PERANCANGAN DAN REALISASI WIRELESS SENSOR NETWORK UNTUK MONITORING HUJAN

Marco Thionatalio
NRP : 1222026
email : marcothio@yahoo.com

Program Studi Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha,

ABSTRAK

Pada saat ini, keadaan cuaca di suatu wilayah sudah tidak bisa diprakirakan lagi dan aplikasi prakiraan cuaca yang ada hanya memprakirakan cuaca pada suatu hari saja dan pada satu wilayah besar saja. Keadaan cuaca pada sub-sub wilayah yang berbeda pada saat ini tentu sangat menggangu untuk karyawan atau sales yang bekerja dengan menggunakan kendaraan roda dua.

Dari hasil uji coba, data yang dikirimkan dapat diterima dengan baik dan benar oleh Pusat lalu setelah itu data juga dapat dikirimkan ke situs Plotly untuk dapat dilihat oleh pengguna secara real time melalui koneksi internet serta file data juga berhasil dibuat. Waktu yang diperlukan sistem dari meminta data sampai data berhasil ditampilkan dalam bentuk grafik setiap data pada setiap percobaan adalah rata-rata 10,0 s sampai 15,9 s. Rata-rata perbedaan waktu antara tampilan yang dilihat pada Pusat (lokal) dan yang dilihat dari Smartphone (melalui koneksi internet) adalah 0,3 s sampai 0,8 s.

DESIGN AND REALIZATION OF WIRELESS SENSOR NETWORK FOR RAINFALL MONITORING

Marco Thionatalio
NRP : 1222026
email : marcothio@yahoo.com

Program Studi Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha,

ABSTRACT

At this time, the different weather condition in a region can no longer be predictable and the forecast application is only forecasting the weather on one day and only in one big region. The weather conditions in the sub-region at this time is certainly very disturbing to employees or sales which works by using a two-wheeled vehicle.

In this final project a wireless sensor network system for rainfall monitoring is designed. This system consists of two parts, the first part is a rainfall monitoring device is realized using a rain sensor and microcontroller Wemos D1 ESP8266 and the second part is a computer as a Center. The connection between rain monitoring devices and with the Center are using WiFi and the Center also connect to the internet. Rain data conditions for each rain monitoring device is sent to the Center to be processed and displayed on the monitor, the data also sent to the Plotly site through an internet connection, so users can access the data from anywhere via an internet connection.

From the test results, the transmitted data can be received properly by the center and then the data can be transmitted to the Plotly site to be visible to users in real time with internet connection and the data files also successfully created. The system spend time from request until the data has been displayed in a graph for any data on each trial is 10,0 s to 15,9 s in average. The average time difference seen from the display on the Center (local) and on the Smartphone (with internet) is 0,3 s to 0,8 s.

Keyword : Wireless Sensor Network, Rain sensor, Wemos D1 ESP8266, Plotly
DAFTAR ISI

LEMBER PENGESAHAN

SURAT PERNYATAAN

PERNYATAAN PERSETUJUAN PUBLIKASI

ABSTRAK.. i

ABSTRACT.. ii

KATA PENGANTAR .. iii

DAFTAR ISI.. v

DAFTAR GAMBAR .. viii

DAFTAR TABEL .. x

DAFTAR LAMPIRAN ... xi

BAB 1 PENDAHULUAN .. 1

1.1 Latar Belakang .. 1

1.2 Rumusan Masalah .. 2

1.3 Tujuan ... 2

1.4 Pembatasan Masalah .. 2

1.5 Sistematika Penulisan ... 3

BAB 2 LANDASAN TEORI .. 4

2.1 Wireless Sensor Network ... 4

2.2 Sensor Hujan .. 5

2.3 Board Wemos D1 berbasis ESP-8266 .. 7

2.3.1 Spesifikasi Wemos D1 berbasis ESP8266 9

2.4 Arduino ... 9

2.4.1 Software dan Hardware Arduino... 10

2.4.2 Bahasa pemrograman Arduino .. 10

2.4.2.1 Struktur ... 10

2.4.2.2 Syntax .. 11
2.4.2.3 Variabel .. 12
2.4.2.4 Struktur Pengaturan 13
2.4.2.5 Digital ... 13
2.4.2.6 Analog ... 14

2.5 Python ... 15
 2.5.1 Tipe-tipe data dasar pada Python 16
 2.5.2 Struktur .. 16
 2.5.2.1 Nilai Boolean 16
 2.5.2.2 Pernyataan if-else-if 17
 2.5.2.3 Pengulangan While 17
 2.5.2.4 Pengulangan For 17

2.6 Plotly ... 18

BAB 3 PERANCANGAN DAN REALISASI 19
3.1 Perancangan alat monitoring hujan 21
3.2 Diagram Alir .. 22
 3.2.1 Diagram alir program pada alat monitoring hujan 22
 3.2.1.1 Diagram alir program Server dan access point pada node1 .. 23
 3.2.1.2 Diagram alir program Server pada node2 dan node 3 25
 3.2.2 Diagram alir program pada Pusat 27
3.3 Perancangan GUI .. 32
 3.3.1 Perancangan GUI menggunakan Python 33
 3.3.2 Perancangan GUI pada situs Plotly 35
3.4 Realisasi sistem .. 36
 3.4.1 Realisasi alat monitoring hujan 36
 3.4.2 Realisasi GUI ... 37
 3.4.3 Realisasi file data .. 40

BAB 4 DATA PENGAMATAN DAN ANALISA
4.1 Data pengamatan tiap kondisi curah hujan 41
4.2 Pengujian akurasi pembacaan data sensor hujan 42
4.3 Pengujian jarak jangkauan koneksi WiFi antara node 1 (AP) dengan Pusat .. 47
BAB 5 SIMPULAN DAN SARAN
5.1 Simpulan ... 69
5.2 Saran ... 70

DAFTAR PUSTAKA .. 71
LAMPIRAN LIST PROGRAM ARDUINO PADA NODE 1 A-1
LAMPIRAN LIST PROGRAM ARDUINO PADA NODE 2 A-3
LAMPIRAN LIST PROGRAM ARDUINO PADA NODE 3 A-6
LAMPIRAN LIST PROGRAM PYTHON PADA PUSAT B-1
DAFTAR GAMBAR

Gambar 2.1 Topologi dalam WSN ... 5
Gambar 2.2 Rangkaian pembagi tegangan ... 6
Gambar 2.3 Papan sensor hujan ... 6
Gambar 2.4 Board Wemos D1 tampak atas ... 8
Gambar 2.5 Board Wemos D1 tampak bawah ... 8
Gambar 3.1 Perancangan sistem ... 19
Gambar 3.2 Isi dari satu node sensor .. 19
Gambar 3.3 Skematik sensor hujan dan mikrokontroler Wemos D1 21
Gambar 3.4 Diagram alir program pada node 1 sebagai server dan Access Point .. 23
Gambar 3.5 Diagram alir program pada node 2 dan node 3 sebagai server 25
Gambar 3.6 Diagram alir program pada Komputer 27
Gambar 3.7 Tampilan Komputer saat melakukan koneksi 32
Gambar 3.8 Tampilan utama GUI pada Pusat sebelum data ditampilkan 33
Gambar 3.9 Tampilan utama GUI pada Pusat setelah data ditampilkan 34
Gambar 3.10 Realisasi perangkat monitoring hujan 36
Gambar 3.11 Realisasi GUI .. 37
Gambar 3.12 Tampilan situs Plotly pada Pusat / Komputer 38
Gambar 3.13 Tampilan situs Plotly pada Smartphone 39
Gambar 3.14 Tampilan File data .. 40
Gambar 4.1 Tampilan data pengamatan tiap kondisi curah hujan 41
Gambar 4.2 Tampilan file data tiap kondisi curah hujan 42
Gambar 4.3 Tampilan data pada web browser dan serial monitor Arduino 43
Gambar 4.4 Tampilan koneksi pada Komputer untuk kondisi 1 52
Gambar 4.5 Tampilan koneksi pada Komputer untuk kondisi 2 55
Gambar 4.6 Tampilan koneksi pada Komputer untuk kondisi 3 58
Gambar 4.7 Tampilan koneksi pada Komputer untuk kondisi 4 61
Gambar 4.8 Tampilan program Python saat menjalankan pengujian 3 dan 4 64
Gambar 4.9 Tampilan file data..65
DAFTAR TABEL

Tabel 2.1 Tabel pin board Wemos D1 ...9
Tabel 3.1 Fungsi tampilan yang dipakai dalam rancangan GUI 35
Tabel 4.1 Hasil pengujian data sensor pada web browser dan serial monitor
 Arduino node 1 ...44
Tabel 4.2 Hasil pengujian data sensor pada web browser dan serial monitor
 Arduino node 2 ...45
Tabel 4.3 Hasil pengujian data sensor pada web browser dan serial monitor
 Arduino node 1 ...46
Tabel 4.4 Hasil pengujian jarak jangkauan WiFi antara node 1 (AP) dengan
 Pusat tanpa halangan ..47
Tabel 4.5 Hasil pengujian jarak jangkauan WiFi antara node 1 (AP) dengan
 Pusat dengan halangan ..48
Tabel 4.6 Hasil pengujian jarak jangkauan WiFi antara node 1 (AP) dengan
 node lainnya tanpa halangan ...49
Tabel 4.7 Hasil pengujian jarak jangkauan WiFi antara node 1 (AP) dengan
 node lainnya dengan halangan ...50
Tabel 4.8 Hasil pengujian dengan kondisi 1.a ...53
Tabel 4.9 Hasil pengujian dengan kondisi 1.b ...54
Tabel 4.10 Hasil pengujian dengan kondisi 2.a .. 56
Tabel 4.11 Hasil pengujian dengan kondisi 2.b .. 57
Tabel 4.12 Hasil pengujian dengan kondisi 3.a .. 59
Tabel 4.13 Hasil pengujian dengan kondisi 3.b .. 60
Tabel 4.14 Hasil pengujian dengan kondisi 4.a .. 62
Tabel 4.15 Hasil pengujian dengan kondisi 4.b .. 63
DAFTAR LAMPIRAN

LAMPIRAN LIST PROGRAM ARDUINO PADA NODE 1 A-1
LAMPIRAN LIST PROGRAM ARDUINO PADA NODE 2 A-3
LAMPIRAN LIST PROGRAM ARDUINO PADA NODE 3 A-6
LAMPIRAN LIST PROGRAM PYTHON PADA PUSATB-1