpa pada Menit Jantung galur Balb/C yang Dindulagi Kanker Kolorektal dengan AOM dan DSS oleh Loeviana (0710042)
selaku penanggung jawab penelitian
c) bahwa terhadap permohonan tesebut pada butir (b) telah dilakukan pengkajian yang mendalam oleh Komite Etik Penelitian Kesehatan
d) bahwa sehubungan dengan butir (a), (b) dan (c) perlu dikeluarkan surat keputusan hasil penilaian dan rekomendasi kelayakan etik penelitian (ethical approval)

Mengingat:

MEMUTUSKAN

Menetapkan

Pertama Menyetujui dan mengijinkan pelaksanaan penelitian berjudul:
Pengaruh Sari Buah Merah terhadap Berat Limpa dan Gambaran Histopatologis Limpa dan Berat Limpa pada Menit Jantung galur Balb/C yang Dindulagi Kanker Kolorektal dengan AOM dan DSS dengan penanggung jawab: Loeviana (0710042)

Kedua Surat keputusan ini berlaku sejak ditetapkan dengan ketentuan akan ditiru kembali apabila di kemudian hari terjadi perubahan

Ditetapkan di: Bandung
Pada tanggal: 31 Maret 2010

Ketua

Prof. DR. H.R Muchtar Sujato, dr, SpFK(K)
Diana Krisanti Jasaputra, dr, M Kes

Sekretaris

[Signature]
Lampiran 9
Alat dan Bahan yang Digunakan

Sari Buah Merah

Sonde Lambung dan Spuit 1 mL

Neraca Analitik

Mikrometer
Riwayat Hidup

Nama : Loeviana
NRP : 0710042
Agama : Kristen Protestan
Tempat / Tanggal Lahir : Jakarta / 06 Januari 1989
Alamat : Jl. H. Kurdi Timur IV No.21

Riwayat Pendidikan :

- SD Kristen Bina Bakti 1 Bandung (1995 – 2001)
- Fakultas Kedokteran Universitas Kristen Maranatha (2007 – sekarang)