

 129

Applying a Model/View/Controller Pattern in J2EE Platform
Using Struts Framework

Niko Ibrahim
Jurusan Sistem Informasi

Fakultas Teknologi Informasi, Universitas Kristen Maranatha
Jl. Prof. Drg. Suria Sumantri No. 65 Bandung 40164

Email: niko.ibrahim@gmail.com

Abstrak

Pola desain Model/View/Controller (MVC), yang juga dikenal dengan
Model-2 pada pemrograman J2EE, adalah pola desain yang telah mapan
dalam dunia pemrograman. Pola ini telah diterapkan sebagai pemodelan
yang sanggup memisahkan berbagai komponen dalam suatu aplikasi. Dalam
pemrograman Web, pola desain MVC ini dapat membantu para pemrogram
untuk mengkontrol perubahan pada aplikasi yang dibuatnya. Hal ini
disebabkan karakteristik pola desain MVC yang sanggup memisahkan
antarmuka dari logika program (business rule) serta dari data (database)
yang digunakan. Pada studi literatur ini akan dibahas dasar-dasar dari MVC
dan penerapannya dalam mengembangkan aplikasi Web berbasis Java.
Pola desain MVC yang dibahas disini adalah yang berbasis open source yang
dikenal dengan nama Struts framework.

Kata kunci: Model/view/controller, Open source, Struts framework

1. Introduction
The Internet has revolutionized our business by providing an information
highway, which acts as a new form of communication backbone [Nag03].
This new information medium has shifted business from the traditional
infrastructures to a virtual world where they can serve customers anytime
and anywhere. Additionally, it enhances our organizations with significant
benefits in terms of business productivity, cost savings, and customer
satisfaction. As a result, modern organizations are required to re-evaluate
their business models and plan on a business vision to interact with their
stakeholders using an Internet-based technology space.

With respect to Internet-based technology, modern organizations need to
develop their web-based business applications which have a set of
fundamental elements [Bro03]: business objects, process-oriented or
service-based objects, and user interaction components. For example, in
banking industry, businesses deal with different entities all of the time.
These range from higher-level entities such as a customer to lower levels

Jurnal Sistem Informasi Vol. 1 No. 2 September 2006 : 129-147

130

such as deposit and withdrawal. These entities share a number of common
characteristics:

• Behaviors
• Properties
• Relationships with other entities
• Rules or policies

Those business entities are of course the foundation of object-oriented
design and development which undoubtedly is a key aspect in any J2EE
application development.

2. Application Design Using MVC Pattern
Much discussion and confusion have been relayed in the literature about
what best approaches in developing complex business web applications.
Any business applications will need to incorporate three primary elements
[Bro03]:

• User interaction
• Business Process
• Business Entities

The structure and relationship of these elements is shown in Figure 1.

Figure 1: The Structure of a Business Application

Referred to a current research in IBM [Tai04], as web application grow in
size, it becomes more and more critical to support modular application
design and parallel development. It also needs to support the integration
of various kinds of programming technologies.

Applying a Model/View/Controller Pattern in J2EE Platform
Using Struts Framework

(Niko Ibrahim)

131

2.1. The Model/View/Controller Architectural Pattern
Model/View/Controller architectural design is projected to help developers
modularise an application. The benefit of using the MVC pattern is that
developers isolate the different portions of the application in order to
provide greater flexibility and more opportunity for reuse. A primary
isolation point is between the presentation objects and the application
back-end objects that manage the data and business rules. This allows a
user interface to have many different screens that can be changed to a
large degree without impacting the business logic and data components
[Bro03][Tai04][Lef01].

Figure 2 shows how the Model, the View, and the Controller interact with
one another in J2EE platform:

Figure 2: MVC architecture for Java applications

Some of the major benefits of using the MVC are [Goo04]:

• Reliability: The presentation and transaction layers have clear
separation, which allows we to change the look and feel of an
application without recompiling Model or Controller code.

• High reuse and adaptability: The MVC lets we use multiple types of
views, all accessing the same server-side code. This includes
anything from Web browsers (HTTP) to wireless browsers (WAP).

• Very low development and lifecycle costs: The MVC makes it
possible to have lower-level programmers develop and maintain the
user interfaces.

• Rapid deployment: Development time can be significantly reduced,
because Controller programmers (Java developers) focus solely on
transactions, and View programmers (HTML and JSP developers)
focus solely on presentation.

B
R
O
W
S
E
R

Controller

View

Model

Application Server

Jurnal Sistem Informasi Vol. 1 No. 2 September 2006 : 129-147

132

• Maintainability: The separation of presentation and business logic
also makes it easier to maintain and modify a Struts-based Web
application.

The Model
The model encapsulates the functional core of an application, its business
logic. The goal of MVC is to make the model independent of the view and
controller which together form the user interface of the application. An
object may act as the model for more than one MVC triad at a time.

Since the model must be independent, it cannot refer to either the view or
controller portions of the application. The model may not hold direct
instance variables that refer to the view or the controller. It passively
supplies its services and data to the other layers of the application [Tai04].

The View
The view obtains data from the model and presents it to the user and
represents the output of the application. It generally has free access to the
model, but should not change the state of the model. Views are read only
representations of the state of the model and read data from the model
using query methods provided by the model

The Controller
The controller component isolates how a user’s actions on the screen are
handled by the application. This allows for an application design to flexibly
handle things such as page navigation and access to the functionality
provided by the application model in the case of form submissions. This
also provides an isolation point between the model and the view. Because
the controller component handles the user requests and invokes functions
on the model as necessary, it allows for a more loosely coupled front and
back end. Interaction between the model and the view is only through an
event-based mechanism that informs the view of changes to the model’s
data [Bro03].

3. J2EE Platform
The J2EE platform specifies technologies to support multitier enterprise
applications. These technologies fall into three categories: component,
service, and communication. The component technologies are those used
by developers to create the essential parts of the enterprise application,
namely the user interface and the business logic. The component
technologies allow the development of modules that can be reused by
multiple enterprise applications. The component technologies are
supported by J2EE platform’s system-level services. These system-level
services simplify application programming and allow components to be
customized to use resources available in the environment in which they are
deployed [Sin02].

Applying a Model/View/Controller Pattern in J2EE Platform
Using Struts Framework

(Niko Ibrahim)

133

Since most enterprise applications require access to existing enterprise
information systems, the J2EE platform supports APIs that provide access
to databases, enterprise information systems such as SAP and CICS, and
services such as transaction, naming and directory, and asynchronous
communication. Finally, the J2EE platform provides technologies that
enable communication between clients and servers and between
collaborating objects hosted by different servers.

Figure 3 shows the basic architecture of J2EE platform:

Figure 3: Basic J2EE Architecture

3.1. The Client Tier
From a developer’s point of view, a J2EE application can support many
types of clients. J2EE clients can run on laptops, desktops, palmtops, and
cell phones. They can connect from within an enterprise’s intranet or
across the World Wide Web, through a wired network or a wireless network
or a combination of both. They can range from something thin, browser-
based and largely server-dependent to something rich, programmable, and
largely self-sufficient.

From a user’s point of view, the client is the application. It must be useful,
usable, and responsive. Because the user places high expectations on the
client, we must choose our client strategy carefully, making sure to

Jurnal Sistem Informasi Vol. 1 No. 2 September 2006 : 129-147

134

consider both technical forces (such as the network) and non-technical
forces (such as the nature of the application) [Bro03].

3.2. The Web Container
A typical Java Web application consists of a collection of JavaServlets and
JSPs that run inside a J2EE server’s Web container. The container manages
each component’s lifecycle, dispatches service requests to application
components, and provides standard interfaces to context data such as
session state and information about the current request. [Bro03].
JavaServlets and JSPs are deployed in the Web container and typically
performs the following functions in a J2EE application:

• Web-enables business logic - they manage interaction between Web
clients and application business logic.

• Generates dynamic content - they generate content dynamically, in
entirely arbitrary data formats, including HTML, images, sound, and
video.

• Presents data and collects input - they translate HTTP PUT and GET
actions into a form that the business logic understands and present
results as Web content.

• Controls screen flow - The logic that determines which “screen”
(that is, which page) to display next usually resides in these
components, because screen flow tends to be specific to client
capabilities.

• Maintains state - they have a simple, flexible mechanism for
accumulating data for transactions and for interaction context over
the lifetime of a user session.

• Supports multiple and future client types - Extensible MIME types
describe Web content, so a Web client can support any current and
future type of downloadable content.

• May implement business logic - While many enterprise applications
implement business logic in enterprise beans, Web-only, low- to
medium-volume applications with simple transactional.

Java Servlets
A Java Servlet is a Java class that extends a J2EE-compatible Web server.
Each servlet class produces dynamic content in response to service
requests to one or more URLs.
Servlets offer some important benefits over earlier dynamic content
generation technologies. Servlets are compiled Java classes, so they are
generally faster than CGI programs or server-side scripts. Servlets are safer
than extension libraries, because the Java Virtual Machine (JVM) can
recover from a servlet that exits unexpectedly. Servlets are portable both
at the source-code level (because of the Java Servlet specification) and at
the binary level (because of the innate portability of Java bytecode).
Servlets also provide a richer set of standard services than any other
widely adopted server extension technology.

Applying a Model/View/Controller Pattern in J2EE Platform
Using Struts Framework

(Niko Ibrahim)

135

Figure 4 shows a Java Servlets that prints “Hello World” in a browser.

 Figure 4: A “Hello World” Java Servlet

JavaServer Pages (JSP)
Most Web applications produce primarily dynamic HTML pages that, when
served, change only in data values and not in basic structure. For example,
all of the catalog pages in an online store may have identical structure and
differ only in the items they display. JSP technology exists for producing
such content [Rod03][Bro03].
A JSP page is a document containing fixed template text, plus special
markup for including other text or executing embedded logic. The fixed
template text is always served to the requester just as it appears in the
page, like traditional HTML. The special markup can take one of three
forms: directives, scripting elements, or custom tags (also known as
“custom actions”) [Sin02].

Figure 5 shows a JSP page that prints a “Hello World in a browser:

 Figure 5: A “Hello World” JSP
The first time the JSP file is requested, it is translated into a servlet and
then compiled into an object that is loaded into resident memory. The
generated servlet then services the request, and the output is sent back to
the requesting client. On all subsequent requests, the server checks to see
whether the original JSP source file has changed. If it has not changed, the

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HelloWorld extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

 {
PrintWriter out = response.getWriter();
out.println("Hello World");

}
}

<html>
<hody>
<p>

<%= "Hello, world!" %>
</p>
</body>

</html>

Jurnal Sistem Informasi Vol. 1 No. 2 September 2006 : 129-147

136

server invokes the previously compiled servlet object. If the source has
changed, the JSP engine re-parses the JSP source. The steps are as follow
(Figure 5):
1) Client requests a JSP page
2) The JSP Engine compiles the JSP into a Servlet
3) The generated servlet is compiled and loaded
4) The compiled servlet services the request and sends a response back to

the client

 Figure 6: The execution of a Java servlet

4. Development Frameworks
Frameworks, like many things, are often born out of necessity. In the
process of creating multiple applications, developers discover that there
are some areas of functionality that are common. These areas are then
abstracted and generalized to form the features of the framework.
Frameworks provide benefit at many different levels of application
development [Sin02][Goo04]:

• Structure: frameworks provide a structure for application
development - a backbone to build from, making the development
process a little easier. They ensure that our project includes all of
the key elements such as security, database access, UI, and so forth
by providing an outline into which the details of our particular
application are filled.

• Services: a framework provides a wide array of services to its
applications, for use in both the development and deployment
phases. These services very often begin with either a component
container, or access to a component container provided by the
application server.

• Completeness: using a framework can expand the horizons slightly:
if adding some of the "nice to have" functionality does not cost any

Web Server

 2

 3

Web
Browser

JSP Page

Generated Servlet

Compiled Servlet

1

4

Request

Response

Applying a Model/View/Controller Pattern in J2EE Platform
Using Struts Framework

(Niko Ibrahim)

137

additional time, we can end up with a richer, more complete
application that is comparatively more polished than it could have
been without the framework.

An application framework is difficult to create. It is difficult, not so much
because the code is difficult to write, or that there is a large amount of
code. Indeed, many enterprise applications have several times more code
than the frameworks that helped create them. The code of a framework is
often complex; however, proper design helps to make it understandable.
This complexity, though, is not the reason for frameworks being so difficult
to create. The difficulty lies in obtaining the experience that is distilled
into them. Frameworks evolve from the effort to reuse both design and
code, and from repeated refactoring that results in widely applicable
services and components. This is what is difficult about their creation.
Because frameworks tend to be large and fairly complex pieces of
software, they are often not a cost-effective project for a single
organization. It is also a good thing when a particular framework is used in
many projects - it grows, it becomes a de facto standard to a degree, and
the organizations using it get the benefits. All of these factors mean that
frameworks are good candidates for open-source projects, and indeed
many of the best frameworks are open source.

4.1. Overview of Struts Frameworks
The most widely adopted MVC framework is the open source Apache Struts
(http://jakarta.apache.org/struts/). Struts was originally written by Craig
McClanahan, the main developer of the Tomcat servlet engine, and was
released in mid 2000, making it the longest-established open source web
application framework. Partly because of its relatively long history, Struts
has achieved remarkable buy-in by developers, with many add-ons now
available around it [Goo04].
Struts provides key capabilities to the developer for building virtually any
Web application - especially those that make use of JSP pages as their user
interface technology. Struts can, however, interact with many other
presentation technologies that include XML/XSLT [Nas03].
The primary elements of Struts are [Bro03]:

• A controller ActionServlet that delegates specific request handling
to Action classes

• An extensive JSP custom tag library
• A library of utility classes to support Web application development

Jurnal Sistem Informasi Vol. 1 No. 2 September 2006 : 129-147

138

The basic Struts architecture is shown in Figure 6:

Figure 6: The basic Struts architecture

In figure 6, we can see that the Struts controller layer has a component
called Actions. Action is essentially a Java class that is responsible for
examining information from the request, performing some operation,
optionally populating data that will later be used by the view layer, and
then communicating to the ActionServlet where control should be
forwarded next.

4.2. Benefits and Issues of Struts Framework
Struts addresses a gap in the J2EE technological stack not covered by
Servlet/JSP or EJB. Struts should be one of the top choices when we are
considering the adoption of an MVC framework due to its numerous
benefits. However, despite of the benefits of Struts, we should also
consider some issues of using it [Rod03].
The following are some benefits of using Struts:

• Use of JSP tag mechanism
The tag feature promotes reusable code and abstracts Java code
from the JSP file. This feature allows nice integration into JSP-
based development tools that allow authoring with tags.

• Tag library
Struts provides developers with an extensive range of tag library.

• Open source
We have all the advantages of open source, such as being able to
see the code and having everyone else using the library reviewing
the code. Many eyes make for great code review.

• Manage the problem space
Divide and conquer is a nice way of solving the problem and making
the problem manageable.

Controller

Client
Browser

Servlet
ActionServlet

Business
Logic

Model
Application

View
JSP

Event

HTTP
Request

Dispatch

Forward

Update

HTTP
Response

Get

<tag>

struts-config.xml
Access

Applying a Model/View/Controller Pattern in J2EE Platform
Using Struts Framework

(Niko Ibrahim)

139

The following are some issues of using Struts that might be considered by
developers:

• Limited scope
Struts is a Web-based MVC solution that is meant be implemented
with HTML, JSP files, and servlets. Developers must be expert in
J2EE platform if they intended to use Struts in their development
phases.

• Complexity
Separating the problem into parts introduces complexity. There is
no question that some education will have to go on to understand
Struts. With the constant changes occurring, this can be frustrating
at times.

4.3. Example of Struts Application: Login
The purpose of the login application is to give a look at the basic of a
Struts application. To help us stay on track, this application contains only
the components needed to demonstrate the framework. It contains no real
business logic, unit tests, or complex forms.
Basically, the application has two screens: welcome and login page (Figure
7).

 Figure 7: Welcome and Login Page

The application also has a built-in validation mechanism that check an
empy input. Finally, right after the users logged in, they will be redirected
to the Welcome page (Figure 8).

Jurnal Sistem Informasi Vol. 1 No. 2 September 2006 : 129-147

140

Figure 8: Login Page (validation) and Redirected Welcome Page

We put all the source code in the appendix A for space-saving purposes.
We also draw the UML diagram for the login process in the appendix B.
The source code for the example application may also be obtained from
the author.

Conclusions and Suggestions
We have discussed that J2EE is used for developing, deploying, and
executing applications in a distributed environment. The J2EE application
server acts as a platform for implementing various server-side technologies
such as servlets, Java Server Pages (JSP), and Enterprise JavaBeans. J2EE
allows us to focus on business logic in your programs. The business logic is
coded in Enterprise JavaBeans, which are reusable components that can be
accessed by client programs.
Moreover, we also talked about Struts which solved some problems using
tags and Model/View/Controller architecture pattern. This approach aided
in code re-usability and flexibility. By separating the problem into smaller
components, we will be more likely to reuse when changes do occur in the
technology or problem space. Additionally, Struts enabled page designers
and Java developers to focus on what they do best. Yet, the trade off in
increased robustness implies an increase in complexity. Struts is much
more complex than a simple single JSP page, but for larger systems Struts
actually helps manage the complexity.
As final words, we suggest that we may have a look at other framework
technologies available in the market. Struts is not the only framework that
we can use for developing Java Web applications. Recently, Sun
Microsystems released a new approach for developing Web applications
namely JavaServer Faces (JSF). JSF has learnt a lot from Struts although it
has not considerably matured yet.

Applying a Model/View/Controller Pattern in J2EE Platform
Using Struts Framework

(Niko Ibrahim)

141

Bibliography
Broemmer, D. (2003). J2EE Best Practices - Java Design Patterns,

Automation, and Performance. Canada : Wiley Publishing, Inc.

Goodwill, J., & Hightower, R. (2004). Professional Jakarta Struts. Canada :

Wiley Publishing, Inc.

Leff, A., & Rayfield, J.T. (2001). Web-Application Development Using the

Model/View/Controller Design Pattern. Proc. IEEE International
Enterprise Distributed Object Computing Conference, Seattle, USA,
11:118-127, IEEE.

Nagappan, R., Skoczylas, R. & Sriganesh, R.P. (2003). Developing Java Web

Services. Canada : Wiley Publishing, Inc.

Nash, M. (2003). Java Frameworks and Components - Accelerate Your Web

Application Development. United Kingdom : Cambridge University
Press.

Rod, J. (2003). Expert One-on-One J2EE Design and Development. USA :

Wiley Publishing, Inc.

Singh, I., Stearns, B., & Johnson, M. (2002). Designing Enterprise

Applications with the J2EETM Platform, 2nd Edition. USA : Sun
Microsystems, Inc.

Tai, H., Mitsui, K., Nerome, T., Abe, M, Ono, K. & Hori, M. (2004). Model-

driven development of large- scale Web applications. IBM Journal of
Research and Development 48(5): 797-809.

Jurnal Sistem Informasi Vol. 1 No. 2 September 2006 : 129-147

142

Appendix A

The purpose of our login application is to give a look at the basic of a
Struts application. To help us stay on track, this application contains only
the components needed to demonstrate the framework. It contains no real
business logic, unit tests, or complex forms.

1. The Welcome Screen
The first time we visit the welcome screen, there will be only one link,
which reads, “Sign in” (Figure A-1)

Figure A-1: Welcome Screen
The following is the JSP source code for the welcome screen:

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<HTML><HEAD><TITLE>Welcome World!!</TITLE><html:base/>
</HEAD><BODY>
<logic:present name="user">
<H3>Welcome <bean:write name="user" property="username"/>!</H3>
</logic:present>
<logic:notPresent scope="session" name="user">
<H3>Welcome World!</H3>
</logic:notPresent>
<html:errors/>

<html:link forward="logon">Sign in</html:link>
<logic:present name="user">
<html:link forward="logoff">Sign out</html:link>
</logic:present>

</BODY></HTML>

Applying a Model/View/Controller Pattern in J2EE Platform
Using Struts Framework

(Niko Ibrahim)

143

2. Login Screen

The logon screen submits the username and password, as you can see in
figure A-2.
When we submit the form without entering anything, the login screen
returns but with a message, like the one shown in the figure A-3.

Figure A-2: Login Screen

Figure A-3: Login Screen with Validation Messages
The following is the JSP source code for the Login Screen:

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<HTML><HEAD><TITLE>Sign in, Please!</TITLE></HEAD><BODY>
<html:errors/>
<html:form action="/LogonSubmit" focus="username">
<TABLE border="0" width="100%">
<TR><TH align="right">Username:</TH>
<TD align="left"><html:text property="username"/></TD></TR>
<TR><TH align="right">Password:</TH>
<TD align="left"><html:password property="password"/></TD></TR>
<TR><TD align="right"><html:submit/></TD>
<TD align="left"><html:reset/></TD></TR>
</TABLE></html:form></BODY></HTML>

Jurnal Sistem Informasi Vol. 1 No. 2 September 2006 : 129-147

144

3. The Login Form Source

When an HTML form is submitted, the name-value couplets are caught by
the Struts controller and applied to an ActionForm. The ActionForm is a
JavaBean with properties that correspond to the controls on an HTML
form. Struts compares the names of the ActionForm properties with the
names of the incoming couplets. When they match, the controller sets the
property to the value of the corresponding couplet. Extra properties are
ignored. Missing properties retain their default value (usually null or false).
Here are the public properties from our LogonForm:

private String password = null;
public String getPassword() {

return (this.password);
}

public void setPassword(String password) {

this.password = password;
}

private String username = null;
public String getUsername() {

return (this.username);
}

public void setUsername(String username) {

this.username = username;
}

4. Validation Source

Here is the validate method from our LogonForm. It checks that both fields
have something entered into them.

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {
 ActionErrors errors = new ActionErrors();
 if ((username == null) || (username.length() < 1))

errors.add ("username",new
ActionError("error.username.required"));

 if ((password == null) || (password.length() < 1))
 errors.add("password", new
ActionError("error.password.required"));
 return errors;
}

Applying a Model/View/Controller Pattern in J2EE Platform
Using Struts Framework

(Niko Ibrahim)

145

5. LoginAction Source (LoginAction.java)

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionServlet;
public final class LogonAction extends Action {
// Validate credentials with business tier
public boolean isUserLogon (String username, String password) throws
UserDirectoryException {
return (UserDirectory.getInstance().isValidPassword(username,password));
} // end isUserLogon
public ActionForward perform(ActionMapping mapping,ActionForm
form,HttpServletRequest request,HttpServletResponse response) throws
IOException, ServletException {
// Obtain username and password from web tier

String username = ((LogonForm) form).getUsername();
String password = ((LogonForm) form).getPassword();

// Validate credentials
boolean validated = false;
try { validated = isUserLogon(username,password);
}
catch (UserDirectoryException ude) {// couldn't connect to user directory

ActionErrors errors = new ActionErrors();
errors.add(ActionErrors.GLOBAL_ERROR,new
ActionError("error.logon.connect"));
saveErrors(request,errors);

// return to input page
return (new ActionForward (mapping.getInput()));
}
// Save our logged-in user in the session, because we use it again later.
 HttpSession session = request.getSession();
 session.setAttribute(Constants.USER_KEY, form);
// Log this event, if appropriate
 if (servlet.getDebug() >= Constants.DEBUG) {

StringBuffer message = new StringBuffer("LogonAction: User '");
message.append(username);
message.append("' logged on in session ");
message.append(session.getId());
servlet.log(message.toString);

}
// Return success

return (mapping.findForward (Constants.WELCOME));
} // end perform
} // end LogonAction

Jurnal Sistem Informasi Vol. 1 No. 2 September 2006 : 129-147

146

6. Welcome Screen After Users Logged In

After a successful login, the welcome screen displays again, but with an
added ‘Sign Out’ link (Figure A-4).

Figure A-4: Welcome Screen Revisited
The folloging is the LogoffAction.java source code:

public ActionForward perform(ActionMapping mapping,ActionForm
form,HttpServletRequest request,HttpServletResponse response)
throws IOException, ServletException {
// Extract attributes we will need
 HttpSession session = request.getSession();
 LogonForm user = (LogonForm)
 session.getAttribute(Constants.USER_KEY);
// Log this user off
 if (user != null) {
 if (servlet.getDebug() >= Constants.DEBUG) {

StringBuffer message = new StringBuffer("LogoffAction: User
'");

message.append(user.getUsername());
message.append("' logged off in session ");
message.append(session.getId());
servlet.log(message.toString());

}}
 else {
 if (servlet.getDebug() >= Constants.DEBUG) {

StringBuffer message = new StringBuffer("LogoffAction: User
'");

message.append(session.getId());
servlet.log(message.toString());

}} // Remove user login
 session.removeAttribute(Constants.USER_KEY);
// Return success
 return (mapping.findForward (Constants.SUCCESS));
}} // end LogoffAction

- end of appendix -

147

Appendix B – The UML Diagram for the Login Process

1.3.5: forward

1.3.4: setPassword(pasword): void

1.3.3: setUsername(username): void

1.3.2: getPassword(): password

1.3.1: getUsername(): username

ActionServlet loginAction Welcome Page loginForm

Client accessing the
login page

browser Struts Controller Struts ActionForm Struts View

1: submit

1.1: processLoginForm():loginForm // populate loginForm

1.2: validate(): ActionErrors

1.3.: createAction

2: getProperties

147

