
An Overview of Agile Software Development Methodology
and Its Relevance to Software Engineering

Niko Ibrahim
Jurusan Sistem Informasi

Fakultas Teknologi Informasi, Universitas Kristen Maranatha
Jl. Prof. Drg. Suria Sumantri No. 65 Bandung 40164

Email: niko.ibrahim@eng.maranatha.edu

Abstract
Agile Software Development Methodology mungkin kurang dikenal dan
jarang digunakan di lingkungan akademik. Namun pada prakteknya,
metodologi ini sangatlah umum digunakan oleh para praktisi pengembang
perangkat lunak. Jurnal ini ditulis untuk memberikan pandangan sekilas
mengenai metodologi agile serta relevansinya di dalam setiap tahapan
rekayasa perangkat lunak secara umum.

Keywords: Agile Methodology, Software Engineering

Introduction
Agile software development approaches have become more and more
popular during the last few years. Agile practices have been developed
with the intention to deliver software faster and to ensure that the
software meets changing needs of customers. Some people say that agile
software development is the “modern” replacement of the waterfall model
(Larman, C. & Basili, V.R. ,2003).

The problem with traditional plan-driven software development
methodologies (e.g. waterfall) are they are too mechanistic to be used in
detail. As a result, industrial software developers have become sceptical
about new solutions that are difficult to grasp and thus remain unused
(Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J., 2002).

There are many methods classified as agile software development:

• Adaptive Software Development,
• Agile Modelling,
• Crystal,
• Dynamic System Development Methodology,
• Feature Driven Development,
• SCRUM and
• Extreme Programming (XP)

(http://www.extremeprogramming.org).

69

mailto:niko.ibrahim@eng.maranatha.edu
http://www.extremeprogramming.org/

Jurnal Sistem Informasi Vol. 2 No. 1 Maret 2007 : 69-80

Different authors emphasised different aspects of software development.
Some focused on approaches to planning and requirements; some focused
on ways to write software that could be changed more easily; and some
focused on the people interactions that allow software developers to more
easily adapt to their customers' changing needs. These various efforts
created a focal point for a community that promoted the set of practices
that succeed without many of the activities required by more defined
methodologies.

Overview of Agile Software Development
Refer to Addison-Wesley Longman dictionary, the term “Agile” means able
to move quickly and easily. Thus, “Agility” for a software development
organization, means the ability to adapt and react quick and effectively
and appropriately to changes in its environment and to demands imposed
by this environment (Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta,
J., 2002).

In the fall of 1999, Extreme Programming, Embrace Change1 was published
and the trend had found its catalyst. In early 2001, the different
innovators who were creating different agile methodologies held a retreat
and scribed the "Agile Manifesto for Software Development." (Lowell, L. &
Ron, J., 2004)

This manifesto emphasises the development on following things
(http://www.agilealliance.org):

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

They declared the 12 principles of Agile Software Development as
illustrated in figure 1.

 70

An overview of Agile Software Development Methodology
and Its Relevance to Software Engineering

(Niko Ibrahim)

Figure 1. Twelve principles of Agile Software Development

Motivation
Agile or lightweight development methodologies are a solution attempt to
challenge the difficulty and failure faced by the traditional / heavyweight
/ plan-oriented methodologies. With the characteristics of agile
development methodologies (described later in section 2.2), developers
are trying to develop softwares quickly without compromise the
requirement as well as the quality of it.

In the heavyweight environment, developers have the challenge to bring a
seemingly infinite backlog of software projects, while keeping side by side
of the latest advances. Survey after survey continues to prove that most
software projects fail against some measure of success. Software are
delivered late, over budget and do not meet the quality requirement.
Furthermore, it is also difficult to research the causes of these failures.
However, typically, projects fail for one or more of the following reasons
(Lowell, L. & Ron, J., 2004):

• Requirements that are not clearly communicated
• Requirements that do not solve the business problem
• Requirements that change prior to the completion of the project
• Software (code) that has not been tested
• Software that has not been tested as the user will use it
• Software developed such that it is difficult to modify

 71

Jurnal Sistem Informasi Vol. 2 No. 1 Maret 2007 : 69-80

• Software that is used for functions for which it was not intended
• Projects not staffed with the resources required in the project plan
• Schedule and scope commitments are made prior to fully

understanding the requirements or the technical risks

At the same time, numerous projects were very successful that did not
follow methods with binders of documents, detailed designs, and project
plans. Many experienced programmers were having great success without
all these extra steps. The determining factor of project success seemed
more and more to be the people on the project, not the technology or the
methods that were being used. These become a motivation for
developers to leave the heavyweight methodologies and to start
developing software with agile methodologies.

Characteristics
Some of the common characteristics of agile development methodologies
are:

Lightweight
Agile methods are easier to use than traditional (heavyweight) methods
because they include fewer instructions when analysing, designing, or
implementing the software requirements (Aksit, M., Mezini, M., & Unland,
R., 2002, p. 412–430).

Adaptive
Heavyweight methodologies for software estimation and project planning
work well if the requirements are clearly identified and they don't change.
However, in most projects, the requirements do change during their
lifetime, and therefore, developers need methodologies that can adapt
well to the changing requirements. Agile methods permit a fast response
to requirement changes since changes are considered as the rule, not the
exception.

Iterative / incremental
In agile development, developers only need short project cycles. An
executable system is not built near to the end of a project. Instead, it is
built very early and delivered to the customer to be validated.

Cooperative
Agile development is cooperative since customers and developers working
constantly together with close communication. The customer is assumed to
be present at the development site and is involved in the development
process.

 72

An overview of Agile Software Development Methodology
and Its Relevance to Software Engineering

(Niko Ibrahim)

Straightforward
The method itself is easy to learn and to modify, and also well
documented. The website www.agilealliance.org provides a very good
introduction and documentation on agile software development.

People-oriented
Agile development methodologies truly give power to the developers. The
developers make all the technical decisions, they make estimations for
work to be done, they sign up for tasks for iteration, and they choose how
much process to follow in a project. So, it is people-oriented rather than
process-oriented.

Despite those above characteristics, plan-oriented and agile methods are
actually not strictly rivals. Both have their range of application or ‘home
ground’. They are used in projects with different characteristics
(Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J., 2002):

• Plan-oriented methods in large projects with stable requirements in
a critical application domain

• Agile methods in dynamic environments and in small teams
producing rather non critical applications

The following is a table describing the range of application (home ground)
of agile methods and plan-driven methods:

Table 1. Home ground for agile and plan driven methods

Home-

ground area Agile methods Plan-driven methods

Developers Agile, knowledgeable,
collocated, and collaborative

Plan-oriented, adequate
skills, access to external
knowledge

Customers

Dedicated, knowledgeable,
collocated, collaborative,
representative, and
empowered

Access to knowledgeable,
collaborative,
representative, and
empowered customers.

Requirements Largely emergent, rapid
change

Knowable early, largely
stable

Architecture Designed for current
requirements

Designed for current and
foreseeable requirements

Refactoring Inexpensive Expensive
Size Smaller teams and products Larger teams and products
Primarily
objective Rapid value High assurance

 73

Jurnal Sistem Informasi Vol. 2 No. 1 Maret 2007 : 69-80

Figure 2 (Cockburn, A., 2002), shows one particular aspect of these
differences. In this figure, the two diminishing curves show the potential
damage to a project from not investing enough time and effort in planning.
The two rising curves show the potential damage to the project from
spending too much time and effort in planning.

Figure 2. Balancing Discipline and Flexibility with the Spiral Model
and MBASE

The lines crossing on the left indicate a project for which potential
damage is relatively low with under-planning, and relatively high with
over-planning. Much commercial software, including Web services fall into
this category. The lines crossing on the right indicate a project for which
potential damage is relatively high with under-planning, and for which
much more planning would have to be done before damage would accrue
from delays due to planning. Safety-critical software projects fall into this
category.

The curves should make it clear that when there is risk associated with
taking a slow, deliberate approach to planning, then agile techniques are
more appropriate. When there is risk associated with skipping planning or
making mistakes with the plan, then a plan-driven approach is more
appropriate. The curves illustrate clearly the home territory of each
(Cockburn, A., 2002).

The Main Benefits of Agile Software Development
In comparison to traditional software development, agile development is
less document-oriented and more code-oriented. This, however, is not its
key characteristic but rather a reflection of two deeper differences
between the two styles (Frauke, P., Armin, E., & Frank M., 2003).

 74

An overview of Agile Software Development Methodology
and Its Relevance to Software Engineering

(Niko Ibrahim)

In this section we try to explain the main benefits of agile software
development which is hardly obtained in the traditional software
development.

Easier to plan and monitor
Agile software development emphasise a close collaboration of the
customers and developers. This practice makes it easier for developers to
plan and monitor the project. Moreover, agile methodologies usually
recommend iterations and present a new version of the software of one
week to three months.

Provide early feedback
Because of close collaboration between the customers and developers,
agile methods are very good in providing communication between them.
With their nature in frequently delivering working software, developers
can get early feedback from the customers.

Gives early value to the customer
Again, because customer is involved throughout the process of software
development, it may greatly improve customer satisfaction especially if
the customer really understands their nature of requirement and is willing
to get involved.

Enables the creative process
Agile methods are people-oriented rather than process-oriented. They rely
on people’s expertise, competency and direct collaboration rather than on
rigorous, document-centric processes to produce high-quality software.

Responsive to changes
With traditional methods most of the software process is planned in detail
for a longer time period. This works well if not much is changing and both
the application domain and software technologies are well understood by
the development team. In an application domain where changes often take
place, agile methods really show its capability (Fowler, M., 2000). With an
on-site customer who always available to provide answers to any
clarification developers need, the development is really responsive to
changes.

The Main Issues Surrounding Agile Software Development
While it seems that there have been many software development project
successes based on agile processes, so far most of these success stories are
only based on personal experiences (Dan T., Robert F., & Bernhard R.,
2002). In this section, we try to explain the main issues and limitation
surrounding the agile approaches:

 75

Jurnal Sistem Informasi Vol. 2 No. 1 Maret 2007 : 69-80

Limited support for development involving large teams
In agile methods, control and communication mechanisms used are
applicable to small to medium sized teams. If the software development
project involves a large team, it will require less agile approaches to
tackle issues that particular to large management (Dan T., Robert F., &
Bernhard R., 2002).

Fail to provide an adequate level of structure and necessary
documentation.
Because the nature of agile software development that emphasise the
development on people and codes, it then hardly presents an adequate
level of structure of the software. Different with plan-driven
development, where documentation is one of the most important part of
development, agile methods tend to fail in providing the necessary
documentation because it stress early involvement of people and the need
for rapid feedback.

Hard to develop large and complex software
In agile software development, it is assumed that refactoring can be used
to remove the need to design for change (Dan T., Robert F., & Bernhard
R., 2002). However, in large complex systems it may not work properly
because there may be important architectural aspects that are very hard
to change. In such system, models / designs really play an important role
in which functionality is so tightly coupled and integrated that it may not
be possible to develop the software incrementally.

Limited support for reuseability
Agile processes such as Extreme Programming focus on building software
products that solve a specific problem. While there seems to be a case for
applying agile processes to the development of reusable artefacts, it is not
clear how agile processes can be suitably adapted.

Hard to handle non-functional requirements
Customers or users talking about what they want the system to do normally
do not think about resources, maintainability, portability, safety or
performance. Some requirements concerning user interface or safety can
be elicited during the development process and still be integrated. Agile
methods should include more explicitly handling non-functional
requirements because they can affect the choice of database,
programming language or operating system (Frauke, P., Armin, E., & Frank
M., 2003).

Limited support for distributed development environments
Development environments in which team members and customers are
physically distributed may not be able to accommodate the face-to-face

 76

An overview of Agile Software Development Methodology
and Its Relevance to Software Engineering

(Niko Ibrahim)

communication supported by agile processes (Dan T., Robert F., &
Bernhard R., 2002).

Agile development can affect the structure within an organization
Agile software development spreads out the decision-making authority.
This decision-making approach differs from what we see in many
organizations. In some, the programmers make many key decisions,
including those who directly connected to business, process, and systems
requirements, while their managers either happily or unwillingly accept
that way (William, L, & Cockburn, A., 2003).

Incorporating Agile Methodology to Software Engineering
Agile Methodology has general process that similar to the classical software
engineering methodology. It starts with the requirement analysis, then
followed by a design process, implementation, and testing. However, the
details that happen in each step are quite different as it does not focus on
the model but the rapidly changing requirements. This section describes
the way in which agile approaches are different but can be integrated to
the software engineering process in general.

Requirement Analysis
In agile software development, to have the customer accessible is the key
point. This is the basis for fast feedback and communication which leads
to better understanding of requirements and development process. For
example in Extreme Programming method, it is assumed that customer is
an ideal user representative that can answer all question correctly and has
authority to make right decisions.

All agile approaches emphasize that talking to the customer is the best
way to get the information needed for development and to avoid
misunderstanding. If anything is not clear or vaguely defined, customers or
developers should try to communicate with the person responsible to avoid
indirect transfer of knowledge specifically (Frauke, P., Armin, E., & Frank
M., 2003).

However, although agile methods are based on strong customer
involvement during the whole development process, there is still a
problem. In most cases, agile methods ask for several customers with
different backgrounds, but sometimes only one customer is available to
work with the development team. This means that not all the questions
arising can be answered in enough detail.

Design / modelling
One of agile methods that incorporate modelling very much is Agile
Modelling (AM). However, although modelling is used in AM, the purpose is

 77

Jurnal Sistem Informasi Vol. 2 No. 1 Maret 2007 : 69-80

different. In AM, models are for example used to communicate
understanding of a small part of the system under development. Most of
the models do not become part of the final model of the system because
they are mostly throw-away models and are drawn on a whiteboard or
paper and erased after fulfilling their purpose (Frauke, P., Armin, E., &
Frank M., 2003).

With this practice, agile method is suitable for small to middle size
projects. For large and complex projects, plan-driven method is more
suitable because it incorporates a comprehensive model of software in the
design phase.

Implementation
The most interesting and extreme method when it comes to
implementation is a method used in Extreme Programming. It is called
“pair programming”. In XP, programmers work together in pairs and as a
group, with simple design and obsessively tested code, improving the
design continually to keep it satisfy the current needs. However, pair
programming doesn't mean all code is always written by two programmers
working together using one computer. Some code is best implemented
individually, and some code is best implemented in a pair.

Testing
In Extreme Programming, developers write unit tests for everything before
they write the main code (Sharma, P., 2004). They write unit tests for all
the normal conditions, as well as for any unusual circumstances (boundary
conditions, etc.). Then, they run all unit tests and if they find some
problem with the code, they add more unit tests to isolate the problem.
After that they modify the code to fix the bug, and rerun all the tests.

Tools for Agile Methodology
There are several tools in the market that can be used for the agile
approach. One of the tools is called VersionOne (www.versionone.net).
Using such tool, we can plan and manage our agile software developments.
VersionOne is focused on the planning, management, and delivery of
rapidly changing, unpredictable software development projects. It also
provides several template projects for Scrum, Extreme Programming or
DSDM methods in a web based environment.

Another tool is called TP (www.targetprocess.com) that specifically
designed to simplify planning, tracking, and quality assurance activities.

Conclusion
In conclusion, we can say that the agile methodology is an alternative to
plan-driven methodology (eg: UML or Waterfall Model) in the development
of quality software. It is also very suitable for small to middle size
projects because developers do not usually concentrate on models as the

 78

http://www.versionone.net/
http://www.targetprocess.com/

An overview of Agile Software Development Methodology
and Its Relevance to Software Engineering

(Niko Ibrahim)

main component of the final software. In each software engineering
phases, agile methods have unique approach that focus on feedback and
change. Therefore, this method is believed can leverage the productivity
of programmers.

Bibliography
Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). ‘Agile

Software Development Methods: Review and Analysis’, VTT
Publications.

Agile Alliance Page, [Online], Available: http://www.agilealliance.org [20

October 2004]

Aksit, M., Mezini, M., & Unland, R (Eds.). (2002). ‘Do We Need ‘Agile’

Software Development Tools?’, Springer-Verlag Berlin Heidlberg, pp.
412–430.

Cockburn, A. 2002, Learning From Agile Software Development - Part One,

[Online], Available:
http://www.stsc.hill.af.mil/crosstalk/2002/10/cockburn.html [29
November 2004]

Dan T., Robert F., & Bernhard R. (2002). Limitations of Agile Software

Processes, [Online], Available:
http://www.agilealliance.org/articles/articles/LimitationsofAgile.pdf
[27 November 2004]

Fowler, M. 2000, The New Methodology, [Online], Available:

http://www.thoughtworks.com/us/library/newMethodology.pdf [20
November 2004]

Frauke, P., Armin, E., & Frank M. 2003, Requirements Engineering and

Agile Software Development, [Online], Available:
http://www.sern.ucalgary.ca/~milos/papers/2003/PaetschEberleinMau
rer.pdf [26 November 2004]

Larman, C. & Basili, V.R. (2003). ‘Iterative and Incremental Development:

A Brief History’, IEEE Computer, vol. 36, no. 6, pp. 47-56.

Lowell, L. & Ron, J. (2004). ‘Extreme Programming and Agile Software

Development Methodologies’, Information Systems Management, vol.
21, pp. 41-61.

Sharma, P. (2004). An Introduction to Extreme Programming, [Online],

Available: http://www.advisor.com/doc/13571 [28 November 2004]

 79

Jurnal Sistem Informasi Vol. 2 No. 1 Maret 2007 : 69-80

William, L, & Cockburn, A. (2003) ‘Agile Software Development: It's about

Feedback and Change’, IEEE Computer Society, vol. 3, pp. 39-44.

 80

