Editorial
Age-Related Macular Degeneration:
Pernyebab Kebutaan yang Perlu Mendapatkan Perhatian Serius
- Martin Herlanto

Artikel Penelitian
Efek Analgesik Elektroakupunktur Tubuh dan Telinga Dibandingkan dengan Ketoprofen Suppositoria pada Prosedur Extracorporeal Shock Wave Lithotripsy (ESWL) Batu Ginjal
The Analgesic Effect of Body and Auricular Electroacupuncture compared to Ketoprofen Suppository in Extracorporeal Shock Wave Lithotripsy (ESWL) Kidney Stone Procedure
- Alvin Hardi Hrdjawinata, Christina Simadibrata, Adiningsih Sriestari, Nur Rasyid, Hasan Mihardja

Sistem Skoring Infeksi Helicobacter pylori pada Anak dengan Nyeri Perut Berulang
Scoring System for Helicobacter pylori Infection in Children with Recurrent Abdominal Pain
- Dwi Prasetyo, Henry Garna, Agus Firmanisyah, Ponpon Idradinata

Hubungan Antara Rasa Takut Jatuh Menggunakan Falls Efficacy Scale International (FES-I) dengan Risiko Jatuh Berdasarkan Bergs Balance Scale (BBS) pada Usia Lanjut
Correlation Between Fear of Falling as Measured by Falls Efficacy Scale - International (FES-I) and Risk for Falls as Measured by Bergs Balance Scale (BBS) in the Elderly
- Siti Nurhaidah, Wanarani Aries, Tri Damiatu Pandji, Rr. Nur Fauzia

Peranan Minyak Buah Merah (Pandanus conaideus Lam) terhadap Mencit Model Kanker Kolorektal
The Role of Red Fruit (Pandanus conaideus Lam) Oil towards Colorectal Cancer Mice Model
- Khie Khiong, Oei J Nindita Adhika

Laporan Kasus
Nilai Prognostik Hipertensi Tak Terkendali dalam Meramalkan Stroke Ulang:
Laporan Kasus Berbasis Bukti
The Prognostic Value of Uncontrolled Hypertension in Predicting Recurrent Stroke: Evidence Based Case Report
- Annisa Puspitasari Nachrowi, Zunilda Djanun Sadikin

Artikel Pengembangan Pendidikan Keprofesian Berkelanjutan (P2KB)
Patogenesis Terkini Akne Vulgaris
Novel Pathogenesis of Acne Vulgaris
- Gardenia Akhyar, Satsya Wydyia Yenny
Daftar Isi:

Pedoman Bagi Penulis (Instruction for Authors)

Editorial
1. Age-Related Macular Degeneration:
 Penyebab Kebutuhan yang Perlu Mendapatkan Perhatian Serius .. 287
 - Martin Hertanto

Artikel Penelitian
2. Efek Analgesik Elektroakupunktur Tubuh dan Telinga Dibandingkan dengan Ketoprofen Suppositoria pada Prosedur Extracorporeal Shock Wave Lithotripsy (ESWL) Batu Ginjal .. 289
 - Alvin Hardi Hardjawinata, Christina Simadibrata, Adining Sh Srilastari, Nur Rasyid, Hasan Mihardja
 - Dwi Prasetyo, Herry Garna, Agus Firman Sjah, Ponpon Idjidinata
 - Siti Nurhaidah, Wikanari Aries, Tri Damiati Pandji, Rd. Nur Fauziah
5. Peranan Minyak Buah Merah (Pandanus conaideus Lam) terhadap Mencit Model Kanker Kolorektal 307
 - Khie Khiong, Oei Anindita Adhika

Laporan kasus
6. Nilai Prognostik Hipertensi Tak Terkendali dalam Meramalkan Stroke Ulang: Laporan Kasus Berbasis Bukti .. 314
 - Anisya Puspitasari Nachrowi, Zanilda Djanun Sadikin

Artikel Pengembangan Pendidikan Keprofesian Berkelanjutan (P2KB)
7. Patogenesis Terkini Akne Vulgaris .. 319
 - Gardenia Akhyar, Satya Wydia Yenny
Mitra Bestari Internasional:

- Prof. Cuno S.P.M, Uiterwaal, • Prof. Dr. T. van Gelder, MD, • Erin Koers, MPH, PhD, • Thomas John Bender MD, MSPN, PhD

Mitra Bestari:

- Dr. Maria Francisca Ham, SpPA, PhD • Prof. DR. DR. Rianto Setiabudi, SpFK
- Prof. Dr. dr. Armen Muchtar SpFK • DR. Dr. Ristiania D Soetikno, Mikes, SpRad(K)
- Dr. Aziza G. Icksan, SpRad(K) • DR. Dr. Ferdiyangah, SpOT • DR. Dr. Ismail, SpOT
- Dr. Setyo Widi Nugroho, SpBS(K) • Dr. Achmad Hidayat, MARS, SpkB, SpKP
- Dr. Soemarwoko Tjiromidigdo, SpM, SpKp • DR. Dr. Meilani Kumala, MS, SpGK
- Dr. Sri Sukmaniah, MSc, SpGK • Prof. Dr. Rahajuningsih Dharma Setiabudy, SpPK(K), DSc, FACT
- Dr. Ida Parwati, dr, SpPK(K), Phd • Dr. Lina Soertidewi, SpS(K), M.Epid
- Dr. Jan Sudir Purba, PhD • DR. Dr. Astrid B Sulistomo, MPH, SpOk
- DR. Dr. Sumamur PK, MSc, SpOk • Prof. Dr. K.M. Arsyad, DABK, SpAnd
- Prof. Dr. M. Panu Kanoko, PhD, SpPA(K) • Prof. Dr. Marzuki Suryaatmadja, SpPK(K)
- Dr. Dalima A.W. Astrawinata, SpPK(K), M.Epid • Prof. Dr. Wimpie Pangkhalia, SpAnd, FAACS
- Dr. Marcellus Simadibrata, PhD, SpPD-KGEH, FACG, FINASIM
- DR. Dr. Murdani Abdullah, SpPD-KGEH, FINASIM • Dr. Dyah Purnamasari Sulistiaingsih, SpPD
- DR. Dr. Idrus Alwi, SpPD, K-KV, FINASIM, FAC, FESC
- Prof. Dr. Lukman Hakim Makmun, SpPD, K-KV, Kger • Prof. DR. Dr. Karmel L Tambunan, SpPD, KHOM
- Prof. Prof. DR. A Harryanto Rekodiputro, SpPD-KHOM • Prof. Dr. Armis, SpB, SpOT • Dr. Andi, SpKJ
- Dr. Nurjati Chairani Siregar, MS, PhD, SpPA(K) • Prof. DR. Dr. Angela B.M. Tulaar, SpFK(R)
- Prof. Dr. Agus Sjahruachman, PhD, SpMK • Prof. Dr. Anwar Yusuf, SpPK(K) • Prof. Dr. Faisal Yunus, PhD, SpPK(K)
- DR. Dr. R.M. Nugroho Abikusno, MSc • Prof. Prof. DR. Retno W Soebarso, SpKK • Dr. Sri Ern Istriawati, SpS
- DR. Re. Physiol. Dr. Ina Septelila Wanandi • Prof. DR. Dr.med. Paul Tahalele, FCTS, FINACS
- Prof. DR. Dr. Siti Aisah Boediardjo, SpKK(K) • Dr. Wachyuy Hadisaputra, SpOG(K) • Prof. DR. Dr. Harry Isbagio, SpPD-KR
- DR. Dr. Ratna D Restuti, SpTHT- KL(K)

Journal of the Indonesian Medical Association
(Majalah Kedokteran Indonesia)

Penasihat: Dr. Prijo Sidipratomo, Sp.Rad(K), Dr. Zenaal Abidin, MH.Kes
Pemimpin Umum/Penanggung Jawab: Dr. Yudianti Ehasaputra Kamal, SpM, Dr. Soetji Asutti Soekamto, SpP
Ketua Sekretari: Dr. nutdiahsety Pua Upa, MARS; Bendahara: Dr. Lis Surachmianti Suseno, SpK
Redaksi: Dr. H. Munir Lubis, SpA(K); DR. Dr. Saleha Sungkar, DAPAE, MS, SpPar(K); DR. Dr. Darmawan Amin, SpPK;
Prof. DR. Dr. H. Munir Lubis, SpA(K), Prof. Dr. Saleha Sungkar, DAPAE, MS, SpPar(K), Prof. DR. Dr. Suryani Asad Armins, MSc, SpGK,
DR. Hadi Hartanto, MS, AAndK, Prof. DR. Dr. Retno Wahyuningsih, MS, Prof. DR. Dr. Purwiantiastuti, SpFK(K)
Pemimpin Redaksi: DR. Dr. Dwiana Covianti, SpOG(K)
Redaksi: Dr. Eva Suartihana, MSc, PhD, Dr. Feriis Soewito, SpFKR, Dr. Fatih Anfaas, Dr. Herquanto, MPH, MARS,
DR. Dr. Harifah Oswari, SpPK(K), Dr. Salma Oktaria, Dr. Yaya Dwina Billanti, MBIomed, Dr. Kholsah Nasution, Dr. Martin Hertanto,
Dr. Wahyu Budi Santosha, Dr. Ina Ariani Kirana Masna, SpP, Dr. Fintanyo Adi Syahputra
Redaksi Pelaksana: Dr. Meiliana Saraswati

Tim Redaksi P2KB-MKI (Program Pengembangan Pendidikan Keprofesional Berkelanjutan)
Ketua: Prof. Dr. Saleha Sungkar, DAPAE, MS, SPPar(K); Wakil Ketua: Dr. Zunilda Djanan Sadikin, SpFK
Anggota: Dr. Meiliana Saraswati, Dr. Feriis Soewito, SpFKR

Badan Usaha: Mohammad Yusuf; Sekretari Badan Usaha: Evi Suprajati; Bagian Promosi: Hj. Susilowati Abas (Koordinator), Ysa Rosada, Bambang Harmanto; Bagian Produksi: Indra Bustomi; Distribusi: M. Rodjali

Alamat Redaksi/Badan Usaha dan Sirkulasi MKI: Yayasan Penerbit IDI, JL. Dr. Samsatulangi No. 20, Jakarta 10350,
Telepon: (021) 319390710, Faksimili: (021) 3900466, E-mail: yapendi@yahoo.com, http://www.idionline.org

Surat Izin Terbit (SIT): Kep. Pepekanra No.: Kep/956/IX/1995; Bank: Bank Mandiri Cabang Kebon Sirih, Rekening No. 121.0072000247

ISSN: 2089-1067

Berkala Ilmiah Kedokteran Bulanan, Iai di Luar Tanggungjawab Pem recounted.
Peranan Minyak Buah Merah (Pandanus conoideus Lam) terhadap Mencit Model Kanker Kolorektal

Khie Khiong,*** Oeij Anindita Adhika***

*Bagian Biologi, **Divisi Imunologi Pusat Penelitian Ilmu Kedokteran (PPIK),
***Bagian Anatomi, Fakultas Kedokteran Universitas Kristen Maranatha, Bandung

Abstrak
Pendahuluan: Kanker kolorektal merupakan komplikasi jangka panjang pada inflammatory bowel disease (IBD) yang dapat menyebabkan kematian. Penghambatan siklooksigenase-2 (COX-2) dianggap merupakan mekanisme yang penting dalam menghambat IBD dan kanker kolorektal. Buah merah (Pandanus conoideus Lam.) yang berasal dari Papua diketahui memiliki kandungan antioksidan yang tinggi.
Tujuan: Mengetahui peranan minyak buah merah terhadap clinical score dan ekspresi COX-2 pada mencit model kanker kolorektal.
Metode: Subyek dibagi dalam empat kelompok, yaitu kelompok kontrol negatif (KN) dan kontrol buah merah (KBM) yang masing-masing tidak diinduksi kanker kolorektal, serta kelompok kontrol positif (KAD) dan kelompok perlakuan buah merah (KPBM) yang masing-masing diinduksi kanker kolorektal. Setelah diinduksi kanker kolorektal, KPBM diberikan minyak buah merah sebanyak 0,1 mL/hari melalui sonde lambung. Parameter penelitian adalah clinical score yang diamati tiap dua hari dan persentase ekspresi COX-2 kolon mencit.
Hasil: Clinical score dan rerata ekspresi COX-2 pada KPBM lebih rendah dibandingkan kelompok KAD yang secara statistik berbeda bermakna. Tidak terdapat perbedaan ekspresi COX-2 yang bermakna antara kelompok KN, kelompok KBM, dan kelompok KPBM.
Kata kunci: IBD, kanker kolorektal, COX-2, buah merah

Korespondensi: Khie Khiong,
Email: khie-khiong@yahoo.com

The Role of Red Fruit (Pandanus conoideus Lam) Oil towards Colorectal Cancer Mice Model

Khie Khiong,*** Oeij Anindita Adhika,***

*Biology Department, **Immunology Division of Research Center for Medical Sciences, ***Anatomy Department, Faculty of Medicine, Universitas Kristen Maranatha, Bandung

Abstract
Introduction: Colorectal cancer (CRC) is a long-term complication of inflammatory bowel disease (IBD) and has become the leading cause of death worldwide. Cyclooxygenase-2 (COX-2) is a key enzyme that produced in IBD and CRC. Therefore, inhibition COX-2 has become a potential mechanism to prevent colorectal carcinogenesis. Red fruit (Pandanus conoideus Lam) is plant from Papua which contains large amount of antioxidant.

Objectives: To examine the effect of red fruit towards clinical score and COX-2 expression in colorectal cancer mice model.

Methods: Subjects were divided into four groups: the negative and red fruit control group which were not induced colorectal cancer, positive control and red fruit-treated groups which were induced. Clinical score was observed every two days. At the end of experiment, all mice were sacrificed and the colons were removed and subjected to RT-PCR analysis. COX-2 percentage were measured using RT-PCR method.

Results: Clinical score and COX-2 expression of red fruit treated group was significantly decreased compared to the positive control group. There is no significant difference were observed between the negative control group, red fruit control group, and red fruit treatment group.

Keywords: IBD, colorectal cancer, COX-2, red fruit

Pendahuluan

Kanker kolorektal adalah suatu keganasan polip adenomatoso yang sering menyerang kolon dan rektum. Keganasan yang sebagian besar terjadi pada usia lebih dari 50 tahun ini disebabkan oleh mutasi protoonkogen K-RAS, hipometilasi DNA, kehilangan DNA pada gen supresor tumor adenomatous polyposis coli (APC) pada kromosom 5 (5q21), atau kehilangan alel kromosom 18q dan 17p. Di Indonesia terdapat kenaikan jumlah kasus, meski belum ada laporan mengenai angka kejadian pasti karsinoma kolorektal. Berdasarkan dataDepartemen Kesehatan, prevalensi kanker kolorektal adalah 1,8 per 100 000 penduduk.¹

Inflammatory Bowel Disease (IBD) kronis, baik Crohn’s disease (CD) maupun ulcerative colitis (UC), dapat meningkatkan risiko timbulnya kanker kolorektal karena efek inflamasi intestinal kronis. Risiko kanker kolorektal berkorelasi dengan luas dan durasi penyakit ini.² Saat terjadi inflamasi, makrofag akan melepaskan reactive oxygen species (ROS) dan reactive nitrogen species (RNS).³,⁴ Jika berlangsung kronis, makrofag memproduksi kompleks mi- lieu faktor pertumbuhan dan berbagai sitokin yang menyebabkan hiperplasia yang meluas. Hal ini menyebabkan proliferasi dan signal antiapoposis yang dihasilkan selama terjadinya proses inflamasi kronis sinergis dengan kerusakan DNA sehingga meningkatkan angka kejadian kanker.⁴

Inflamasi yang tidak terkontrol berhubungan dengan stres dan kerusakan selular oksidatif. Lesi DNA dapat terjadi secara langsung ketika terjadi modifikasi basa ROS maupun secara tidak langsung melalui peroksidasi lipid yang bereaksi dengan DNA. ROS dan RNS memicu terjadinya onkogenesis dengan mengubah proliferasi sel dan kematian sel. Stres oksidatif dan kerusakan selular oksidatif yang merupakan tanda IBD memegang peranan penting pada IBD dan IBD-associated carcinogenesis.⁵

Siklooksigenase (COX) merupakan enzim kunci yang berperan dalam produksi prostaglandin (PG) dan eikosanoid lain yang memodulasi pertumbuhan dan immunosurveillance sel kanker.⁶ Pada kanker kolorektal, ekspresi COX-2 yang meningkat.⁷-⁸ COX-2 mengubah asam arachidonat menjadi
Peranan Minyak Buah Merah (Pandanus conoides Lam) terhadap Mencit

prostaglandin (PGE_2) yang penting sebagai mediator angiogenesis dalam perkembangan tumor. Pada penelitian terhadap mencit yang diinduksi kolitis dengan azoxy-methane (AOM) dan dextran sulfate sodium (DSS), didapatkan bahwa ekspresi COX-2 meningkat dan pemberian antagonis TNF-\(\alpha\)kan menyebabkan penurunan ekspresi COX-2 dan angiogenesis tumor.

Kolitis yang mengarah ke kanker kolorektal merupakan penyakit yang ditandai dengan reaksi inflamasi yang berlangsung terus-menerus dan bila tidak diobati dapat mengakibatkan keganasan. Radikal bebas yang dihasilkan oleh proses inflamasi dapat memperparah reaksi inflamasi itu sendiri sehingga penyakit dapat berkembang menuju ke arah keganasan. Dalam jumlah terbatas, tubuh dapat menghasilkan antioksidan endogen secara alamiah dalam upaya menangkal senyawa radikal bebas. Jika radikal bebas dalam tubuh berlebih, maka dibutuhkan senyawa antioksidan eksogen.

Berbagai senyawa antioksidan diketahui dapat meningkatkan proliferasi splenositis, kadar antibodi, massa limpa, dan timus. Di sisi lain, limfosit ditemukan terlibat dalam perkembangan kolitis yang diinduksi dengan DSS.

Tujuan penelitian ini adalah untuk memberikan gambaran mengenai pengaruh buah merah dalam menurunkan clinical score dan menghambat produksi COX-2 pada mencit yang diinduksi kanker kolorektal dengan AOM dan DSS.

Metode

Penelitian ini menggunakan metode eksperimental komparatif dengan desain Rancangan Acak Lengkap (RAL). Mencit yang digunakan adalah galur Balb/C jantan berumur 8 minggu dengan berat badan rata-rata 25 gram yang diperoleh dari Laboratorium Penelitian dan Penelitianan Hewan Coba, Pusat Penelitian Ilmu Kedokteran (PPIK), Fakultas Kedokteran, Universitas Kristen Maranatha, Bandung.

Bahan uji yang digunakan adalah buah merah cultivar merah panjang dan berwarna merah terang, berasal dari Wamena, Papua, dan kemudian bahan uji dibuat minyak buah merah. Penelitian ini telah memperoleh persetujuan dari Komisi Etik Penelitian Fakultas Kedokteran dan Rumah Sakit Immanuel, Bandung.

Cara Kerja

Mencit dibagi dalam empat kelompok (n=7) secara acak. Masing-masing kelompok diberikan perlakuan sebagai berikut:

- **Kontrol negatif (KN),** disuntik aquabides dosis tunggal 0,4 ml secara intraperitoneal pada hari ke-1. Pada hari ke-6 diberikan aquades ad libitum selama 5 hari dan dilanjutkan dengan pemberian aquabides per oral 0,1 ml/hari selama 16 hari. Siklus pemberian aquades ad libitum dan aquabides per oral diulang sebanyak 2 kali.
- **Kontrol buah merah (KBM),** disuntik aquabides dosis tunggal 0,4 mL secara intraperitoneal pada hari ke-1. Kemudian, pada hari ke-6 diberikan aquades ad libitum selama 5 hari, dilanjutkan dengan pemberian minyak buah merah per oral 0,1 mL/hari selama 16 hari. Siklus pemberian aquades ad libitum dan minyak buah merah per oral diulang 2 kali.
- **Kontrol positif AOM dan DSS (KAD),** disuntikkan AOM (Sigma) 12 mg/kgBB (0,4 mL) dosis tunggal secara intraperitoneal pada hari ke-1. Kemudian, pada hari ke-6 diberikan DSS (Amresco) 2,5% (w/v) ad libitum selama 5 hari dan dilanjutkan dengan pemberian aquabides per oral 0,1 mL/hari selama 16 hari. Siklus pemberian DSS dan aquabides diulang sebanyak 2 kali.
- **Kelompok perlakuan buah merah (KPB),** masing-masing mencit disuntikkan AOM 12 mg/kgBB (0,4 mL) dosis tunggal secara intraperitoneal pada hari ke-1. Kemudian, pada hari ke-6 diberikan DSS 2,5% (w/v) ad libitum selama 5 hari dan dilanjutkan dengan pemberian minyak buah merah per oral 0,1 mL/hari selama 16 hari. Siklus pemberian DSS dan minyak buah merah diulang sebanyak 2 kali.

Isolasi RNA kolon dilakukan menggunakan SV Total RNA Isolation System (prome ga) dan hasil isolasi selanjutnya dibuat cDNA dengan menggunakan iScriptsTM cDNA Synthesis Kit (Biiorad). Ekspresi COX-2 kemudian diamati dengan menggunakan teknik RT-PCR. Denaturasi awal dilakukan pada 94°C selama 5 menit sebanyak 1 siklus. Selanjutnya, cDNA diamplifikasi sebanyak 30 siklus (94°C selama 30 detik, 59°C selama 30 menit, 72° selema 60 detik) lalu masuk ke tahap pemanjangan pada 72°C selama 5 menit sebanyak 1 siklus. Sebagai kontrol internal, digunakan gen Hypoxanthine-guanine phosphoribosyl transferase (HPRT). Denaturasi awal dilakukan pada 94°C selama 5 menit sebanyak 1 siklus. Tahap
Peranan Minyak Buah Merah (*Pandanus conoides* Lam) terhadap Mencit

selanjutnya adalah amplifikasi sebanyak 28 siklus (94°C selama 30 detik, 60°C selama 30 detik, 72°C selama 60 detik) dan tahap pemanjangan akhir pada 72°C selama 5 menit sebanyak 1 siklus.

Hasil RT-PCR dielektroforesis dengan gel agarose, 0.8% dengan 75 V dan diwarnai dengan ethidium bromida (EtBr). Selanjutnya, pita hasil elektroforesis diamati di bawah UV transiluminator. Ketebalan pita difoto dan dianalisis dengan menggunakan densitometer (Scion Image). Perhitungan persentase ekspresi COX-2 dilakukan dengan membandingkan tebal larik DNA hasil elektroforesis RT-PCR COX-2 dengan tebal larik DNA HPRT.

Data dianalisis menggunakan uji ANOVA One-Way dan Tukey-HSD dengan α=0.05. Kemaknaan ditentukan berdasarkan nilai p<0.05.

Hasil

Clinical Score

![Grafik 1. Clinical Score pada Masing-Masing Kelompok.](image)

Dari grafik di atas, kelompok yang memiliki clinical score tertinggi adalah kelompok KAD, yaitu kelompok yang diinduksi kanker kolorektal dengan AOM dan DSS. Kelompok yang diberikan terapi dengan minyak buah merah (KPBM) menunjukkan clinical score yang lebih rendah dibandingkan kelompok KAD. Hal ini menunjukkan bahwa pemberian minyak buah merah dapat meringankan keparahan penyakit yang ditandai dengan nilai clinical score yang lebih rendah.

Ekspresi Sikloossigenase-2 (COX-2) Kolon Mencit

Tabel 1. Persentase Kadar COX-2 Kolon Antar Kelompok Perlakuan Berdasarkan Pengukuran Densitometer

<table>
<thead>
<tr>
<th>Mencit</th>
<th>Rerata Kadar COX-2 (% terhadap HPRT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KN</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>Rerata</td>
<td>0.0</td>
</tr>
<tr>
<td>Standar deviasi</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Keterangan:
- KN : Kontrol Negatif (Aquadex 0.4 mL)
- KBM : Kontrol Buah Merah (sari buah merah 0.4 mL)
- KAD : Kontrol Azoxymethane (AOM) dan Dextran Sulfate Sodium (DSS); AOM ip, DSS 2.5 % (v/w) dan aquadex 0.4 mL
- KPBM : Kelompok Perlakuan Buah Merah; AOM ip, DSS 2.5 % (v/w) dan sari buah merah 0.4 mL

Dari data di atas, ekspresi COX-2 pada kolon kelompok menci model kanker kolorektal yang diberi perlakuan dengan sari buah merah tiga kali lebih rendah bila dibandingkan dengan kelompok KAD. Hasil analisis statistik metode Tukey-HSD terhadap kadar COX-2 dapat dilihat pada grafik perbandingan rerata ekspresi COX-2 (Grafik 2). Hasil Post Hoc metode Tukey-HSD terhadap ekspresi COX-2 antara kelompok kontrol negatif, kelompok kontrol buah merah, dan kelompok perlakuan buah merah, menunjukkan perbedaan yang tidak bermakna. Sementara itu, eksresi COX-2 pada kelompok yang diinduksi kanker kolorektal dengan AOM dan DSS berbeda sangat bermakna (p<0.01) dengan kelompok KN, KBM, dan KPBM. Dari hasil ini dapat disimpulkan bahwa sari buah merah dapat memperbaiki clinical score dan menurunkan ekspresi COX-2 pada menci model kanker kolorektal.
Diskusi

Kandungan senyawa antioksidan yang terdapat dalam buah merah, seperti karotenoid, beta-karoten, alfa-tokoferol, asam oleat, asam linoleat, asam linolenat, asam dekanoat, omega-3, dan omega-9, diduga berperan dalam menurunkan ekspresi COX-2. Selain itu, ekstrak buah merah juga diketahui mengandung senyawa fenol dan flavoid dengan kadar yang cukup tinggi.

Senyawa fenol terutama flavonoid juga memiliki aktivitas antioksidan yang tinggi. Senyawa fenol dan flavoid berperan sebagai terminator rantai radikal bebas dan chelator redoks yang dapat menghambat peroksida lipida.

Aktivitas antioksidan karotenoid terletak pada struktur kimia dengan ikatan rangkap yang mampu metalkalisasi dan mengikat elektron yang tidak berpasangan pada radical bebas. Karotenoid juga melindungi membran sel dari reaksi lipid peroksida. Selain itu, karotenoid dan asam retinoat dapat mereguasi berbagai faktor transkripsi sel. Asam retinoat dapat menghambat proliferasi sel dan meningkatkan diferensiasi sel.

Karoten terbukti berperan sebagai agen proteksi sebab sel yang terpajakan oleh stres oksidatif yang diberi terapi dengan karoten akan mengalami penurunan aktivasi NF-kB dan penekanan produksi sitokin-sitokin proinflamasi. Selanjutnya, penghambatan NF-kB dan sitokin proinflamasi akan menyebabkan penekanan aktivasi COX-2. Akibatnya, proses inflamasi kronis yang dapat berkembang menjadi proses karsinogenesis dan tumorogenesis akan tertekan.

Selain itu, karoten juga menghambat ekspresi protein anti-apoptosis Bel-2 pada sel-sel kanker sehingga proliferasi dan pertumbuhan sel-sel kanker dapat dihambat. Penelitian yang dilakukan oleh Bai, et al pada tahun 2005 menyimpulkan bahwa pemberian b-karoten sebanyak 10 mg/Kg berat badan selama 12 hari pada muncit model kolitis ulserativa akan menurunkan jumlah mediator inflamasi seperti NO, PG-E2, TNF-α, COX-2, dan IL-1β.

Beberapa teori mengemukakan bahwa infeksi dan inflamasi kronis merupakan penyebab utama kanker kolorektal. Infeksi dan jejak eksogen maupun endogen dapat menyebabkan proses inflamasi yang melibatkan respon imun spesifik dan nonspesifik yang saling terkait. Respon imun yang mengakibatkan pelapangan sitokin, kemokin, prostaglandin, faktor metalloproteinase (MMP), dan reactive oxygen and nitrogen species (RONS) yang berperan dalam mengelminisasi patogen dan memperbaiki kerusakan jaringan yang terjadi. Jika terjadi kegagalan dalam mereguasi komponen imun atau terjadi pajaran terhadap jejas atau infeksi yang berkemapan, maka dapat terjadi inflamasi kronis yang menciptakan lingkungan mikro yang kondusif untuk iniisiasi dan berkembangnya kanker.

Stres oksidatif yang disebabkan oleh RONS merupakan faktor yang memegang peranan yang sangat penting dalam patogenesis beberapa penyakit yang disebabkan oleh proses inflamasi seperti kanker. RONS menyebabkan genotoksisitas, memicu pertumbuhan sel-sel normal yang mengalami transformasi dan angiogenesis, serta mencegah apoptosis. Salah satu peranan RONS dalam karsinogenesis adalah merangsang produksi prostaglandin melalui jalur siklooksigena terutama COX-2.

Beberapa obat antiinflamasi seperti inhibitor COX-2, aspirin, steroid antiinflamasi seperti dexamethasone terbukti mengurangi angka kejadian tumor seperti kanker kolon, payudara, dan prostat. Selain itu, obat tersebut juga digunakan sebagai profilaksis untuk menurunkan dan mengurangi...
Peranan Minyak Buah Merah (Pandanus conoides Lam) terhadap Mencit

progresivitas kanker dan kematian yang disebabkan oleh kanker baik pada manusia maupun hewan eksperimental.37-44

Penelitian mengenai pengaruh sari buah merah terhadap ekspresi COX-2 pada mencit model kanker kolorektal menunjukkan bahwa kelompok mencit yang diberi buah merah dengan dosis 0,1 mL terbukti memiliki ekspresi COX-2 yang lebih rendah dibandingkan mencit pada kelompok kontrol yang diinduksi kanker kolorektal dengan AOM dan DSS. Hasil ini menunjukkan bahwa buah merah berperan sebagai antiinflamasi dan antikanker dengan mempengaruhi ekspresi COX-2 pada proses inflamasi jaringan.

Kesimpulan

Dari hasil penelitian disimpulkan bahwa minyak buah merah dapat memperbaiki clinical score dan menurunkan ekspresi COX-2 pada kolon mencit model kanker kolorektal yang diinduksi AOM dan DSS.

Ucapan Terima Kasih

Daftar Pustaka

29. Block JB, Evans S. A review of recent results addressing the potential interactions of antioxidants with cancer drug therapy.
Peranan Minyak Buah Merah (Pandanus conoideus Lam) terhadap Mencit

