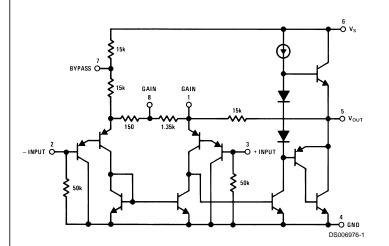
January 2000

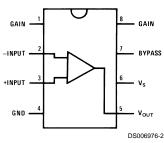
LM386 Low Voltage Audio Power Amplifier

General Description

The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200.


The inputs are ground referenced while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the LM386 ideal for battery operation.

Features


- Battery operation
- Minimum external parts
- Wide supply voltage range: 4V-12V or 5V-18V
- Low quiescent current drain: 4 mA
- Voltage gains from 20 to 200
- Ground referenced input
- Self-centering output quiescent voltage
- Low distortion Available in 8 pin MSOP package

- Applications
- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters

Equivalent Schematic and Connection Diagrams

Small Outline, Molded Mini Small Outline, and Dual-In-Line Packages

Top View Order Number LM386M-1, LM386MM-1, LM386N-1, LM386N-3 or LM386N-4 See NS Package Number M08A, MUA08A or N08E

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Distributors for availability and spe	cifications.	(SOIC and MSOP)						
Supply Voltage		Vapor Phase (60 sec)	+215°C					
(LM386N-1, -3, LM386M-1)	15V	Infrared (15 sec)	+220°C					
Supply Voltage (LM386N-4)	22V	See AN-450 "Surface Mounting Met						
Package Dissipation (Note 3)		on Product Reliability" for other methods of soldering surface mount devices.						
(LM386N)	1.25W	Thermal Resistance						
(LM386M)	0.73W	θ _{IC} (DIP)	37°C/W					
(LM386MM-1)	0.595W	θ_{IA} (DIP)	107°C/W					
Input Voltage	±0.4V	θ _{IC} (SO Package)	35°C/W					
Storage Temperature	–65°C to +150°C	θ _{JA} (SO Package)	172°C/W					
Operating Temperature	0°C to +70°C	θ _{JA} (MSOP)	210°C/W					
Junction Temperature	+150°C	θ _{JC} (MSOP)	56°C/W					
Soldering Information								

Dual-In-Line Package

Soldering (10 sec)

Small Outline Package

+260°C

Electrical Characteristics (Notes 1, 2)

 $T_A = 25^{\circ}C$

Parameter	Conditions	Min	Тур	Max	Units
Operating Supply Voltage (V _S)					
LM386N-1, -3, LM386M-1, LM386MM-1		4		12	V
LM386N-4		5		18	V
Quiescent Current (I _Q)	$V_{\rm S} = 6V, V_{\rm IN} = 0$		4	8	mA
Output Power (P _{OUT})					
LM386N-1, LM386M-1, LM386MM-1	$V_{\rm S}$ = 6V, $R_{\rm L}$ = 8 Ω , THD = 10%	250	325		mW
LM386N-3	$V_{\rm S}$ = 9V, $R_{\rm L}$ = 8 Ω , THD = 10%	500	700		mW
LM386N-4	$V_{\rm S}$ = 16V, $R_{\rm L}$ = 32 Ω , THD = 10%	700	1000		mW
Voltage Gain (A _V)	$V_{\rm S}$ = 6V, f = 1 kHz		26		dB
	10 µF from Pin 1 to 8		46		dB
Bandwidth (BW)	$V_{\rm S}$ = 6V, Pins 1 and 8 Open		300		kHz
Total Harmonic Distortion (THD)	$V_{\rm S} = 6V, R_{\rm L} = 8\Omega, P_{\rm OUT} = 125 \text{ mW}$		0.2		%
	f = 1 kHz, Pins 1 and 8 Open				
Power Supply Rejection Ratio (PSRR)	$V_{\rm S}$ = 6V, f = 1 kHz, $C_{\rm BYPASS}$ = 10 μ F		50		dB
	Pins 1 and 8 Open, Referred to Output				
Input Resistance (R _{IN})			50		kΩ
Input Bias Current (I _{BIAS})	V _s = 6V, Pins 2 and 3 Open		250		nA

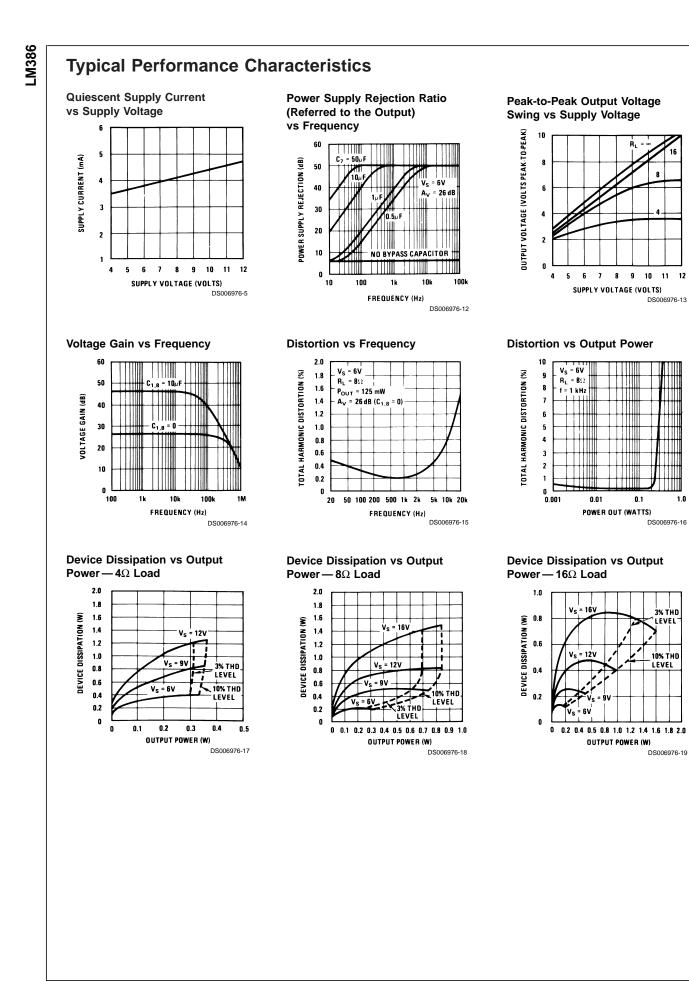
Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

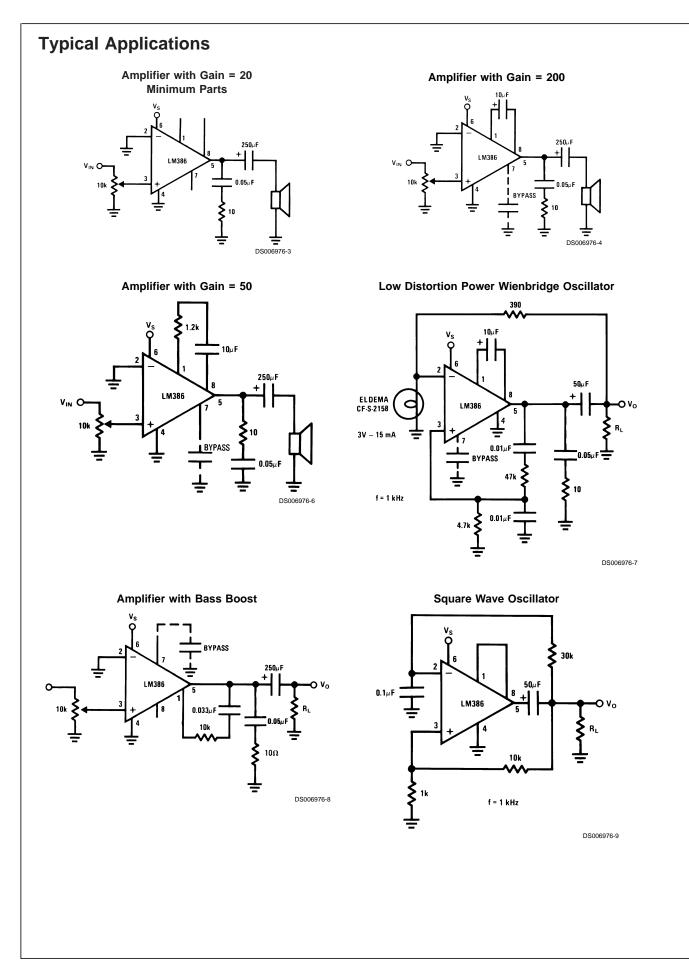
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and 1) a thermal resistance of 107°C/W junction to ambient for the dual-in-line package and 2) a thermal resistance of 170°C/W for the small outline package.

Application Hints

GAIN CONTROL

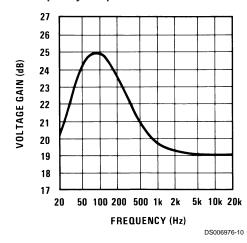

To make the LM386 a more versatile amplifier, two pins (1 and 8) are provided for gain control. With pins 1 and 8 open the 1.35 k Ω resistor sets the gain at 20 (26 dB). If a capacitor is put from pin 1 to 8, bypassing the 1.35 k Ω resistor, the gain will go up to 200 (46 dB). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

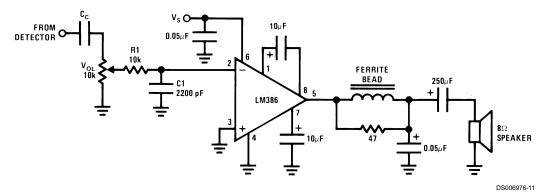

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal 15 k Ω resistor). For 6 dB effective bass boost: R \equiv 15 k Ω , the lowest value for good stable operation is R = 10 k Ω if pin 8 is open. If pins 1 and 8 are bypassed then R as low as 2 k Ω can be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

INPUT BIASING

The schematic shows that both inputs are biased to ground with a 50 k Ω resistor. The base current of the input transistors is about 250 nA, so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM386 is higher than 250 k Ω it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than 10 k Ω , then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM386 with higher gains (bypassing the 1.35 k Ω resistor between pins 1 and 8) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a 0.1 μF capacitor or a short to ground depending on the dc source resistance on the driven input.

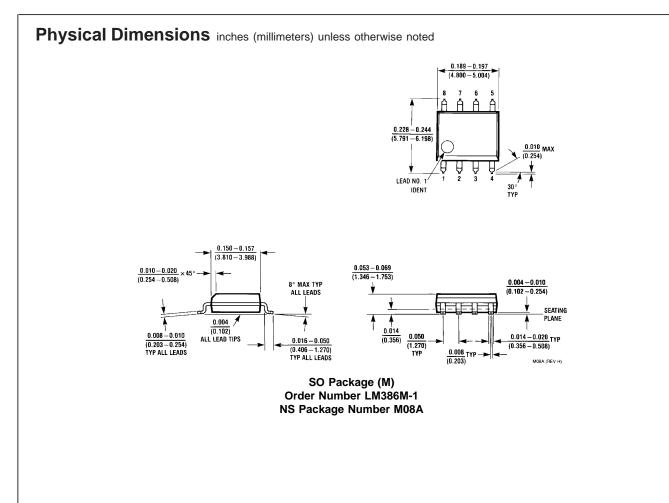


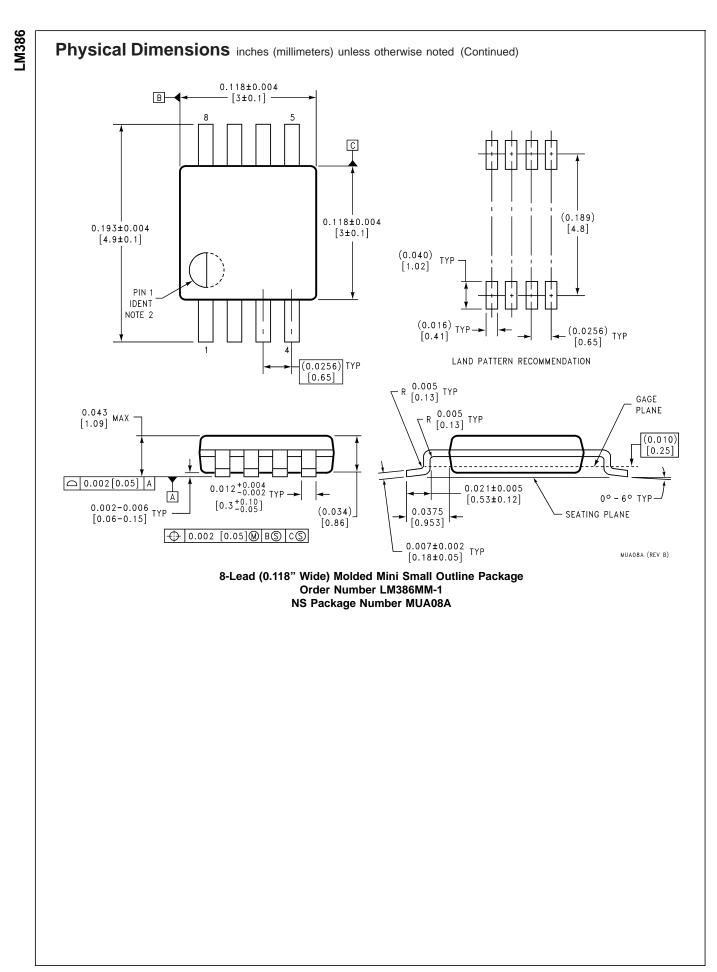

LM386

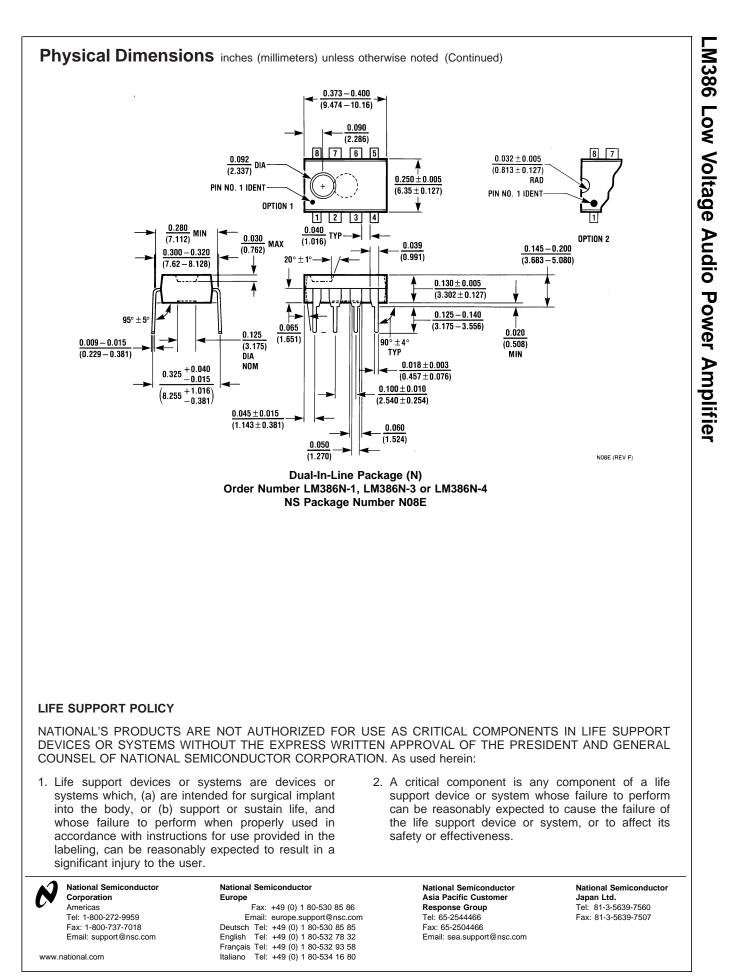
Typical Applications (Continued)

Frequency Response with Bass Boost

Note 4: Twist Supply lead and supply ground very tightly.


Note 5: Twist speaker lead and ground very tightly.


Note 6: Ferrite bead in Ferroxcube K5-001-001/3B with 3 turns of wire.


Note 7: R1C1 band limits input signals.

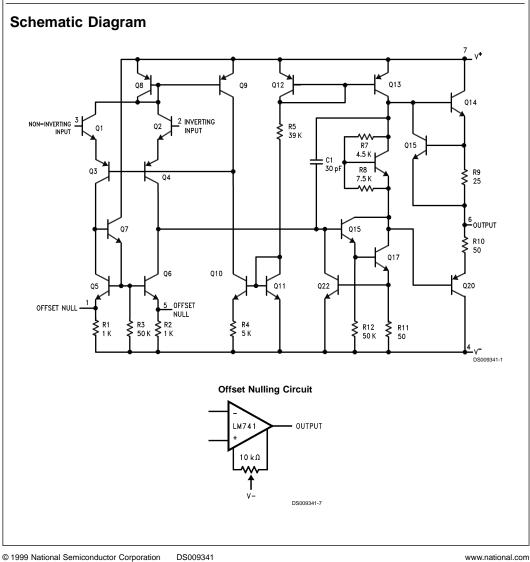
Note 8: All components must be spaced very closely to IC.

LM386

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

May 1998

LM741 Operational Amplifier


National Semiconductor

LM741 Operational Amplifier

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 6)

	LM741A	LM741E	LM741	LM741C
Supply Voltage	±22V	±22V	±22V	±18V
Power Dissipation (Note 2)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	±30V	±30V	±30V	±30V
Input Voltage (Note 3)	±15V	±15V	±15V	±15V
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Operating Temperature Range	-55°C to +125°C	0°C to +70°C	–55°C to +125°C	0°C to +70°C
Storage Temperature Range	-65°C to +150°C	–65°C to +150°C	–65°C to +150°C	–65°C to +150°C
Junction Temperature	150°C	100°C	150°C	100°C
Soldering Information				
N-Package (10 seconds)	260°C	260°C	260°C	260°C
J- or H-Package (10 seconds)	300°C	300°C	300°C	300°C
M-Package				
Vapor Phase (60 seconds)	215°C	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C	215°C
See AN-450 "Surface Mounting Me surface mount devices.	ethods and Their Effect o	on Product Reliability" fo	or other methods of sold	lering

ESD Tolerance (Note 7)	400V	400V	400V	400V

Electrical Characteristics (Note 4)

Parameter	Conditions	LM7	41A/LN	1741E		LM741		L	_M741(0	Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	T _A = 25°C										
	$R_{S} \le 10 \ k\Omega$					1.0	5.0		2.0	6.0	mV
	$R_{S} \le 50\Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_{S} \le 50\Omega$			4.0							mV
	$R_{S} \le 10 \ k\Omega$						6.0			7.5	mV
Average Input Offset				15							µV/°C
Voltage Drift											
Input Offset Voltage	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	$T_A = 25^{\circ}C$		30	80		80	500		80	500	nA
	$T_{AMIN} \leq T_A \leq T_{AMAX}$			0.210			1.5			0.8	μA
Input Resistance	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \leq T_{A} \leq T_{AMAX},$	0.5									MΩ
	$V_{S} = \pm 20V$										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

Parameter	Conditions	LM741A/LM741E				LM741		L	_M741	С	Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 k\Omega$										
	$V_{s} = \pm 20V, V_{o} = \pm 15V$	50									V/m\
	$V_{s} = \pm 15V, V_{o} = \pm 10V$				50	200		20	200		V/m\
	$T_{AMIN} \le T_A \le T_{AMAX},$										
	$R_L \ge 2 k\Omega$,										
	$V_{s} = \pm 20V, V_{o} = \pm 15V$	32									V/m۱
	$V_{s} = \pm 15V, V_{o} = \pm 10V$				25			15			V/m۱
	$V_{s} = \pm 5V, V_{o} = \pm 2V$	10									V/m\
Output Voltage Swing	$V_{\rm S} = \pm 20 V$										
	$R_L \ge 10 \ k\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									V
	$V_{\rm S} = \pm 15 V$										
	$R_L \ge 10 \ k\Omega$				±12	±14		±12	±14		V
	$R_L \ge 2 k\Omega$				±10	±13		±10	±13		V
Output Short Circuit	T _A = 25°C	10	25	35		25			25		mA
Current	$T_{AMIN} \le T_A \le T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \le T_A \le T_{AMAX}$										
Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega, V_{CM} = \pm 12 \text{V}$				70	90		70	90		dB
	$R_{S} \le 50\Omega, V_{CM} = \pm 12V$	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \le T_A \le T_{AMAX}$,										
Ratio	$V_{\rm S}$ = ±20V to $V_{\rm S}$ = ±5V										
	$R_S \le 50\Omega$	86	96								dB
	$R_{S} \le 10 \ k\Omega$				77	96		77	96		dB
Transient Response	$T_A = 25^{\circ}C$, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 5)	T _A = 25°C	0.437	1.5								MHz
Slew Rate	$T_A = 25^{\circ}C$, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	T _A = 25°C					1.7	2.8		1.7	2.8	mA
Power Consumption	$T_A = 25^{\circ}C$										
	$V_{\rm S} = \pm 20 V$		80	150							mW
	$V_{\rm S} = \pm 15 V$					50	85		50	85	mW
LM741A	$V_{S} = \pm 20V$										
	$T_A = T_{AMIN}$			165							mW
	$T_A = T_{AMAX}$			135							mW
LM741E	$V_{S} = \pm 20V$										
	$T_A = T_{AMIN}$			150							mW
	$T_A = T_{AMAX}$			150							mW
LM741	$V_{S} = \pm 15V$										
	$T_A = T_{AMIN}$					60	100				mW
	$T_A = T_{AMAX}$				1	45	75				mW

. .

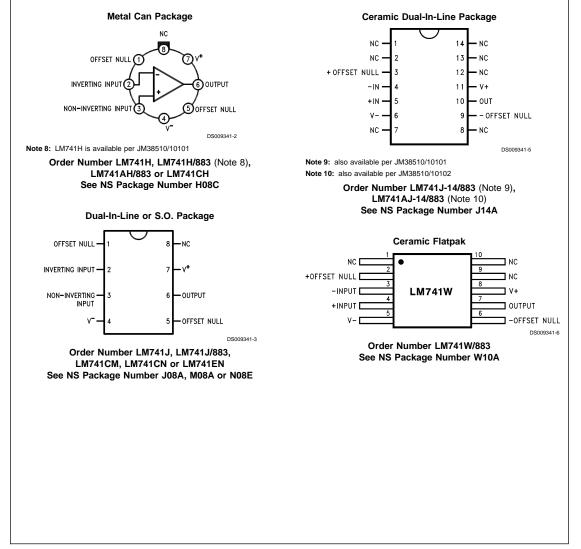
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

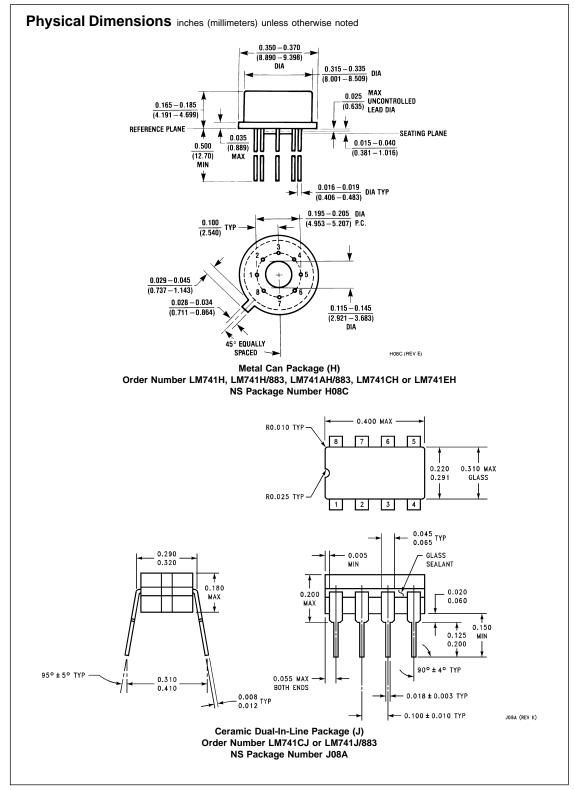
Electrical Characteristics (Note 4) (Continued)

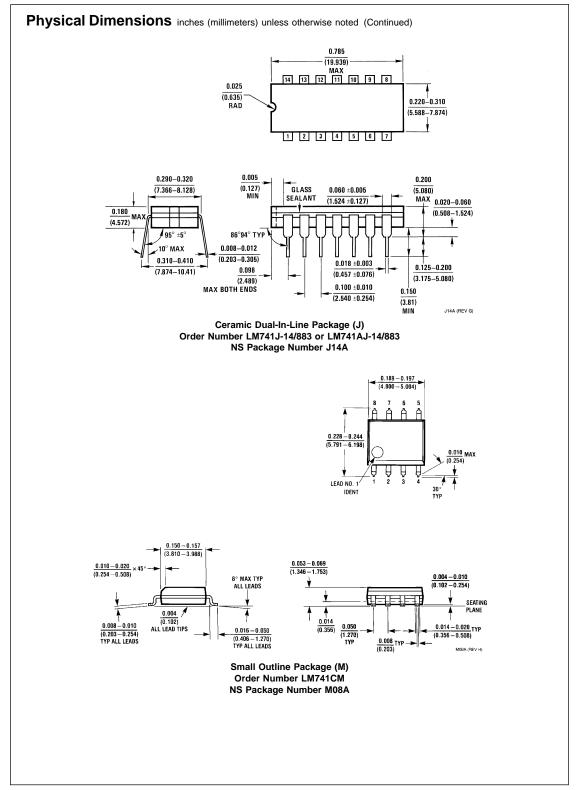
Note 2: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

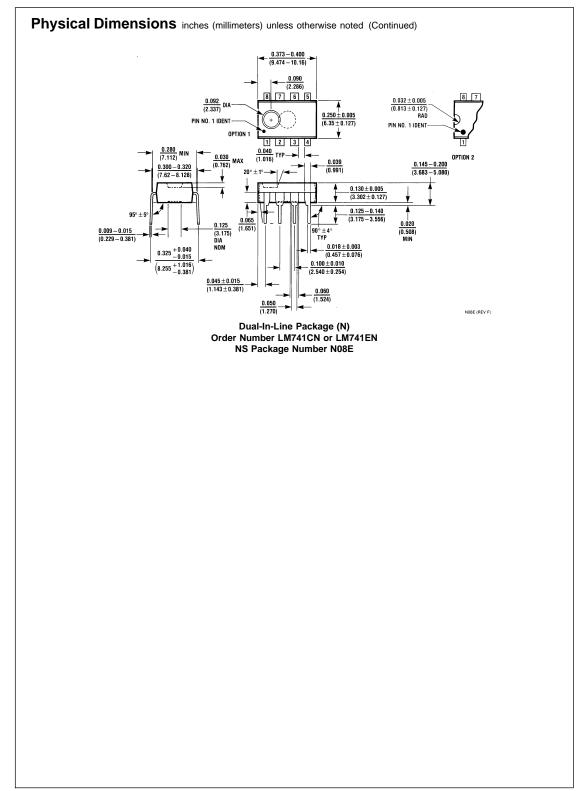
Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W
θ_{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A

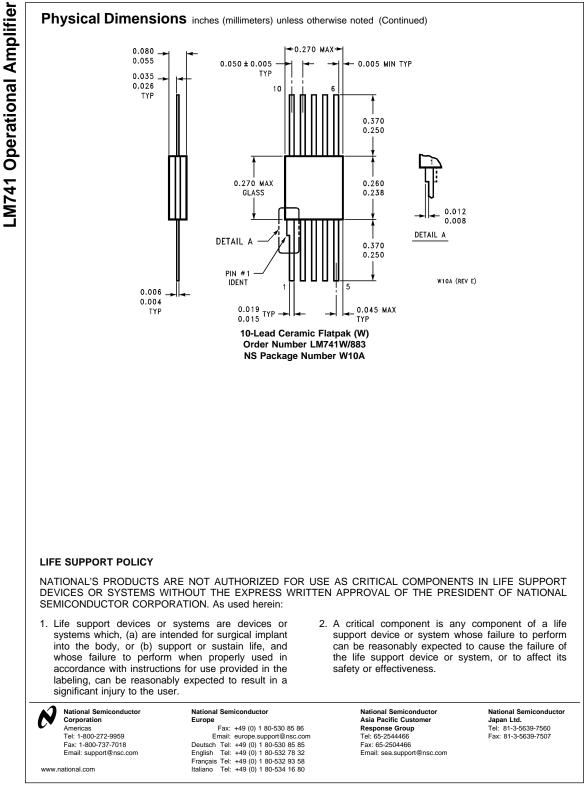
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

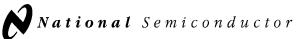

Note 4: Unless otherwise specified, these specifications apply for $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.


Note 5: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).


Note 6: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

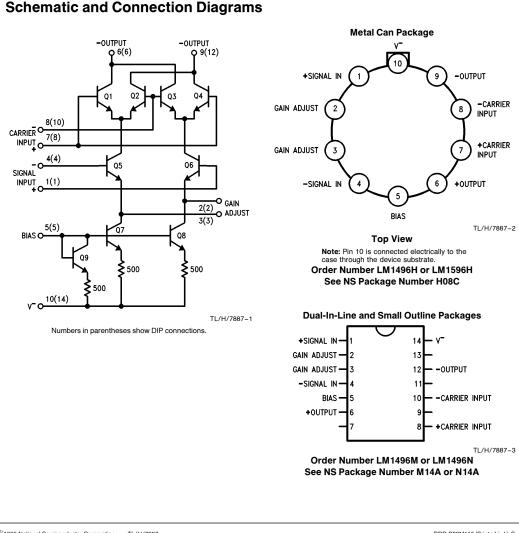

Note 7: Human body model, 1.5 k Ω in series with 100 pF.


Connection Diagram



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

LM1596/LM1496 Balanced Modulator-Demodulator


General Description

The LM1596/LM1496 are doubled balanced modulator-demodulators which produce an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.

The LM1596 is specified for operation over the -55°C to $+125^\circ\text{C}$ military temperature range. The LM1496 is specified for operation over the 0°C to $+70^\circ\text{C}$ temperature range.

Features

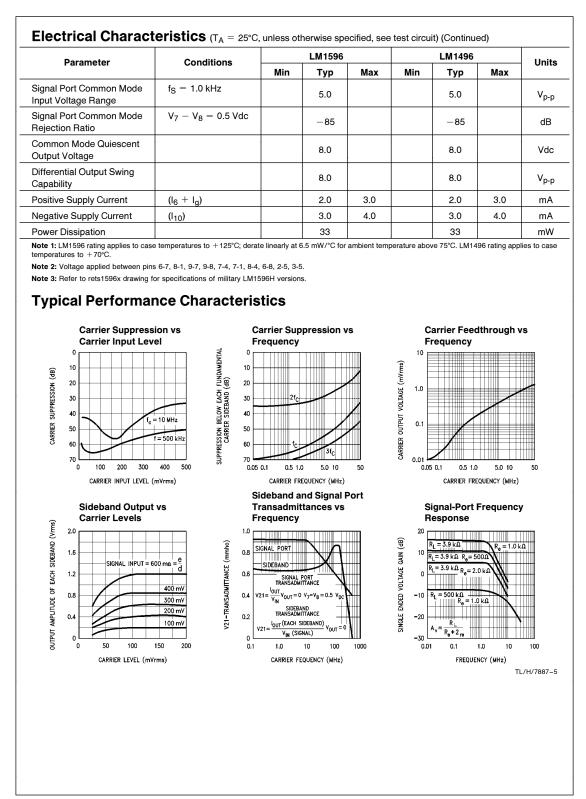
- Excellent carrier suppression 65 dB typical at 0.5 MHz
 - 50 dB typical at 10 MHz
- Adjustable gain and signal handling
- Fully balanced inputs and outputs
- Fully balanced inputs and
 Low offset and drift
- Wide frequency response up to 100 MHz

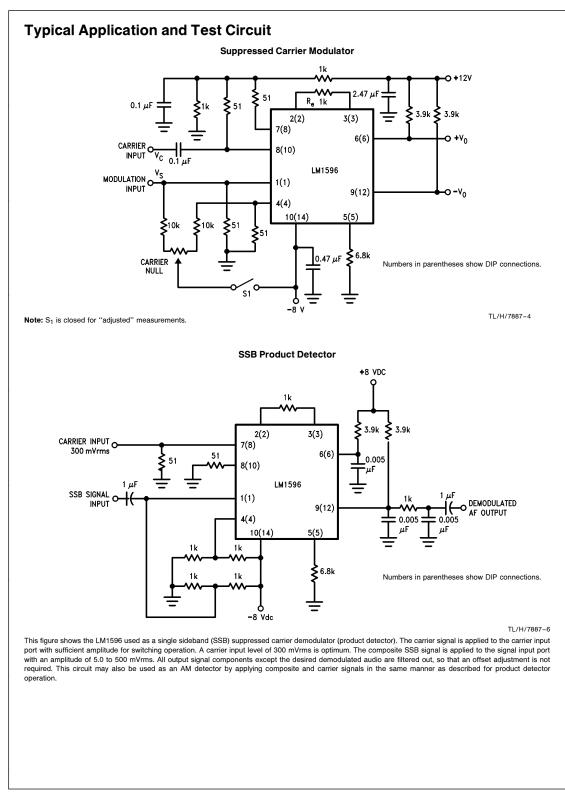
_M1596/LM1496 Balanced Modulator-Demodulator

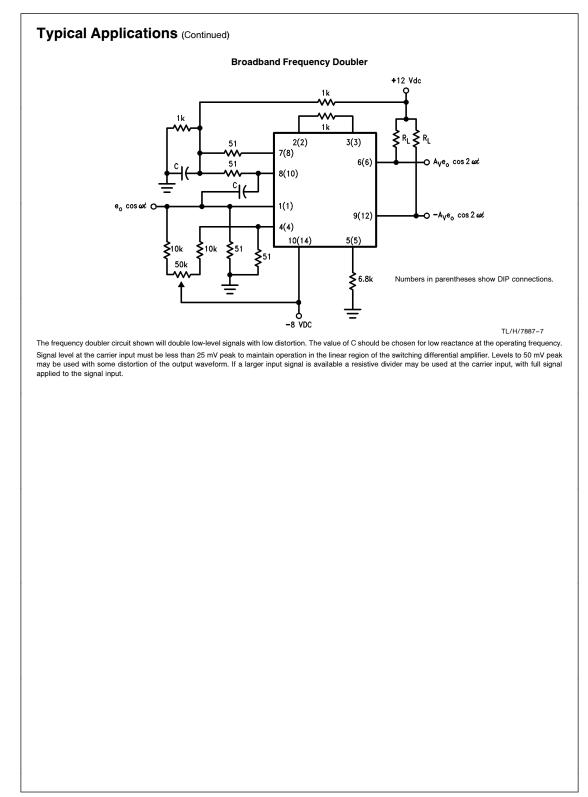
February 1995

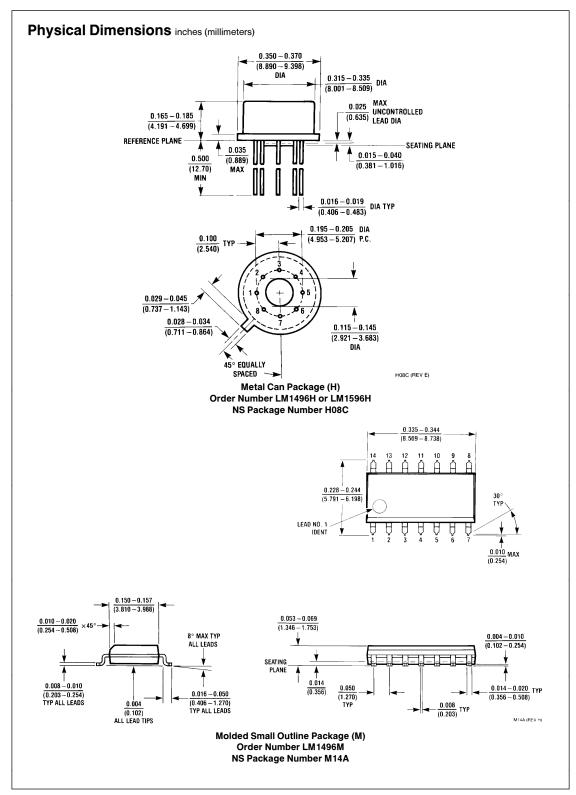
©1995 National Semiconductor Corporation TL/H/7887

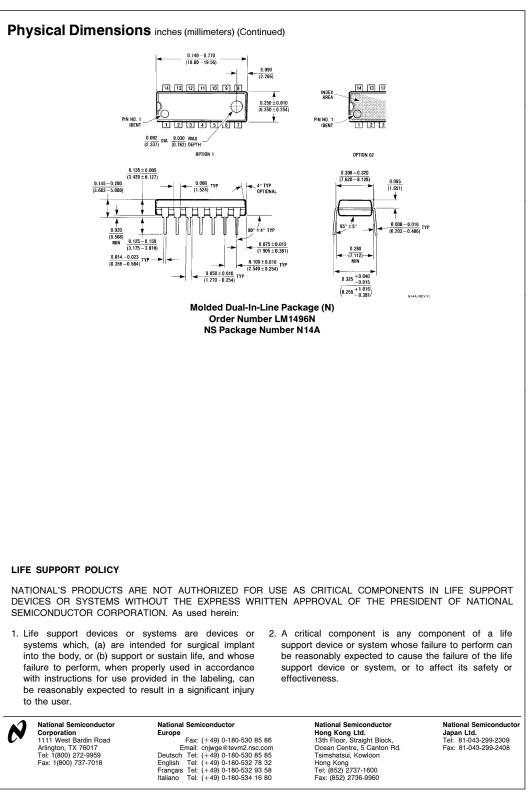
RRD-B30M115/Printed in U. S. A.


Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.


Internal Power Dissipation (Note 1)	500 mW
Applied Voltage (Note 2)	30V
Differential Input Signal ($V_7 - V_8$)	\pm 5.0V
Differential Input Signal ($V_4 - V_1$)	\pm (5 + I ₅ R ₀)V
Input Signal ($V_2 - V_1, V_3 - V_4$)	5.0V
Bias Current (I ₅)	12 mA
Operating Temperature Range LM1596 LM1496	-55°C to +125°C 0°C to +70°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$


Soldering Information	
 Dual-In-Line Package 	
Soldering (10 seconds)	260°C
 Small Outline Package 	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C
See AN-450 "Surface Mounting Methods and on Product Reliability" for other methods of so face mount devices.	


Electrical Characteristics ($T_A = 25^{\circ}C$, unless otherwise specified, see test circuit)


Parameter	Conditions	I	_M159	6	I	_M149	6	Units
		Min	Тур	Max	Min	Тур	Max	
Carrier Feedthrough	$V_{C} = 60$ mVrms sine wave $f_{C} = 1.0$ kHz, offset adjusted		40			40		μVrms
	$V_{C} = 60 \text{ mVrms sine wave}$ $f_{C} = 10 \text{ kHz}$, offset adjusted $V_{C} = 300 \text{ mV}_{pp}$ square wave		140 0.04	0.2		140 0.04	0.2	μVrms mVrms
	$\label{eq:f_c} \begin{array}{l} f_C = 1.0 \text{ kHz}, \text{offset adjusted} \\ V_C = 300 \text{ mV}_{pp} \text{ square wave} \\ f_C = 1.0 \text{ kHz}, \text{ not offset adjusted} \end{array}$		20	100		20	150	mVrms
Carrier Suppression	$ \begin{array}{l} f_S = 10 \text{ kHz}, 300 \text{ mVrms} \\ f_C = 500 \text{ kHz}, 60 \text{ mVrms} \text{ sine wave offset adjusted} \\ f_S = 10 \text{ kHz}, 300 \text{ mVrms} \\ f_C = 10 \text{ MHz}, 60 \text{ mVrms} \text{ sine wave offset adjusted} \end{array} $	50	65 50		50	65 50		dB dB
Transadmittance Bandwidth	$\begin{array}{l} R_L=50\Omega\\ Carrier Input Port, V_C=60 \text{ mVrms sine wave}\\ f_S=1.0 \text{ kHz}, 300 \text{ mVrms sine wave}\\ \text{Signal Input Port, V}_S=300 \text{ mVrms sine wave}\\ V_7-V_8=0.5 \text{Vdc} \end{array}$	-	300 80			300 80		MHz MHz
Voltage Gain, Signal Channel	$ \begin{array}{l} V_S = 100 \text{ mVrms, } f = 1.0 \text{ kHz} \\ V_7 - V_8 = 0.5 \text{ Vdc} \end{array} $	2.5	3.5		2.5	3.5		V/V
Input Resistance, Signal Port	$ f = 5.0 \text{ MHz} \\ V_7 - V_8 = 0.5 \text{ Vdc} $		200			200		kΩ
Input Capacitance, Signal Port	$ f = 5.0 \text{ MHz} \\ V_7 - V_8 = 0.5 \text{ Vdc} $		2.0			2.0		pF
Single Ended Output Resistance	f = 10 MHz		40			40		kΩ
Single Ended Output Capacitance	f = 10 MHz		5.0			5.0		pF
Input Bias Current	$(I_1 + I_4)/2$		12	25		12	30	μA
Input Bias Current	$(I_7 + I_8)/2$		12	25		12	30	μA
Input Offset Current	$(I_1 - I_4)$		0.7	5.0		0.7	5.0	μΑ
Input Offset Current	(I ₇ - I ₈)		0.7	5.0		5.0	5.0	μA
Average Temperature Coefficient of Input Offset Current	$(-55^{\circ}C < T_A < + 125^{\circ}C)$ $(0^{\circ}C < T_A < +70^{\circ}C)$		2.0			2.0		nA/°C nA/°C
Output Offset Current	(l ₆ - l ₉)		14	50		14	60	μA
Average Temperature Coefficient of Output Offset Current	$\begin{array}{l} (-55^{\circ}C < T_{A} < +125^{\circ}C) \\ (0^{\circ}C < T_{A} < +70^{\circ}C) \end{array}$		90			90		nA/°C nA/°C

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

Low Level and General Purpose Amplifiers

TYPE	POLA-	CASE	MAXIN	IUM RA	FINGS	1 1	HFE			VCE(sat	;)	fT	Cob	N.F.
NO.	RITY		Pd	IC	VCEO			İC	VCE	max	IC	min	max	max
			(mW)	(mA)	(7)	min	max	(mA)	(*)	(V)	(mA)	(MHz)	(MHz)	(dB)
SA641	Р	TO-92B	250	50	45	100	700	0.5	3	0.3	20	60	10	
SA666	Р	TO-92B	250	50	25	130	700 #	2	5	0.3	50		10	
SA666A	P	TO-92B	250	50	45	130	700 # 700 #	2	5			80+	-	16
SA673A	P	TO-92B	400	500	50	60	320 #	10	3	0.4	50	80+	-	16
SA721	P	TO-92B	150	50	35	180	320 # 1040 #	2	5	0.4 0.6	100 100	- 250+	-	-
SA722	P	TO-92B	150	50	55	180	1040 #	2	5	0.6	100	250+		
2SA876H	Р	TO-18	350	500	50	80	240	10	3	0.5	100	110	- 10	•
2SA888	Р	TO-92A	350	50	25	65	700 #	2	5	0.5	50	100+		-
2SA889	Р	TO-92A	350	50	45	65	700 #	2	5				2.7+	-
SA1015	P	TO-92B	400	150	50	70	400	2	6	0.5 0.3	50 100	100+ 80	2.7+ 7	- 10
SA1715	P	TO-92B	300	200	50	90	800	1	6	0.3	100	200	<i>(</i> 5)	-
SB637K	P	TO-92B	300	100	50	160	800	2	12	0.5	100	200+ 200+	6.5+	20
2SC316	N	TO-18	300	50	45	100	600	2	5	1.2	100		1.8	-
SC372	N	TO-92B	200	100	30	70	240 #	2	12	0.4		50+		-
2SC373	N	TO-92B	200	100	30	200	400 #	2	12	0.4	10 10	80 80	3.5 3.5	-
2SC380	N	TO-92B	200	30	30	40	240 #	2	12	1.3	10	100	2.2	
2SC400	N	TO-18	250	100	20	30	240 # 350 #	10	1	0.4	10	100	3.2 6	- 25
2SC454	N	TO-92B	200	100	30	60	320 m	2	12	1.1			1 1	
SC536	N	TO-92B	200	100	20	40	850 #	1	6		10	230+	3.5	-
SC537	N	TO-92B	200	100	-	40	850 #	1	6	-	-	-	6 6	-
2SC538	N	TO-18	300	50	25	90	700 #	2	5	0.32	100	180+	4+	-
SC538A	N	TO-18	300	50	45	90	700 #	2	5	0.32	100	180+	4+	-
SC539	N	TO-18	300	50	25	90	700 #	2	5	0.32	100	180+	4+	4
2SC644	Ν	TO-92B	150	50	25	130	700 #	2	5	0.32	50	75	10	4
2SC693	N	ТО-92В	100	50	-	100	850 #	1	6	-	-	90	6	-
2SC734	N	TO-92B	300	150	50	70	400 #	20	1	0.25	100	80	10	-
2SC735	Ν	TO-92B	300	400	30	70	240 #	100	1	0.25	100	100	10	
2SC828	Ν	TO-92B	250	50	25	65	700 #	2	5	0.4	50	150+	2.5+	- 2+
2SC828A	N	TO-92B	250	50	45	65	700 #	2	5	0.4	50	150+	2.5+	2+ 2+
2SC858	N	TO-92B	100	50	12	100	850 #	1	6	-	-	90	6	-
SC900	N	TO-92B	250	100	35	225	1000 #	0.5	3	0.3	100	50	5	4
SC923	N	TO-92B	250	100	35	225	1000 #	0.5	3	0.3	100	50	5	
SC945	N	TO-92B	250	100	50	90	600 #	1	6	0.3	100	150	1 1	20
SC1000	N	TO-92B	200	100	50	200	700 #	2	6	0.3	100	80+	5 2.5	15
SC1213A	N	TO-92B	400	500	50	60	320 #	10	3	0.3	100	80+ -	- 2.5	10 -
SC1222	N	TO-92B	250	100	45	150	1000 #	0.5	3	0.3	10	60	3.2+	•
SC1327	N	TO-92B	150	50	35	180	1040 #	2	5	0.5	100	250+	3.27	3
SC1328	N	TO-92B	150	100	35	180	1040 #	2	5	0.6	100	250+ 150+	- 3.2+	-
SC1330	N	TO-92B	400	100	40	60	400 #	1,	6	0.5	30	50	5.2+ 6	4
SC1675	N	TO-92B	250	30	30	40	180 #	1	6	0.3	10	150	2.2	-
SC1684	N	TO-92B	250	100	25	90	650 #	2	10	0.5	100	150+	3.5+	
SC1685	N	TO-92B	250	100	50	90	650 #	2	10	0.5	100	150+	3.5+ 3.5+	-
SC1781H	N	TO-18	350	500	50	80	240	10	3	0.5	100	150+	3.5+ 6	-
SC1815	N	TO-92B	400	150	50	70	700 #	6	2	0.3	100		1	-
SC1849	N	TO-92A	350	100	25	90	650 #	2	10	0.25	100	80	3.5	-
SC1850	N	TO-92A	350	100	50	90	65 0 #	2	10	0.5	100			
SC2458	N	TO-92B	200	150	50	70	700 #	6	2	0.3		-	-	-
SC2603	N	TO-92B	300	200	50	90	800	1	6	0.25	100	80	3.5	-
				200		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000	1		0.5	100	200+	2.5+	15

- ----

_

攌

Audio Frequency Small Signal Transistors

	Ł		MAXI	MUM RA	TINGS		HFE			V _{CE} (s	AT)	fr	Сор	N.F.
TYPE NO.	POLARITY	CASE	Pd (mW)	IC (mA)	VCEO (V)	min	TE max	lc (mA)	VCE (V)	max (V)	IC (mA)	min (MHz)	max (pF)	max (dB)
BC 107	N	TO-18	300	100	45	110	450#	2	5	0.6	100	150	6	10
BC 108	N	TO-18	300	100	20	110	800#	2	5	0.6	100	150-	6	10
BC 109	N	TO-18	300	100	20	200	800#	2	5	0.6	100	150	6	4
BC 113	N	TO-106	200	50	25	200	1000	1	5	0.35	1	60	4	3
BC 114	N	TO-106	200	50	25	200	1000	1	5	0.35	1	70	4	3
BC 132	N	TO-106	200	50	25	60	300	1	10	0.35	1	40	4	-
BC 153	P	TO-106	200	100	40	50	-	10	5	0.25	10	70+	4+	1+
BC 154	Ρ	TO-106	200	100	40	160		10	5	0.25	10	70+	4+	2.5 10
BC 167 BC 168	N N	TO-92B TO-92B	300 300	100 100	45 20	110	450# 800#	2 2	5 5	0.6 0.6	100 100	150 150	4.5 4.5	10
ļ				-								150	4.5	4
BC 169	N	TO-92B	300	100	20	200	800#	2	5	0.6 0.25	100	100+	4.5	10
BC 170	N	TO-92F	300	100	20	36	600#	1	1 5	0.25	100	150	6	10
BC 171	N	-TO-92F	300	100	45	125	500▲#	22	5	0.6	100	150	6	10
BC 172 BC 173	N N	TO- 9 2F TO- 9 2F	300 300	_ 100 100	25 25	125 125	900 ≜ # 900 ≜ #	2	5	0.6	100	150	6	10
				100	45	70	450#	2	5	0.3	10	150	7	10
BC 177	P P	TO-18 TO-18	300 300	100 100	45 25	70 70	450# 800#	2	5	0.3	10	100	1 7	10
BC 178 BC 179	P	TO-18	300	100	25	200	800#	2	5	0.3	10	100	7	4
BC 1/9 BC 182	Ň	TO-92F	300	200	50	110	450#	2	5	0.6 .	100	150	5	10
BC 182L	N	TO-928	300	200	50	110	450#	2	5	0.6	100	150	5	10
BC 183	N	TO-92F	300	200	30	110	800#	2	5	0.6	100	150	5	10
BC 183L	N	TO-92B	300	200	30	110	800#	2	5	0.6	100	150	5	10
BC 184	N	TO-92F	300	200	30	200	800#	2	5	0.6	100	150	5	4
BC 184L	N	TO-92B	300	200	30	200	800#	2	5	0.6	100	150	5	4
BC 186	P	TO-18	300	100	25	40	200	2	5	0.5	50	50	-	10
BC 204	Р	TO-106	300	100	45	70	450#	2	5	0.3	10	100	4	10
BC 205	P	TO-106	300	100	20	70	800#	2	5	0.3	10	100	4	10
BC 206	P	TO-106	300	100	20	200	800#	2	5	0.3	10	100	4	4
BC 207	Ň	TO-106	300	100	45	110	450#	2	5	0.6	100	150	6	10
BC 208	N	TO-106	300	100	25	110	800#	2	5	0.6	100	150	6	10
BC 209	N	TO-106	300	100	25	200	800#	2	5	0.6	100	150	6	4
BC 212	Ρ	TO-92F	300	200 -	50 ·	100	400▲ #	2	5	0.6	100	100	10	10
BC 212L	Ρ	TO-92B	300	200	50	100	400▲#	2	5	0.6	100	100	10	10
BC 213	Ρ	TO-92F	300	200	30	100	600▲ #	2	5	0,6	100	100 ·	10	10
BC 213L	P	то- 9 2В	300	200	30	100	600▲#	2	5	0.6	100	100	10	10
BC 214	Р	TO-92F	300	200	30	200	600▲ #	2	5	0.6	100	150	10	2
BC214L	P	TO-928	300	200	30	200	600▲#	2	5	0.6	100	150	10	2
BC 225	P	TO-106	200	100	40	90	- "	10	5	0.25	10	100	8	-
BC 237	Ň	TO-92F	300	100	45	110	450#	2	5	0.6	100	150	4.5	10
BC 238	N	TO-92F	300	100	20	110	800#	2	5	0,6	100	150	4.5	10
BC 239	N	TO-92F	300	100	20	200	800#	2	5	0.6	100	150	4.5	4
BC 250	P	TO-92F	300	100	20	35	600 #	1	1	0.4+	30	100	6	-
BC 251	P	TO-92F	300	100	45	125	900 # #	2	5	0.3	10	80	6	10
BC 252	P	TO-92F	300	100	25	125	900▲#	2	5	0.3	10	80	6	10
BC 253	P	TO-92F	3,00	100	25	125	900≜#	2	5	0.3	10	.80	6	4
BC 257	Р	то-92в	300	100	45	70	450#	2	5	0.3	10	130	6	10
BC 258	P	TO-92B	300	100	25	70	800#	2	5	0.3	10	130	6	10
BC 259	Ρ	TO-92B	300	100	20	200	800#	2	5	0.3	10	130	6	4
BC 260	Ρ	TO-18	300	100	20	35	600#	1	1	0.4+	30	100	6	-
BC 261	P	TO-18	300	100	· 45	125	900≜#	2	5	0.3	10	100	6	10
BC 262	Р	TO-18	300	100	25	125	900≜ #	2	5	0.3	10	100	6	10
BC 263	P	TO-18	300	100	25	125	900▲ #	2	5	0.3	10	100	6	4
BC 280	N	TO-18	360	100	40	180	600	1	5	0.7	10	-	2.8+	3
BC 307	P	TO-92F	300	100	45	70	450#	2	5	0.3	10	100	6	10
BC 308	P	TO-92F	300	100	25	70	800#	2	5	0.3	10	100	6	10
BC 309	P	TO- 9 2F	300	100	20	200	800#	2	5	0.3	10	100	6	4
					<u> </u>			L		<u> </u>	<u> </u>	4		

#HFE groupings available Ahfe @1 KHz + Typical value

Audio Frequency Small Signal Transistors

NO. Q (mW) (mA) (V) min max (mA) (V) BCW 86 P TO-92F 300 200 50 150 350 2	(V)	max (V)	ιc	fT	Сор	
	5 ((mĂ)	min (MHz)	max (pF)	max (dB)
		0.2	10	200	5+	-
BCX 58 N TO-92F 450 100 32 120 630# 2	5 0	0.5	100	125	4.5	6
BCX 59 N TO-92F 450 100 45 120 630# 2	5 0	0.5	100	125	4.5	6
BCX 78 P TO-92F 450 100 32 120 630# 2	5 0	0.6	100	100	4.5	6
BCX 79 P TO-92F 450 100 45 120 630# 2	5	0.6	100	100	4.5	6
BCY 56 N TO-18 300 100 45 100 450 2		0.6	10	250+	4.5+	5
BCY 57 N TO-18 300 100 20 200 800 2		0.6	10	350+	4.5+	5
BCY 58 N TO-18 360 200 32 120 630# 2		0.35	10	125	6	6
BCY 59 N TO-18 360 200 45 120 630# 2		0.35	10	125	6	6
BCY 66 N TO-18 360 50 45 180 630# 2	5	0.35	10	125	6	2
BCY 67 P TO-18 360 50 45 180 630# 2		0.25	10	180+	7	2
BCY 69 N TO-18 300 100 20 450 - 2		0.25	10	150	8	5
BCY 70 P TO-18 300 200 40 50 - 10		0.25	10	250	6	6
BCY 71 P TO-18 350 200 45 100 600 10		0.25	10	200	6	2
BCY 72 P TO-18 350 200 25 50 - 10	1	0.25	10	200	6	6
BCY 78 P TO-18 350 200 32 120 630# 2	5	0.25	10	100	7	6
BCY 79 P TO-18 350 200 45 120 460# 2	5	0.25	10	100	7	6
BFW 22 P TO-18 360 100 45 250 600 1	5	0.4	50	50	6	2
BFX 92 N TO-18 300 30 45 40 120 0.01	5	-	-	30 30	8 8	4
BFX 93 N TO-18 300 30 45 100 300 0.01	5			30	•	
	10	1	10	150+	5+	
BFY 76 N TO-18 360 50 45 140 230 1		0.35	1	40	6	4
BFY 77 N TO-18 360 50 45 200 450 1	5	0.35	1	40	6	3
CS 9011 N TO-92A 310 100 18 29 280# 1	5	-	-	50	3.5	4.5+
CS 9014 N TO-92A 310 100 18 60 1000# 1		0.5	1	50	3+	3+
CS 9015 P TO-92A 310 100 18 60 1000# 1	5	0.5	10	50	6+	3+
CX 901 N TO-92A 300 100 40 40 150 1	- 1	0.4	50	80	3.5	-
CX 904 N TO-92A 300 100 40 80 540# 5		0.4	50	80	5	2+
CX 954 P TO-92A 300 100 40 80 540# 5	5	0.4	50	80	5	2+
EN 930 N TO-106 200 50 45 100 300 0.01	6	1	10	30	8	3
K 901 N TO-92A 300 100 20 29 146# 1	- 1	0.5	10	80	3.5	-
K 9014 N TO-92A 300 100 20 60 1000# 1	-	0.5	10	50	6	2
K 9015 P TO-92A 300 100 20 60 1000# 1	5	0.5	10	50	6	2
L 9014 N TO-92A 300 100 25 100 1000# 1		0.25	10	120+	2.4+	3
L 9015 P TO-92A 300 100 25 100 1000# 1	5	0.25	10	120+	3.5+	
	4.5	-	-	-	4	-
	4.5	-	-	a	12	-
		0.3	50	250+	2.5+	-
		0.3	50	250+	2.5+	-
MPS 2716 N TO-92A 360 25 18 75 225 2 4	4.5	-	_	-	5	-
	10	-	-	-	12	-
	10	-	-	-	12	-
	10	-	-	-	12	-
	10	-	_	1 -	3.5	=
	4.5	-	-	1 -		_
	4.5	-	-	-	10	=
	4.5	-	-	-	10	1 -
	4.5 4.5	-	_	1 -	10	1 2
	4.5	_	1 -		10	=
MPS 3395 N TO-92A 360 100 25 150 500 2	7.0			<u> </u>		

#HFE groupings available A hfe @ 1 KHz + Typical value

Audio Frequency Small Signal Transistors

	Υ		MAXI	MUM RA1	INGS	н	FE ,			VCEISA	AT)	fт	Cob	N.F.
TYPE NO.	POLARITY	CASE	Pd (mW)	IC (mA)	VCEO (V)	min	max	IC (mA)	VCE (V)	max (V)	IC (mA)	min (MHz)	max (pF)	max (dB)
MPS 3396	N	TO-92A	360	100	25	90	500	2	4.5	-	-	-	10 10	_
MPS 3397	Ν	TO-92A	360	100	25	55	500	2	4.5	-	-	-	10	_
MPS 3398	N	TO-92A	360	100	25	55	800	2 0.1	4.5 5	1	10	_	_	_
MPS 3707	N	TO-92A	360	30	30	100 45	400 660	1	5	1	10	_	_	_
MPS 3708	N	TO-92A	360	30	30	40	600	•	J					
MPS 3709	Ν	TO-92A	360	30	30	45	165	1	5 5	1	10 10	-	_	
MPS 3710	N	TO-92A	360	30	30 30	90 180	330 660		5	1	10	_	12	_
MPS 3711	N	TO-92A	360 360	30 100	18	60	660	2	10	_	-	_	3.5	-
MPS 3721 MPS 5172	N N	TO-92A TO-92A	360	100	25	100	500	10	10	0.25	10	-	10	-
										0.5	50	100	3.5	2+
MPS 6512	N	TO-92A	350	100	30	50	100	2	10 10	0.5 0.5	50 50	100	3.5	2+
MPS 6513	N	TO-92A	350	100	30	90	180	2	10	0.5	50	100	3.5	2+
MPS 6514	N	TO-92A	350	100 100	25 25	150 250	300 500	2	10	0.5	50	100	3.5	2+
MPS 6515	N P	TO-92A TO-92A	350	100	40	50	100	2	10	0.5	50	100	4	2+
MPS 6516		10-92A	350	100							_			
MPS 6517	Р	TO-92A	350	100	40	90	180	2	10	0.5	50	100	4	2+ 2+
MPS 6518	P	TO-92A	350	100	40	150	300	22	10	0.5 0.5	50 50	100	4	21
MPS 6519	P	TO-92A	350	100	25	250 200	500 400	2	10	0.5	50	- 1	3.5	3
MPS 6520	N	TO-92A	360	100	25 25	300	600	2	10	0.5	50	_	3.5	3
MPS 6521	N	TO-92A	300	100	25									
MPS 6522	Р	TO-92A	360	100	25	200	400	2	10	0.5	50	-	3.5 3.5	3
MPS 6523	P	TO-92A	360	100	25	300	600	2	10	0.5	50 10	200	3.5	
MPS 6565	N	TO-92A	360	200	45	40	160	10	10	0.4	10	200	3.5	_
MPS 6566	N	TO-92A	360	200	45 20	100 250	400 1000	0.1	5	0.5	10	50	4.5	-
MPS 6571	N	TO-92A	360	50	20	200	1000			}				Į
MPS 6573	N	TO-92A	360	100	35	200	500 300#	10	5	0.5	10 10	100 100	12	-
MPS 6574	N	TO-92A	360	100	35	100	500# 500	10	5	0.5	10	100	12	
MPS 6575	N	TO-92A TO-92A	360 360	100	45	100	300#	1	5	0.5	10	100	12	-
MPS 6576 MPS 9600	N	TO-92A	300	100	12	25	300#	i	5	0.5	10	50	4	-
	<u>.</u> .	TO 004	200	100	18	25	300#	1	5	0.5	10	50	4	-
MPS 9601	N	TO-92A	300	100	30	25	300#	l i	5	0.5	10	50	4	-
MPS 9602 MPS 9630	Ň	TO-92A	350	100	12	45	600#	1	5	0.5	30	<u> </u>	-	-
MPS 9631	N	TO-92A	350	100	18	45	600#	1	5	0.5	30	- 1	-	-
MPS 9632	N	TO-92A	350	100	30	45	600#	1	5	0.5	30	-		
MPSA 09	N	TO-92A	350	50	50	100	600	0.1	5	0.9	10	30	5	-
MPSA 10	N	TO-92A	210	100	40	40	400	5	10	1	1	20	4	-
MPSA 20	N	TO-92A	350	100	40	40	400#	5	10	0.25	10	125 125	4	
MPSA 70	Ρ	TO-92A	350	100	40	40	400#	5	10	0.25	10	120		+
MPSD 06	N	TO-92A	350	50	25	50	-	50	5	0.3	50	100	-	
MPSD 56	P	TO-92A	350	50	25	50		50	5	0.3	50	100	+	<u> </u>
PN 930	N	TO-92A	300	100	45	100	300	0.01	5	1	10	30	8	3
PN 3548	P	TO-92A	300	100	45	100,	300	0.01	5	1	10	60	8	4
PN 3565	N	TO-92A	300	50	25	150	600		10	0.35		40	4	
PN 5138	Р	TO-92A	300	50	30	50	800	0.1	10	0.3	10		<u>+</u>	+
SE 4010	N	TO-106	200	50	25	200	1000	1	10	0.35	1	60	4	3
2N 703	N	TO-18	300	50	25	40	100	10	5	0.5	10	70	6	-
2N 760	N	TO-18	500	100	45	76	333▲		5		10	50	8 15	
2N 841	N	TO-18	300	1000	45	60	400	10	5	2	10	40	8	4
2N 929	N	TO-18	500	30	45	40	120 120	0.01	5	0.5	10	45	6	4
2N 929A	N	TO-18	500	30	45	40	120	0.01		1	1		1	
	1		1	1		1				1		1		
1	1				1			ľ	1			1		
	1		+	موجوع المراجع		<u> </u>								

#HFE groupings available ▲hfe @1 KHz + Typical value

Audio Frequency Small Signal Transistors

N TO-18 600 30 45 100 300 001 5 1 10 45 7 3 2M 930 N TO-18 500 100 45 120 360 0.01 5 0.5 10 45 7 3 2M 930 N TO-928 200 100 18 37 225 2 4.5 - - - 12 2.8+ 2N 2714 N TO-928 200 100 18 75 225 2 4.5 0.3 60 - - - 12		È		MAXI		INGS	Ц				V _{CE} (SA	(T)	fT	Cob	N.F.
2N 930 N TO-18 500 30 45 100 300 101 5 0.5 10 45 7 3 2N 286 N TO-18 300 100 45 120 2.8+ <th></th> <th>POLARITY</th> <th>CASE</th> <th>Pd</th> <th>IC</th> <th>VCEO</th> <th></th> <th></th> <th>IC (mA)</th> <th>VCE (V)</th> <th></th> <th>IC (mA)</th> <th>min</th> <th></th> <th></th>		POLARITY	CASE	Pd	IC	VCEO			IC (mA)	VCE (V)		IC (mA)	min		
Alt Bis A N TO:18 500 100 45 100 300 00.01 5 0.55 100 45 9 3 2N 2711 N TO:428 200 100 18 75 225 2 4.5 - - - 12 2.8+ 2N 2714 N TO:428 200 100 18 75 225 2 4.5 - - - - - 12 2.8+ 2N 2714 N TO:428 200 100 25 150 3004 2 10 - - - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	an 020	NI.	TO 19	500	30	45	100	300	0.01						
Display Display <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							100								
21 21<					100	45									
21X 2712 N TO 422 200 100 18 75 225 2 4.5 0 - 12 - - - 12 - - - 12 - - - 12 - - 12 - - 12 - - 12 - - 12 - - 100 - - - 12 - - 12 - - 12 - - 12 - - 120 100 - 220 100 225 100 22 45 - - 120 100 - 230 100 100 100 100 100 100 100 100 100 100 1				200							1		-		
21X 2714 N TG-282 200 100 16 75 225 2 4.5 - - - - - - - - - - - - - 10 - - - 12 - - 12 - - 12 - - 12 - - 12 - - 12 - - 12 - - 12 - - 12 - 12 - 12 - 12 - 12 - 100 - 100 - 100 100 100 100 110 100 - 100		Ν	TO-92B	200	100	18	75	225	2	4.0	-	_			
N TO TO TO TB TO TO TD TO TD T	2NI 2714	N	то-92В	200	100	18	75				0.3	50	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					100	18					-	-		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			TO-92B	200	100	•	-				-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ν	TO-92B								_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2N 2925	N	TO-92B	200	100	25	235	4/0	2	10					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 2926	N	то-928	200	100	18	35				-		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				200	100			-			-		120+		
2N 3391A N TO 428 200 100 25 150 300 2 4.5 - - - 120+ 10 - 2N 3392 N TO 428 200 100 25 150 300 2 4.5 - - 120+ 10 - 2N 3394 N TO 428 200 100 25 150 100 2 4.5 - - - 100 - 2N 3395 N TO 428 200 100 25 55 500 2 4.5 - - - 100 - 2N 3397 N TO 428 200 100 25 55 500 2 4.5 - - - 10 -5 1 10 60 8 4 2N 3487 P TO 18 400 100 60 100 500 50 5 60 8 4 2N 3569 P TO 18 400 100 40 10 0.7 10<				200							-				5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N	то-92В	200	100						-				
2N 3333 N TO 592B 200 100 25 55 110 2 4.5 - - - 120+ 10 - 2N 3345 N TO 592B 200 100 25 150 500 2 4.5 - - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 0 336 1 10 0 356 8 4 - 10 0 0 0 0 0 0 0 10 0 10 0 0 0 0 10 0 10 0 1 <		N	ТО∙92В	200	100	25	150	300	2	4.5	_	_	120		
N TO Description Description <thdescription< <="" td=""><td>2N 3393</td><td>N</td><td>TO-928</td><td>200</td><td>100</td><td>25</td><td>90</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></thdescription<>	2N 3393	N	TO-928	200	100	25	90								_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					100	25				1					
N TO -928 200 100 25 90 900 2 4.5 - - - - 10 - N 3397 N TO -928 200 100 25 55 500 2 4.5 - - - 10 - N 3397 P TO -18 400 100 60 100 500 1 10 45 8 4 N 3563 P TO -18 400 100 60 100 50.5 5 60 8 4 2N 3565 P TO -16 200 60 100 1 0.7 10 200 6 - 2N 3691 N TO -166 200 50 25 100 400 10 1 0.7 10 200 6 - - - - - - - - - - - - - -			TO-92B	200	100										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N	TO-92B												
N 3098 N TO-928 200 100 25 55 600 2 455 1 10 455 8 45 2N 3547 P TO-18 400 100 60 100 500 1 5 1 10 60 8 4 2N 3547 P TO-18 400 100 45 100 300 0.01 5 1 10 60 8 4 2N 3567 P TO-18 400 100 45 200 600 0.01 5 0.5 5 60 8 4 2N 3687 N TO-166 200 50 25 100 400 10 1 0.7 10 200 6 - 2N 3707 N TO-928 360 200 30 45 165 1 5 1 10 - - - 2 2 371 N 7	2N 3397	N	то-92В	200	100	25	55	500	2	4.5	_				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 3398	N	то-92В	200	100	25	55				3)	-	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			TO-18	400	100										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		P	TO-18												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2N 3549	P				-									4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2N 3550	P	TO-18	400	100	45	200	000	0.01						
2N 3691 N TO-106 200 50 25 40 160 10 1 0.7 10 200 6 - 2N 3692 N TO-042B 360 200 30 100 400 10 1 5 1 10 - - 5 2N 3707 N TO-92B 360 200 30 45 660 1 5 1 10 - - - 5 2N 3708 N TO-92B 360 200 30 45 165 1 5 1 10 -	2N 3565	N	TO-106	200											
N 3692 N TO-106 200 50 25 100 400 0.1 5 1 10 - - - 5 N 3707 N TO-928 360 200 30 45 660 1 5 1 10 -	2N 3691	N													
2N 3707 N 0.928 360 200 30 45 660 1 5 1 10 - - - - 2N 3708 N TO-928 360 200 30 45 660 1 5 1 10 -<										1 .			_	1 -	5
2N 3708 N TO-928 360 200 30 45 165 1 5 1 10 -												10	- 1	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2N 3708	N	10-92B	300	200							10			_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2N 3709	N	то-92В	360		1	1						1 -	1 -	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N	TO-92B				-		1	-				_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2N 3711									-			100	12	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														4	10.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2N 3843	N	то-92В	200	100	30		40	-						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2N 3843A	N	TO-92B												
2N 3844A N TO-92B 200 100 30 60 120 2 4.5 1 10 120 4 10.2 2N 3845A N TO-92B 200 100 30 60 120 2 4.5 1 10 120 4 8.5 2N 3845A N TO-92B 200 100 30 60 120 2 4.5 1 10 120 4 8.5 2N 3858 N TO-92B 200 100 30 60 120 2 4.5 0.125 10 90 4 - 2N 3859 N TO-92B 200 100 30 150 300 2 4.5 0.125 10 90 4 - 2N 3850 N TO-92B 200 100 30 150 300 2 4.5 - - 160+ 12 - 2N 3900 N TO-92B 360 100 18 250 500 0.11 5 0.25	2N 3844														8.5
2N 3845 N TO-92B 200 100 30 60 120 2 4.5 1 10 120 4 8.5 2N 3845A N TO-92B 200 100 30 60 120 2 4.5 1 10 120 4 8.5 2N 3858 N TO-92B 200 100 30 60 120 2 4.5 0.125 10 90 4 - 2N 3859 N TO-92B 200 100 30 160 200 2 4.5 0.125 10 90 4 - 2N 3860 N TO-92B 360 100 18 250 500 2 4.5 - - 160+ 12 - 2N 3901 N TO-92B 360 100 18 350 700 2 4.5 - - 200+ 10 - 2N 3962 P										1				4	10.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				L						1		10	120	4	8.5
2N 3858 N TO-928 200 100 30 100 200 2 4.5 0.125 10 90 4 - 2N 3859 N TO-928 200 100 30 150 300 2 4.5 0.125 10 90 4 - 2N 3860 N TO-928 200 100 30 150 300 2 4.5 0.125 10 90 4 - 2N 3860 N TO-928 360 100 18 250 500 2 4.5 - - - 160+ 12 - 2N 3901 N TO-928 360 100 18 250 500 2 4.5 - - - 200+ 10 - 2N 3962 P TO-18 360 200 45 250 500 0.01 5 0.25 10 40 6 3 <t< td=""><td>2N 3845A</td><td>N</td><td>10.920</td><td>200</td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></t<>	2N 3845A	N	10.920	200	100										<u> </u>
2N 3859 N TO-92B 200 100 30 100 200 2 4.5 0.125 10 90 4 - 2N 3860 N TO-92B 200 100 30 160 300 2 4.5 0.125 10 90 4 - 2N 3860 N TO-92B 360 100 18 250 500 2 4.5 0.125 10 90 4 - 2N 3901 N TO-92B 360 100 18 350 700 2 4.5 - - - 160+ 12 - 2N 3962 P TO-18 360 200 60 100 300 0.01 5 0.25 10 40 6 3 2N 3962 P TO-18 360 200 45 250 500 0.01 5 0.25 10 40 6 3 2N 4058 P TO-92B 360 100 30 45 660 1 5 0	2N 3858	N	TO-92B												1 =
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N		_											1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2N 3860										1				
2N 3901 N TO-92B 360 100 16 350 700 2 100 1 6 3 2N 3962 P TO-18 360 200 60 100 300 0.01 5 0.25 10 40 6 3 2N 3964 P TO-18 360 200 45 250 500 0.01 5 0.25 10 40 6 3 2N 4058 P TO-92B 360 100 30 100 400 0.1 5 0.7 10 - <td></td> <td>1 -</td>															1 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2N 3901	N	TO-92B	360	100	18	350	700							
2N 3964 P TO-18 360 200 45 250 500 0.01 5 0.23 10 00 1 5 0.7 10 - <t< td=""><td>2N 3962</td><td></td><td>TO-18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2N 3962		TO-18												
2N 4058 P TO-928 360 100 30 100 400 100 5 0.7 10 - </td <td>2N 3964</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 -</td> <td></td> <td></td>	2N 3964					-							1 -		
2N 4059 P TO-92B 360 100 30 45 165 1 5 0.7 10 -													-		-
2N 4060 P TO-928 360 100 30 90 330 1 5 0.7 10 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> -</td>						4									-
2N 4061 P TO 92B 360 100 30 50 50 7 10 -	2N 4060	P	10-928	360	100	30	"						1		
2N 4062 P 10.928 360 100 30 100 30 100 30 100 40 6 - 2N 4248 P TO-106 200 100 40 50 - 0.1 5 0.25 10 40 6 - 2N 4248 P TO-106 200 100 60 100 300 0.1 5 0.25 10 40 6 3 2N 4249 P TO-106 200 100 60 100 300 0.1 5 0.25 10 40 6 3 2N 4249 P TO-106 200 100 60 100 300 0.1 5 0.25 10 50 6 2							-					1		_	_
2N 4248 P TO-106 200 100 40 50 0.1 5 0.25 10 40 6 3 2N 4249 P TO-106 200 100 60 100 300 0.1 5 0.25 10 40 6 3								000	1 .				40	6	1 -
2N 4249 P 10-106 200 100 00 100 01 01 5 0.25 10 50 6 2								300							
	2N 4249 2N 4250	P	TO-106	200	100	40	250	700	0.1				50	6	2

#HFE groupings available ▲hfe @1 KHz + Typical value

1

Audio Frequency Small Signal Transistors

ТУРЕ	ЯІТҮ		MAX	MUM RA	TINGS		HFE	- <u>-</u>		V _{CE(S}	AT)	fT	Cob	N.F.
NO.	POLARITY	CASE	Pd (mW)	IC (mA)	VCEO (V)	min	max	łc (mA)	VCE (V)	max (V)	IC (mA)	min (MHz)	max (pF)	max (dB)
2N 4286 2N 4287	N N	TO-92B TO-92B	250 250	100 100	25 45	150 150	600 600	1	5	0.35 0.35	1	40 40	6 6	
2N 4288	P	TO-92B	250	100	25	150	600	1	5	0.35	i	40	8	-
2N 4289	P	TO-92B	250	100	45	150	600	1	5	0.35	i	40	8	4
2N 4290	P	TO-92B	250	600	20	50	300	100	10	0.4	100	100	10	-
2N 4291 2N 4359	P	TO-92B TO-18	250 360	600 50	30 45	100 50	300 600	100 1	10 5	0,4	100	100 20	10 6	- 4
2N 4384	Ň	TO-18	300	50	30	100	500	0.01	5	0.2	10	30	8	2
2N 4386	N	TO-18	300	50	30	40	500	0.01	5	0.2	10	30	8	3
2N 4964	P	TO-106	200	100	40	30	120	0.01	5	0,4	10	60	8	6
2N 4965	Р	TO-106	200	100	40	80	400	0.01	5	0.4	10	60	8	6
2N 4966	N	TO-106	200	100	40	40	200	0.01	5	0.4	10	40	6	6
2N 4967 2N 4968	N N	TO-106 TO-106	200 200	100 100	40 25	100 40	600 200	0.01	5 5	0.4	10	40	6	6
2N 5086	P	TO-92A	350	50	25 50	150	500	0.01 0.1	5	0.4 0.3	10 10	40 40	6 4	6 3
2N 5088	N	TO-92A	350	50	30	300	900	0.1	5	0.5	10	50	4	3
2N 5089	N	TO-92A	350	50	25	400	1200	0.1	5	0.5	10	50	4	2
2N 5133	N	TO-106	200	50	18	60	1000	1	5	0.4	10	40	5	-
2N 5138 2N 5172	P N	TO-106 TO-92B	200 200	50 100	30 25	50 100	800 500	0.1 10	10 10	0.3 0.25	10 10	30 -	7	
2N 5209	N	TO-92A	350	50	50	100	300	0.1	5	0.7	10	30	4	4
2N 5219	N	TO-92A	350	100	15	35	500	2	10	0.4	10	150	4	-
2N 5223	N	TO-92A	350	100	20	50	800	2	10	0.7	10	150	4	-
2N 5227	P	TO-92A	350	50	30	50	700	2	10	0.4	10	100	5	~
2N 5309	N	TO-92B	360	100	50	60	120	0.01	5	0.125	10	-	4	-
2N 5310	N	TO-92B	360	100	50	100	300	0.01	5	0.125	10	-	4	-
2N 5824 2N 5825	N N	TO-92F TO-92F	360 360	100 100	40 40	60 100	120 200	2	5 5	0.125 0.125	10 10	90 90	4	-
2N 5826	Ň	TO-92F	360	100	40	150	300	2	5	0.125	10	90	4	_
2N 5827	N	TO-92F	360	100	40	250	500	2	5	0.125	10	90	4	_
2N 5828	N	TO-92F	360	100	40	400	800	2	5	0,125	10	90	4	-
2SA 499	Р	TO-18 TO-18	250	100	20	60	200 #	10	1	0.4	0.01	100	7	-
2SA 500 2SA 550	P P	TO-18	250 300	100 50	20 25	60 65	200# 700#	10 2	1 5	0.4	0.01	100 120+	7 5+	~
2SA 550A	P	TO-18	300	50	45	65	700#	2	5	_		120+	5+	
2SA 564	Ρ	TO-92B	250	50	25	65	700#	2	5	0.4	50	150+	3.2+	2+
2SA 564A	Р	TO-928	250	50	45	65	700#	2	5	0.4	50	150+	3.2+	2+
2SA 666 2SA 666A	P	TO-928 TO-928	250 250	50 50	25 45	130 130	700# 700#	2 2	5	0.4	50	80+	-	16
2SA 721	P	TO-92B	150	50	35	180	1040#	2	5 5	0.4 0.6	50 100	80+ 250+	-	16
2SA 722	Ρ	то-92В	150	50	55	180	1040#	2	5	0.6	100	250+	-	=
2SA 888	Р	TO-92A	350	50	25	65	700#	2	5	0.5	50	100+	2.7+	_
2SA 889	P	TO-92A	350	50	45	65	700#	2	5	0.5	50	100+	2.7+	-
2SC 316 2SC 400	N N	TO-18 TO-18	300 250	50 100	45 20	 30	600 350#	2 10	5	1.2	10	50+	- 6	-
2SC 536	N	TO-92B	200	100	20	40	350# 850#	1	6	0.4	0.01	100	6	
2SC 537	N	TO-92B	200	100		40	850#	1	6	_ `	_	_	6	
2SC 538	Ν	TO-18	300	50	25	90	700#	2	5	0.32	100	180+	4+	-
2SC 538A	N	TO-18	300	50	45	90	700#	2	5	0.32	100	180+	4+	_
2SC 539 2SC 644	N N	TO-18 TO-928	300 150	50 50	25 25	90 130	700# 700#	2 2	5	0.32	100	180+	4+	4
2SC 693	N	TO-928	100	50	-	100	850#	1	5 6	0.4	50	75 90	10 6	3
2SC 828	Ň	TO-92B	250	50	25	65	700#	2	5	0.4	- 50	150+	2.5+	2+
2SC 828A	Ν	TO-92B	250	50	45	65	700#	2	5	0.4	50	150+	2.5+	2+
													l	

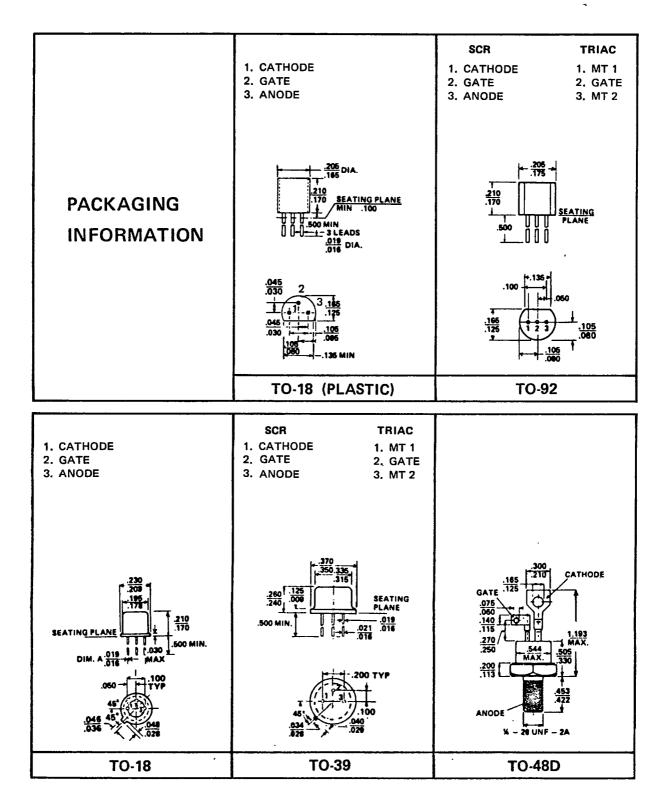
- -----

__ _ _ _ _

#HFE groupings available + Typical value

T-29-17

Î


Audio Frequency Small Signal Transistors

-	MAXIMUM RATINGS			HFE				AT)	fT	Сор	N.F.			
TYPE NO.	POLA	CASE	Pd (mW)	IC (mA)	VCEO (V)	min	max	IC (mA)	VCE (V)	max (V)	IC (mA)	min (MHz)	max (pF)	max (dB)
2SC 858	N	TO-928	100	50	12	100	850#	1	6	-	_	90	6	-
2SC 900	N	TO-92B	250	100	35	225	1000#	0.5	3	0.3	100	50	5	4
2SC 923	N	TO-92B	250	100	35	225	1000#	0.5	3	0.3	100	50	5	20
2SC 945	N	TO-928	250	100	50	90	600 #	1	6	0.3	100	150	5	15
2SC 1327	Ν	ТО- 9 2В	150	50	35	180	1040#	2	5	0.6	100	250+	-	-
2SC 1330	N	TO-928*	400	100	40	60	400#	1	6	0.5	30	50	6	-
2SC 1684	N	TO-92B	250	100	25	90	650 #	2	10	0.5	100	150+	3.5+	-
2SC 1685	N	TO-92B	250	100	50	90	650 #	2	10	0.5	100	150+	3.5+	- 1
2SC 1849	N	TO-92A	350	100	25	90	650 #	2	10	0.5	100	I –	-	_
2SC 1850	N	TO-92A	350	100	50	90	650 #	2	10	0.5	100	-	-	-

#HFE groupings available + Typical value * with x-67 heatsink

SEMICONDUCTORS INC D9E D 8136650 0000323 3 T-91-20

Packaging Information

74

Ċ-04 4349

2SC829

Silicon NPN epitaxial planer type

For high-frequency amplification

Features

Parameter

Collector to base voltage

Collector to emitter voltage

Collector power dissipation

Junction temperature

Storage temperature

Emitter to base voltage

Collector current

• Optimum for RF amplification, oscillation, mixing, and IF stage of FM/AM radios.

Symbol

 V_{CBO}

 V_{CEO}

 V_{EBO}

 I_C

 $\mathbf{P}_{\mathbf{C}}$

T_i

 T_{stg}

Ratings

30

20 5

30

400

150

 $-55 \sim +150$

	Unit: mm
<u>5.0±0.2</u>	4.0±0.2
2017 2017	
0.45-0.1 0.45	5-0.1
	1:Emitter 2:Collector 3:Base
	JEDEC:TO-92 EIAJ:SC-43A

Absolute Maximum Ratings (Ta=25°C)

Electrical Characteristics (Ta=25°C)

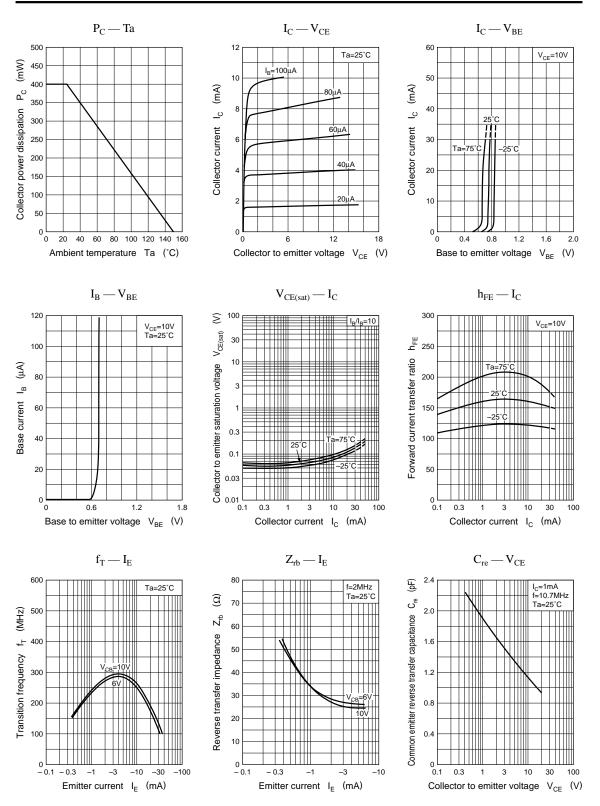
Parameter	Symbol	Conditions	min	typ	max	Unit
Collector to base voltage	V _{CBO}	$I_{\rm C} = 10 \mu A, I_{\rm E} = 0$	30			V
Collector to emitter voltage	V _{CEO}	$I_C = 2mA$, $I_B = 0$	20			V
Emitter to base voltage	V _{EBO}	$I_{\rm E} = 10 \mu A, I_{\rm C} = 0$	5			V
Forward current transfer ratio	h _{FE} *	$V_{CE} = 10V, I_C = 1mA$	70		250	
Transition frequency	f _T	$V_{CB} = 10V, I_C = 1mA, f = 200MHz$	150	230		MHz
Common emitter reverse transfer capacitance	C _{re}	$V_{CE} = 10V, I_C = 1mA, f = 10.7MHz$		1.3	1.6	pF
Reverse transfer impedance	Z _{rb}	$V_{CB} = 10V, I_E = -1mA, f = 2MHz$			60	Ω

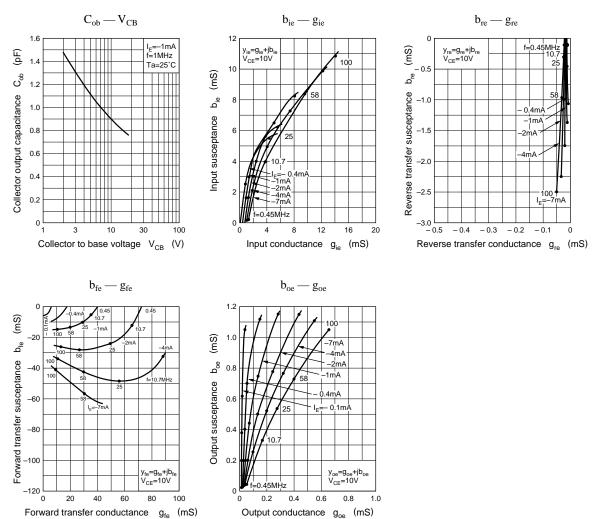
Unit V

V

V

mА


mW


°C °C

*hFE Rank classification

Rank	В	С
$h_{\rm FE}$	70 ~ 160	110 ~ 250

Transistor

Forward transfer conductance g_{fe} (mS)

2SC1162

Silicon NPN Epitaxial

HITACHI

Application

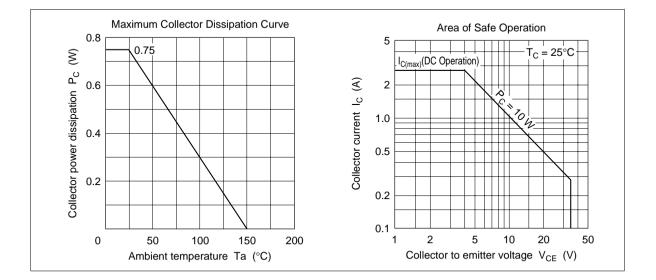
Low frequency power amplifier complementary pair with 2SA715

Outline

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

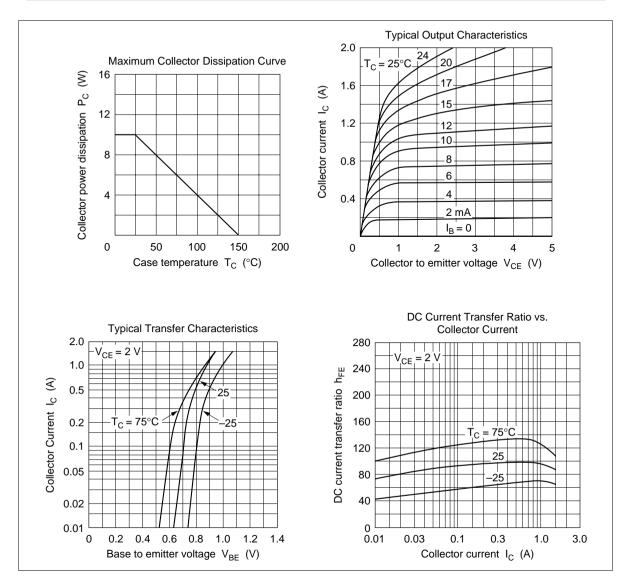
Item	Symbol	Ratings	Unit
Collector to base voltage	V _{CBO}	35	V
Collector to emitter voltage	V _{CEO}	35	V
Emitter to base voltage	V _{EBO}	5	V
Collector current	I _c	2.5	А
Collector peak current	I _{C(peak)}	3	А
Collector power dissipation	Pc	0.75	W
	P _c * ¹	10	W
Junction temperature	Tj	150	°C
Storage temperature	Tstg	-55 to +150	°C

Note: 1. Value at $T_c = 25^{\circ}C$.

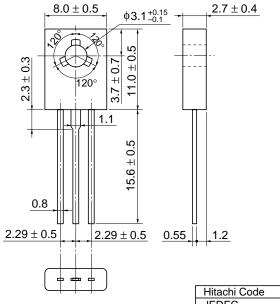

2SC1162

Electrical Characteristics (Ta = 25°C)

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Collector to base breakdown voltage	$V_{(BR)CBO}$	35	_	_	V	$I_{c} = 1 \text{ mA}, I_{E} = 0$
Collector to emitter breakdown voltage	$V_{(BR)CEO}$	35	—	—	V	$I_c = 10$ mA, $R_{BE} = \infty$
Emitter to base breakdown voltage	$V_{(BR)EBO}$	5	—	—	V	$I_{\rm E} = 1$ mA, $I_{\rm C} = 0$
Collector cutoff current	I _{CBO}	_	_	20	μA	$V_{CB} = 35 \text{ V}, \text{ I}_{E} = 0$
DC current transfer ratio	h _{FE} *1	60	_	320		$V_{ce} = 2 \text{ V}, \text{ I}_{c} = 0.5 \text{ A}$
	h _{FE}	20	_	_		V_{CE} = 2 V, I _C = 1.5 A (pulse test)
Base to emitter voltage	V_{BE}	—	0.93	1.5	V	V_{CE} = 2 V, I _C = 1.5 A (pulse test)
Collector to emitter saturation voltage	$V_{\text{CE(sat)}}$		0.5	1.0	V	$I_{\rm c}$ = 2 A, $I_{\rm B}$ = 0.2 A (pulse test)
Gain bandwidth product	f _⊤	_	180	_	MHz	$V_{ce} = 2 \text{ V}, \text{ I}_{c} = 0.2 \text{ A}$


Note: 1. The 2SC1162 is grouped by h_{FE} as follows.

В	С	D
60 to 120	100 to 200	160 to 320


HITACHI

2SC1162

HITACHI

Unit: mm

Hitachi Code	TO-126 Mod
JEDEC	
EIAJ	
Weight (reference value)	0.67 g

Ŵ,

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 NorthAmerica URL http:semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg Europe http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicd/indx.htm Japan For further information write to: Hitachi Semiconductor Hitachi Europe GmbH Hitachi Asia Pte. Ltd. (America) Inc. Electronic components Group 16 Collyer Quay #20-00 179 East Tasman Drive, Dornacher Stra§e 3 Hitachi Tower San Jose,CA 95134 D-85622 Feldkirchen, Munich Singapore 049318 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Germany Tel: 535-2100 Tel: <49> (89) 9 9180-0 Fax: 535-1533 Fax: <49> (89) 9 29 30 00

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

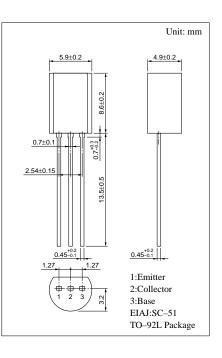
Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

2SC1383, 2SC1384

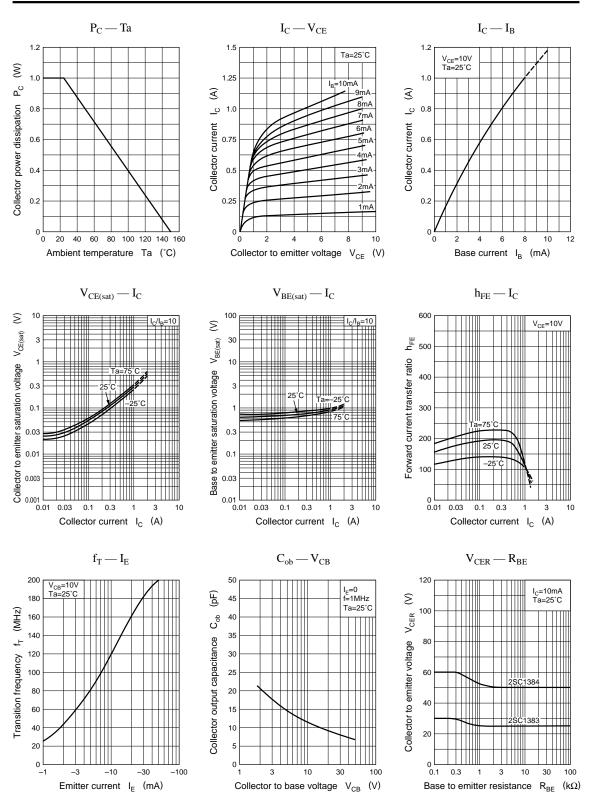
Silicon NPN epitaxial planer type

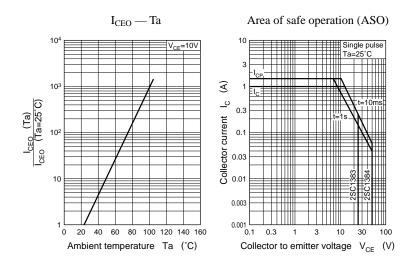

For low-frequency power amplification and driver amplification Complementary to 2SA683 and 2SA684

Features

- Low collector to emitter saturation voltage $V_{CE(sat)}$.
- Complementary pair with 2SA683 and 2SA684.

Parame	ter	Symbol	Ratings	Unit
Collector to	2SC1383	V	30	V
base voltage	2SC1384	V _{CBO}	60	v
Collector to	2SC1383	17	25	V
emitter voltage	2SC1384	V _{CEO}	50	V
Emitter to base	voltage	V _{EBO}	5	V
Peak collector of	current	I _{CP}	1.5	А
Collector current	nt	I _C	1	А
Collector power	dissipation	P _C	1	W
Junction temper	rature	Tj	150	°C
Storage tempera	ature	T _{stg}	-55 ~ +150	°C


Electrical Characteristics (Ta=25°C)


Paramete	er	Symbol	Conditions	min	typ	max	Unit
Collector cutoff curre	ent	I _{CBO}	$V_{CB} = 20V, I_E = 0$			0.1	μΑ
Collector to base	2SC1383	X 7					17
voltage	2SC1384	V _{CBO}	$I_{\rm C} = 10 \mu A, I_{\rm E} = 0$	60			v
Collector to emitter	2SC1383			25			
voltage	2SC1384	V _{CEO}	$I_C = 2mA, I_B = 0$	50			V
Emitter to base voltag	ge	V _{EBO}	$I_{\rm E} = 10 \mu A, I_{\rm C} = 0$	5			V
F 1	c .:	h _{FE1} *1	$V_{CE} = 10V, I_C = 500mA^{*2}$	85	160	340	
Forward current trans	ster ratio	h _{FE2}	$V_{CE} = 5V, I_B = 1A^{*2}$	50	100		
Collector to emitter satu	uration voltage	V _{CE(sat)}	$I_{\rm C} = 500 {\rm mA}, I_{\rm B} = 50 {\rm mA}^{*2}$		0.2	0.4	V
Base to emitter satura	ation voltage	V _{BE(sat)}	$I_{\rm C} = 500 {\rm mA}, I_{\rm B} = 50 {\rm mA}^{*2}$		0.85	1.2	V
Transition frequency		f _T	$V_{CB} = 10V, I_E = -50mA, f = 200MHz$		200		MHz
Collector output capa	icitance	C _{ob}	$V_{CB} = 10V, I_E = 0, f = 1MHz$		11	20	pF

*2 Pulse measurement

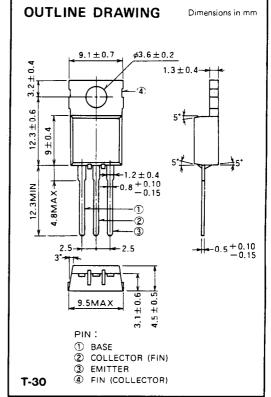
*1hFE1 Rank classification

Rank	Q	R	S
h _{FE1}	85 ~ 170	120 ~ 240	170 ~ 340

MITSUBISHI RF POWER TRANSISTOR 2SC1969

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION


2SC1969 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on HF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 12dB$ @V_{CC} = 12V, P₀ = 16W, f = 27MHz
- Emitter ballasted construction for high reliaiblity and good performances.
- TO-220 package similarly is combinient for mounting.
- Ability of withstanding infinite load VSWR when operated at V_{CC} = 16V, P₀ = 20W, f = 27MHz.

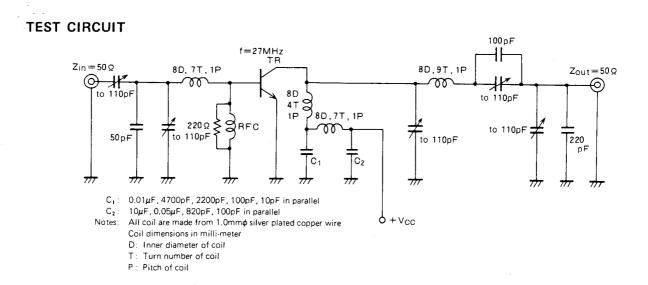
APPLICATION

10 to 14 watts output power class AB amplifiers applications in HF band.

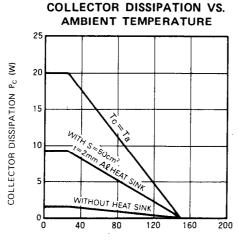
ABSOLUTE MAXIMUM RATINGS (Tc=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit	
Vсво	Collector to base voltage		60	v	
VEBO	Emitter to base voltage		5	V	
VCEO	Collector to emitter voltage	$R_{BE} = \infty$	25	V	
lc	Collector current		6	A	
			Ta=25°C	1.7	w
Pc	Collector dissipation	T _C =25°C	20	w	
Тј	Junction temperature		150	°C	
Tstg	Storage temperature		55 to 150	°C	
Rth-a	Thermal resistance	Junction to ambient	73.5	°c/w	
Rth-c	i hermai resistance	Junction to case	6.25	°c/w	

Note. Above parameters are guaranteed independently.

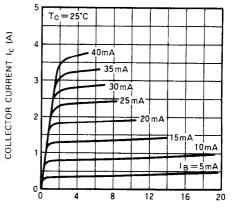

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise specified)

C	Parameter				Limits			
Symbol	Parameter	1	est conditions		Min	Түр	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	$I_{E} = 5 \text{ mA}, I_{C} = 0$		5			v	
V(BR)CBO	Collector to base breakdown voltage	I _C =1mA, I _E	=0		60			V
V(BR)CEO	Collector to emitter breakdown voltage	$I_{C} = 10 \text{ mA}, R_{BE} = \infty$		25			V	
'сво	Collector cutoff current	V _{CB} = 30V, I	E = 0				100	μA
1EBO	Emitter cutoff current	VEB=4V, 10	=0				100	μA
hfe	DC forward current gain *	V _{CE} = 12V,	c = 10mA		10	50	180	
P ₀	Output power		1 ()		16	18		w
$\eta_{\rm C}$	Collector efficiency	$V_{CC} = 12V, P_{III} = 1w, f = 27MHz$		60	70		%	
	test, $P_W = 150\mu s$, duty = 5%. parameters, ratings, limits and conditions are sul	blect to change	ltem	×	A	В	C	D
		-,	nee.	10-25	20-45	35-70	55-110	90-180

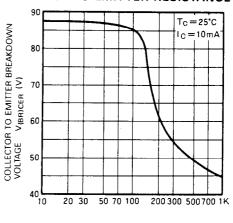


NPN EPITAXIAL PLANAR TYPE

2SC1969



TYPICAL PERFORMANCE DATA

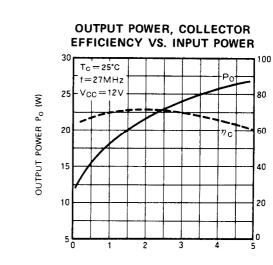

AMBIENT TEMPERATURE Ta (°C)

DC CURRENT GAIN VS. DC CURRENT JC. CON VS. DC CURRENT JC.
COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

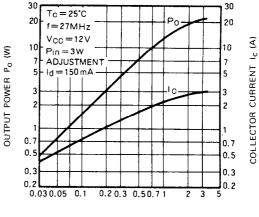
COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

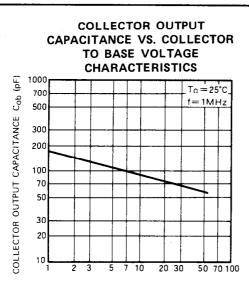


NPN EPITAXIAL PLANAR TYPE

(%)

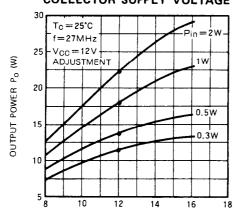

1C

COLLECTOR EFFICIENCY

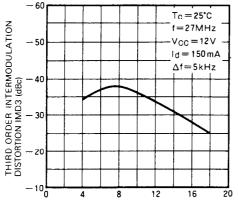


INPUT POWER Pin (W)

IN CASE AB OPERATING OUTPUT POWER COLLECTOR CURRENT VS. INPUT POWER



INPUT POWER Pin (W)


COLLECTOR TO BASE VOLTAGE $V_{\mbox{CB}}$ (V)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE $V_{CC}\ (V)$

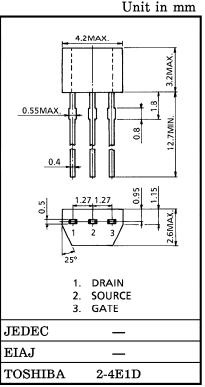
THIRD ORDER INTERMODULATION DISTORTION VS. OUTPUT POWER

OUTPUT POWER LEVEL (PEP) (W)

TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL JUNCTION TYPE

2 S K 1 9 2 A

FM TUNER APPLICATIONS


VHF BAND AMPLIFIER APPLICATIONS

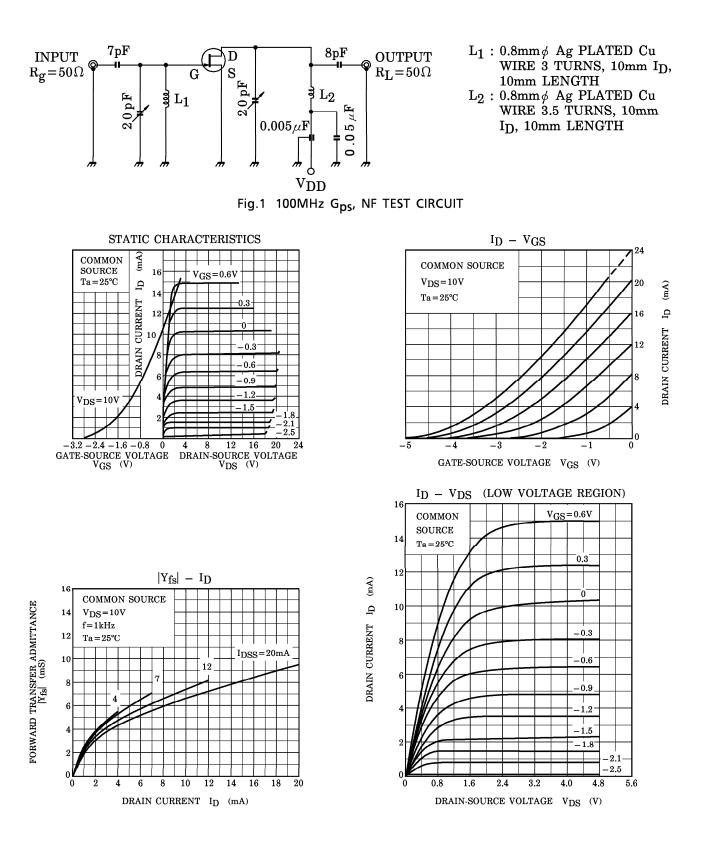
- High Power Gain : GPS=24dB (Typ.) (f=100MHz)
- Low Noise Figure : NF = 1.8 dB (Typ.) (f = 100MHz)
- High Forward Transfer Admittance

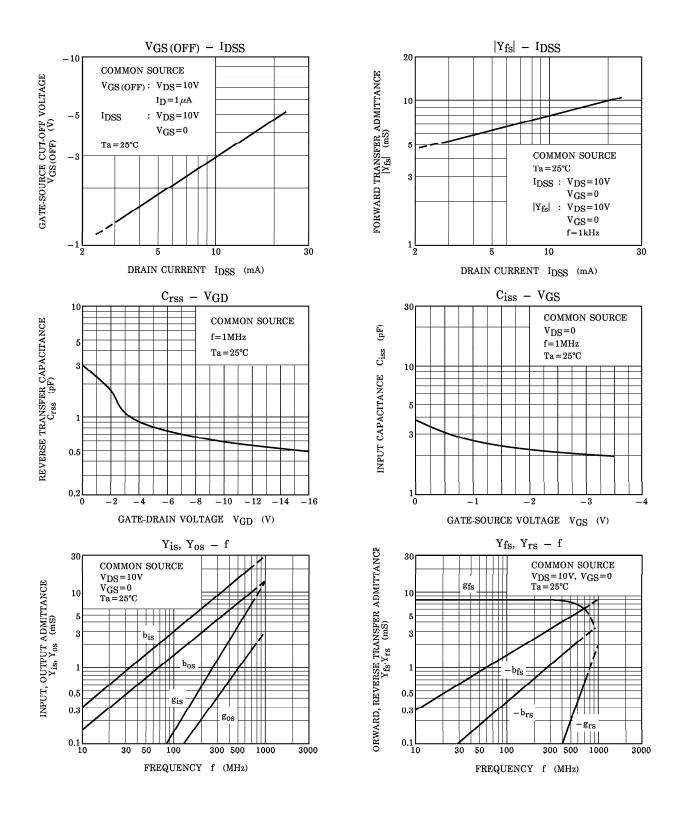
 $|y_{fs}| = 7mS (Typ.) (f = 1kHz)$

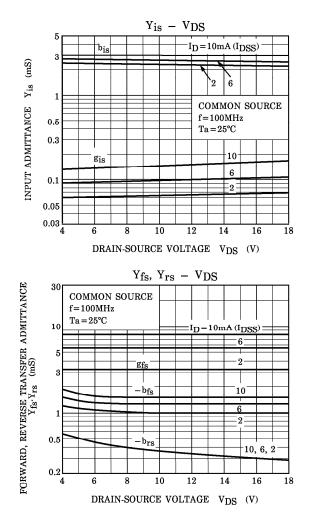
MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

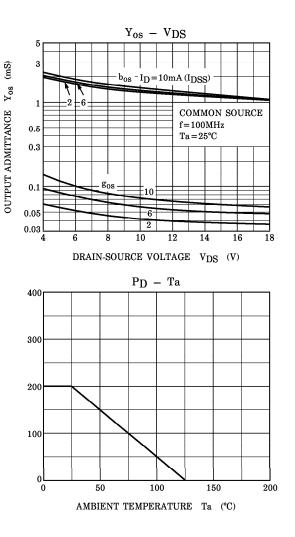
CHARACTERISTIC	SYMBOL	RATING	UNIT
Gate-Drain Voltage	V _{GDO}	-18	V
Gate Current	IG	10	mA
Drain Power Dissipation	PD	200	mW
Junction Temperature	Tj	125	°C
Storage Temperature Range	T _{stg}	$-55 \sim 125$	°C

Weight : 0.13g

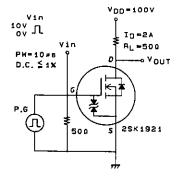

ELECTRICAL CHARACTERISTICS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Current	IGSS	$V_{GS} = -1.0V, V_{DS} = 0$	_	_	-10	nA
Gate-Drain Breakdown Voltage	V (BR) GDO	$I_{G} = -100 \mu A$	-18			v
Drain Current	I _{DSS} (Note)	$V_{GS}=0, V_{DS}=10V$	3		24	mA
Gate-Source Cut-off Voltage	VGS (OFF)	$V_{DS} = 10V, I_{D} = 1\mu A$	-1.2	-3		V
Forward Transfer Admittance	$ y_{fs} $	$V_{GS}=0$, $V_{DS}=10V$, f=1kHz		7		mS
Input Capacitance	c_{iss}	V_{DS} =10V, V_{GS} =0, f=1MHz	_	3.5	_	pF
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = -10V$, f=1MHz		1	0.65	pF
Power Gain	G _{PS}	$V_{DD} = 10V, f = 100MHz$ (Fig.1)		24	_	dB
Noise Figure	NF	V _{DD} =10V, f=100MHz(Fig.1)	_	1.8	3.5	dB

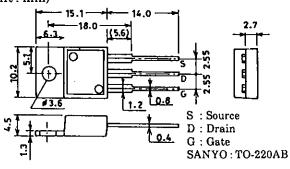

Note : I_{DSS} Classification Y : 3.0~7.0, GR : 6.0~14.0, BL : 12.0~24.0


9<u>61001EAA2</u>

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice.

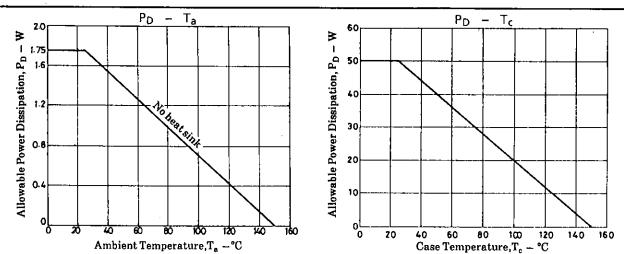


	No.4310	2SK1921
CANNO		N-Channel MOS Silicon FET
SAMO		Very High-Speed
		Switching Applications

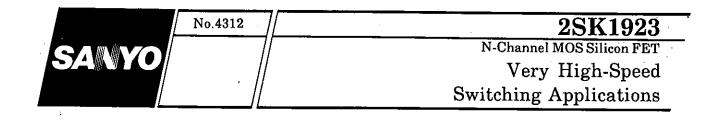

- · Low ON resistance.
- · Very high-speed switching.
- · Low-voltage drive.

Absolute Maximum Ratings at Ta = 25°C					unit	
Drain-to-Source Voltage	V _{DSS}		:	250	v	
Gate-to-Source Voltage	V _{GSS}		F	: 30	v	
Drain Current(DC)	ID			4	Α	
Drain Current(Pulse)	I _{DP}	$PW \leq 10 \mu s$, duty cycle $\leq 1\%$		16	Α	
Allowable Power Dissipation	PD		1	.75	W	
<i>,</i>		$T_c = 25^{\circ}C$		50	W	
Channel Temperature	Tch			150	°C	
Storage Temperature	Tstg		-55 to $+$	150	°C	
Electrical Characteristics at Ta=	0500			A		
		$L = 1mA$ $V_{max} = 0$	min 250	typ	max	unit V
D-S Breakdown Voltage		$I_{D} = 1 \text{ mA}, V_{GS} = 0$				v
G-S Breakdown Voltage [Zero Gate Voltage		$I_{G} = \pm 100 \mu A, V_{DS} = 0$ $V_{DS} = 250 V, V_{GS} = 0$	±30		100	
Drain Current	I _{DSS}	$V_{\rm DS} = 200 V$, $V_{\rm GS} = 0$			100	μA
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 25 V, V_{DS} = 0$			±10	μA
Cutoff Voltage	V _{GS(off)}	$V_{DS} = 10V, I_D = 1mA$	1.5		2.5	V
Forward Transfer Admittance		$V_{DS} = 10V, I_D = 2A$	2.5	4	2.0	s
Static Drain-to-Source	R _{DS(on)}	$I_{\rm D} = 2A, V_{\rm GS} = 10V$	2.0	0.5	0.7	Ω
on State Resistance	10DS(00)	D = 21x, $C = 20x$		0.0	0.1	40
Input Capacitance	Ciss	$V_{DS} = 20V, f = 1MHz$		600		pГ
Output Capacitance	Coss	$V_{DS} = 20V_{f} = 1MHz$		100		pF
Reverse Transfer Capacitance	Crss	$V_{DS} = 20V_f = 1MHz$		40		pF
Turn-ON Delay Time	t _{d(on)}	See specified Test Circuit.		12		ns
Rise Time	tr	- //		15		ns
Turn-OFF Delay Time	t _{d(off)}	"		65		ns
Fall Time	tr	4		55		ns
Diode Forward Voltage	V _{SD}	$I_S = 4A, V_{GS} = 0$		1.0	1.5	V

Switching Time Test Circuit

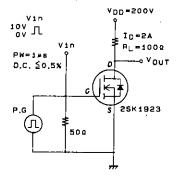


Package Dimensions 2052B (unit:mm)

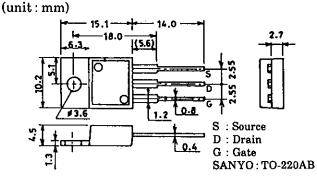


SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

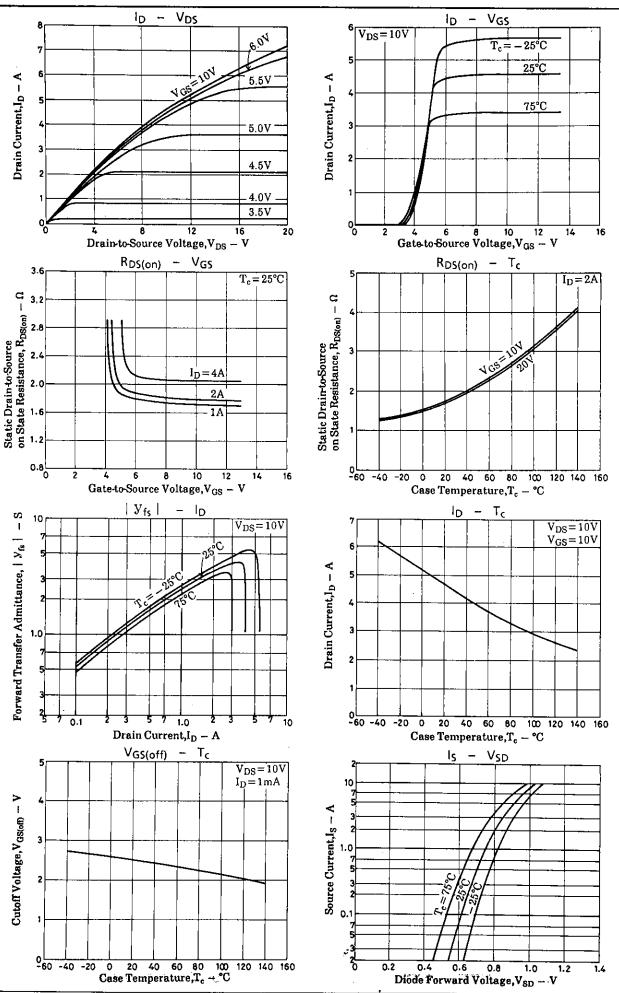


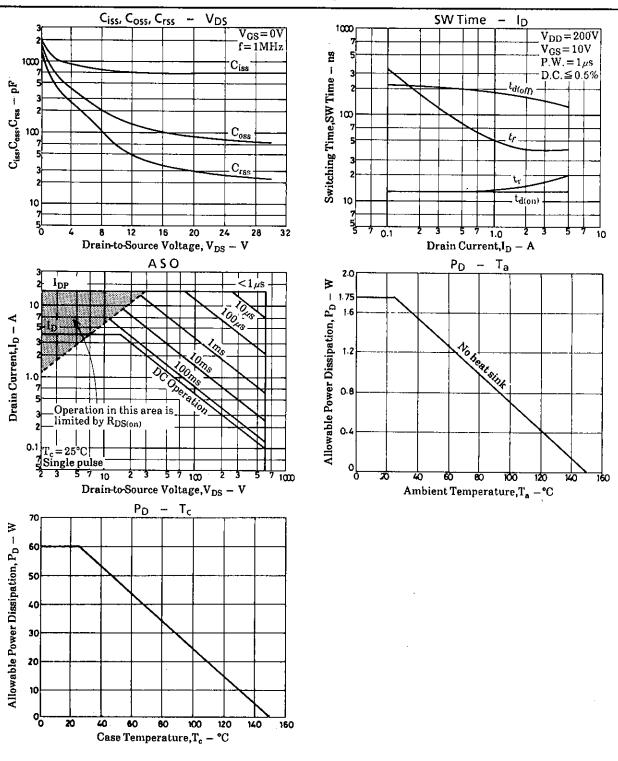
- · Low ON resistance.
- · Very high-speed switching.
- · High-speed diode (trr = 120ns).


Absolute Maximum Ratings at Ta=25°C					unit	
Drain-to-Source Voltage	v_{DSS}			600	v	
Gate-to-Source Voltage	V _{GSS}		5	E 30	v	
Drain Current(DC)	ID			4	Α	
Drain Current(Pulse)	I _{DP}			16	Α	
Allowable Power Dissipation	PD		1	.75	W	
	- 0	$T_c = 25^{\circ}C$		60	W	
Channel Temperature	Tch	v		150	°C	
Storage Temperature	Tstg		– 55 to +	150	°C	
Electrical Characteristics at $Ta = 25^{\circ}C$			min	typ	max	unit
D-S Breakdown Voltage	V _{DSS}	$I_{D} = 10 \text{mA}, V_{GS} = 0$	600	• 1		v
Zero Gate Voltage	IDSS	$\tilde{V}_{DS} = 480 V, \tilde{V}_{GS} = 0$			1.0	mA
Drain Current	200					
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 30 V, V_{DS} = 0$			±100	nA
Cutoff Voltage	V _{GS(off)}	$V_{DS} = 10V, I_D = 1mA$	2.0		3.0	v
Forward Transfer Admittance	y _{fs}	$V_{DS} = 10V, I_D = 2A$	1.8	3.5		S
Static Drain-to-Source	R _{DS(on)}	$I_{D} = 2A, V_{GS} = 10V$		1.8	2.4	Ω
on State Resistance						
Input Capacitance	Ciss	$V_{DS} = 20V, f = 1MHz$		700		pF
Output Capacitance	Coss	$V_{DS} = 20V, f = 1MHz$		9 0		$\mathbf{p}\mathbf{F}$
Reverse Transfer Capacitance	Crss	$V_{DS} = 20V, f = 1MHz$		30		pF
Turn-ON Delay Time	t _{d(on)}	See specified Test Circuit.		13		ns
Rise Time	tr	- 11		15		ns
Turn-OFF Delay Time	t _{d(off)}	11		16 0		ns
Fall Time	t _{f.}	11		40		ns
Diode Forward Voltage	\dot{v}_{sd}	$I_{S} = 4A, V_{GS} = 0$		-	1.5	v
Diode Reverse Recovery Time	trr	$I_{S} = 4A, di/dt = 100A/\mu s$		12 0		ns
(Note) Be careful in handling the 2SK 1923 because it has no protection diode between gate and source						

(Note) Be careful in handling the 2SK1923 because it has no protection diode between gate and source.

Switching Time Test Circuit

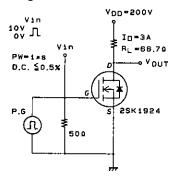



Package Dimensions 2052B

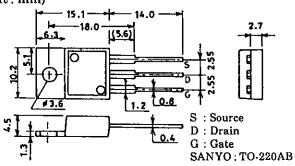
SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

42693TH (KOTO) AX-9260 No.4312-1/3

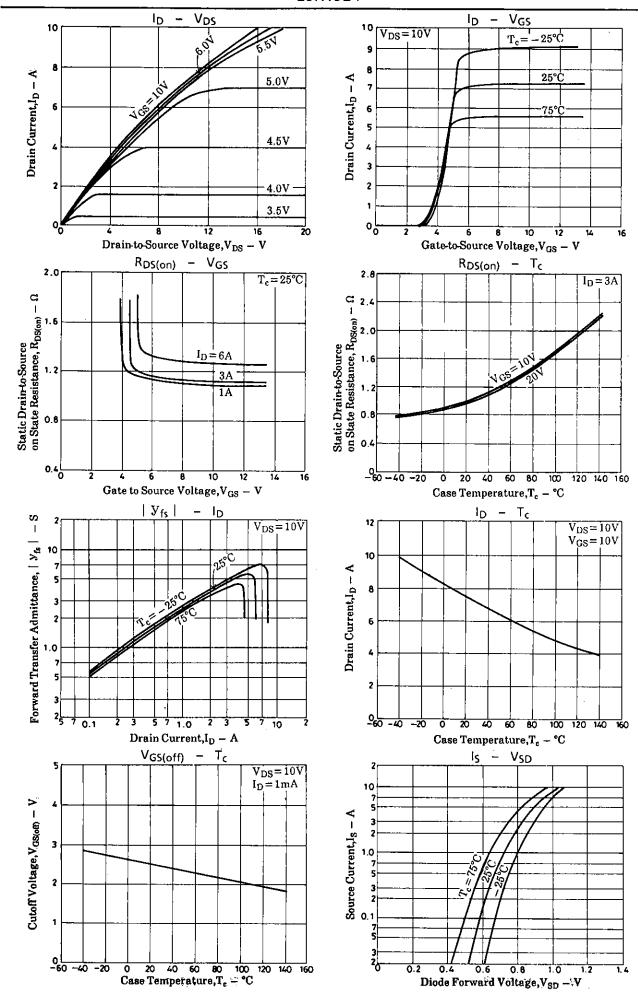
- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:

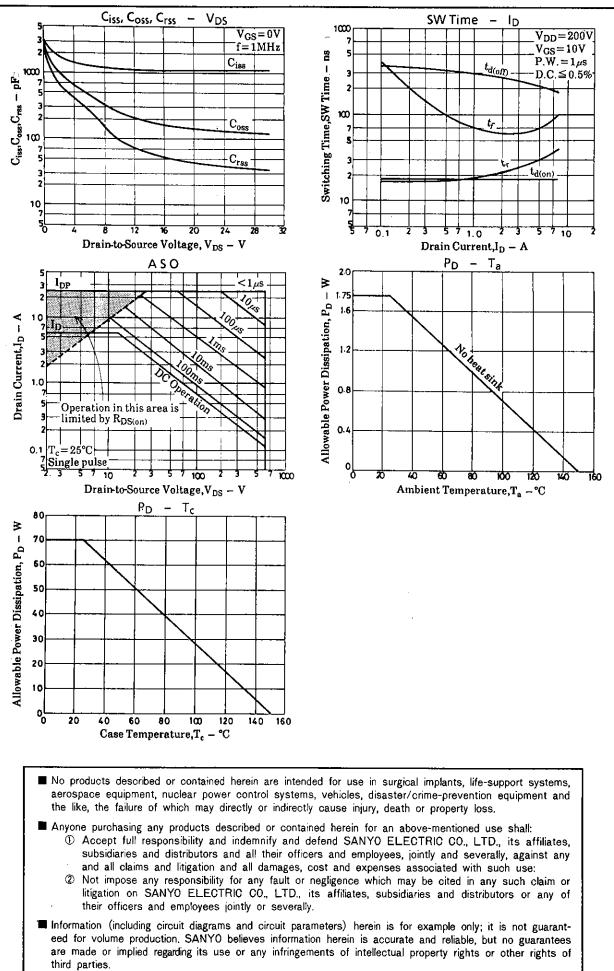

 Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 Not impose any responsibility for any fault or perligence which may be cited in any such claim or
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

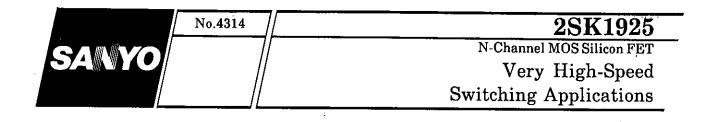
	No.4313	2SK1924
CANYO		N-Channel MOS Silicon FET
SANYO	//	Very High-Speed
	/	Switching Applications


- · Low ON resistance.
- · Very high-speed switching.
- · High-speed diode (trr = 140ns).

Abzoluto Monimum Datingto et D	- 0500				•.		
Absolute Maximum Ratings at Ta					unit		
Drain-to-Source Voltage	V _{DSS}			600	V		
Gate-to-Source Voltage	V _{GSS}		-	±30	V		
Drain Current(DC)	ID			6	A		
Drain Current(Pulse)	I _{DP}			24	A		
Allowable Power Dissipation	P_D			1.75	W		
		$T_c = 25^{\circ}C$		70	W		
Channel Temperature	Tch			150	°C		
Storage Temperature	Tstg		- 55 to +	150	°C		
Electrical Characteristics at Ta =		min	tun	max	unit		
D-S Breakdown Voltage		$I_D = 10 \text{mA}, V_{GS} = 0$	600	typ	max	V	
Zero Gate Voltage		$V_{DS} = 480V, V_{GS} = 0$	000		1.0	•	
Drain Current	I _{DSS}	*DS=480*,*GS=0			1.0	mA	
Gate-to-Source Leakage Current	I	$V_{GS} = \pm 30V, V_{DS} = 0$			+ 100		
Cutoff Voltage	I _{GSS}				± 100	nA	
Forward Transfer Admittance		$V_{DS} = 10V, I_D = 1mA$	2.0		3.0	V	
	y _{fs}	$V_{DS} = 10V, I_D = 3A$	2.3	4.5		S	
Static Drain-to-Source	R _{DS(on)}	$I_D = 3A, V_{GS} = 10V$		1.1	1.5	Ω	
on State Resistance	~					_	
Input Capacitance	Ciss	$V_{DS} = 20V, f = 1MHz$		1100		\mathbf{pF}	
Output Capacitance	Coss	$V_{DS} = 20V, f = 1MHz$		150		pF	
Reverse Transfer Capacitance	C_{rss}	$V_{DS} = 20V, f = 1MHz$		45		pF	
Turn-ON Delay Time	t _{d(on)}	See specified Test Circuit.		18		ns	
Rise Time	t _r	4		25		ns	
Turn-OFF Delay Time	t _{d(off)}	11		240		ns	
Fall Time	t _f	4		60		ns	
Diode Forward Voltage	V _{SD}	$I_S = 6A, V_{GS} = 0$			1.5	v	
Diode Reverse Recovery Time	trr	$I_{\rm S} = 6A, di/dt = 100A/\mu s$		140		ns	
(Note) Be careful in handling the	(Note) Be careful in handling the 2SK1924 because it has no protection diode between gate and source.						

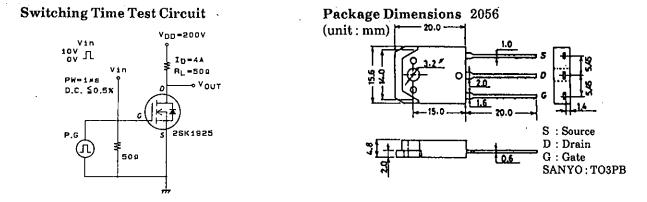

Switching Time Test Circuit

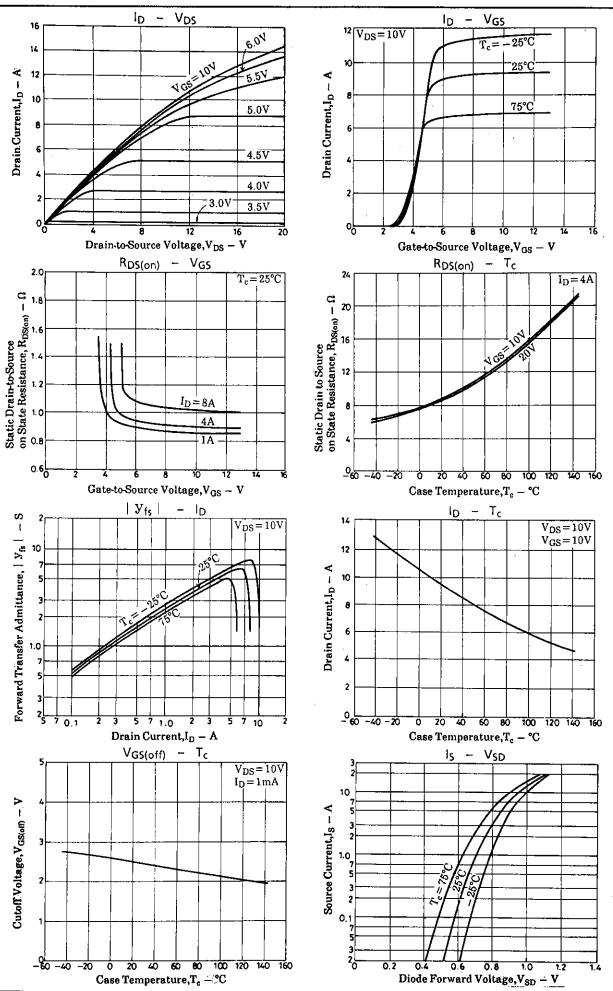

Package Dimensions 2052B (unit:mm)

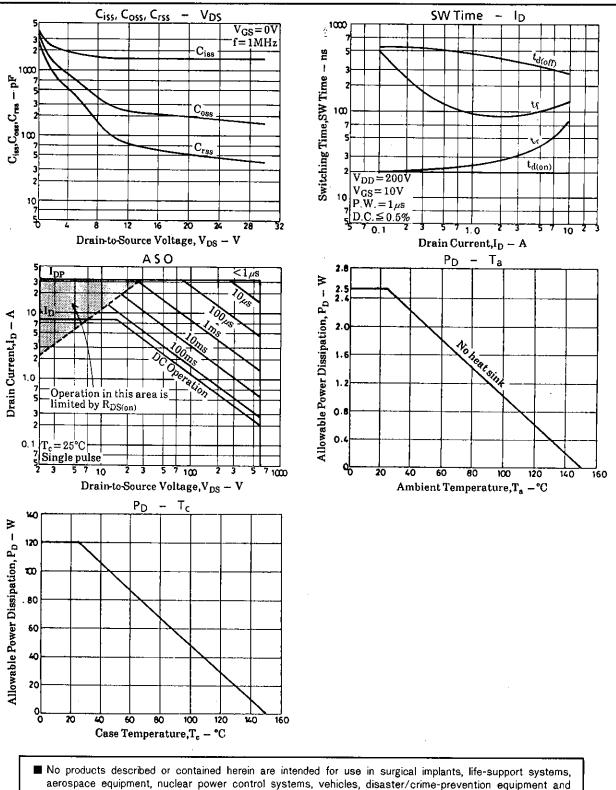


SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

No.4313-2/3




- · Low ON resistance.
- · Very high-speed switching.
- · High-speed diode (trr = 150ns).


Alter laste Manda Dation of D	0590				• 1	
Absolute Maximum Ratings at Ta					unit	
Drain-to-Source Voltage	V _{DSS}			600	V	
Gate-to-Source Voltage	VGSS		-	±30	V	
Drain Current(DC)	ID			8	Α	
Drain Current(Pulse)	I _{DP}			32	Α	
Allowable Power Dissipation	PD			2.5	W	
		$T_c = 25^{\circ}C$		120	W	
Channel Temperature	Tch			150	°C	
Storage Temperature	Tstg		-55 to +	150	°C	
Electrical Characteristics at Ta =	25°C		min	typ	max	unit
D-S Breakdown Voltage	V _{DSS}	$I_{\rm D} = 10 {\rm mA}, V_{\rm GS} = 0$	600	~ J P		V
Zero Gate Voltage	IDSS	$V_{DS} = 480 V, V_{GS} = 0$			1.0	mÅ
Drain Current	-035	-D3 20011.03 0			2.0	
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 30 V, V_{DS} = 0$			± 100	nA
Cutoff Voltage	V _{GS(off)}	$V_{DS} = 10V, I_D = 1mA$	2.0		3.0	v
Forward Transfer Admittance	$ \mathcal{Y}_{fs} $	$V_{DS} = 10V, I_D = 4A$	2.0	5.5	0.0	s
Static Drain-to-Source		$I_{\rm D} = 4A, V_{\rm GS} = 10V$	2.0	0.9	1.2	Ω
on State Resistance	R _{DS(on)}	1D = 4A, VGS = 10V		0.9	1.2	77
•	0	M = 0.0M c = 1MII =		1500		
Input Capacitance	C _{iss}	$V_{DS} = 20V, f = 1MHz$		1500		pF
Output Capacitance	Coss	$V_{DS} = 20V, f = 1MHz$		190		pF
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 20V, f = 1MHz$		50		\mathbf{pF}
Turn-ON Delay Time	t _{d(on)}	See specified Test Circuit.		20		ns
Rise Time	t _r	"		35		ns
Turn-OFF Delay Time	$t_{d(off)}$	11		350		ns
Fall Time	tf	"		100		ns
Diode Forward Voltage	V _{SD}	$I_{S} = 8A, V_{GS} = 0$			1.5	v
Diode Reverse Recovery Time	trr	$I_S = 8A, di/dt = 100A/\mu s$		150		ns
	001210021	-			•	

(Note) Be careful in handling the 2SK1925 because it has no protection diode between gate and source.

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

- the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any
 - and all claims and litigation and all damages, cost and expenses associated with such use: (2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.