LAMPIRAN A
FOTO ALAT

Tampak Atas

Tampak Depan

Tampak Samping Kanan

LAMPIRAN B
 DATASHEET

LM 2575 B-1
LM 2577. B-12
LM 3914 B-24

WM1Бスあ／LM2575／LM2575HV BMSPれEEOSW4TPCHER ${ }^{\circledR}$ 1A Step－Down Voltage Regulator

General Description

The LM2575 series of regulators are monolithic integrated circuits that provide all the active functions for a step－down （buck）switching regulator，capable of driving a 1 A load with excellent line and load regulation．These devices are avail－ able in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ ，and an adjustable output version．
Requiring a minimum number of external components，these regulators are simple to use and include internal frequency compensation and a fixed－frequency oscillator．
The LM2575 series offers a high－efficiency replacement for popular three－terminal linear regulators．It substantially re－ duces the size of the heat sink，and in many cases no heat sink is required．
A standard series of inductors optimized for use with the LM2575 are available from several different manufacturers． This feature greatly simplifies the design of switch－mode pow－ er supplies．
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load con－ ditions，and $\pm 10 \%$ on the oscillator frequency．External shut－ down is included，featuring $50 \mu \mathrm{~A}$（typical）standby current．The output switch includes cycle－by－cycle current limiting，as well as thermal shutdown for full protection under fault con－ditions．

Typical Application

（Fixed Output Voltage Versions）

Note：Pin numbers are for the TO－220 package．

Block Diagram and Typical Application

$3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{k}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{k}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{k}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{k}$
For ADJ. Version
R1 = Open, R2 = 0Ω
Note: Pin numbers are for the TO-220 package.
FIGURE 1.

Connection Diagrams

(XX indicates output voltage option. See Ordering Information table for complete part number.)

*No Internal Connection

LM2575N-XX or LM2575HVN-XX
See NS Package Number N16A LM1575J-XX-QML
See NS Package Number J16A

24-Lead Surface Mount (M)

*No Internal Connection

LM1575-ADJ, LM2575-ADJ, LM2575HV-
 ADJ Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature

Symbol	Parameter	Conditions	Typ	LM1575-ADJ	$\begin{aligned} & \text { LM2575-ADJ } \\ & \text { LM2575HV-ADJ } \end{aligned}$	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$	1.230			V
		$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$		1.217	1.217	V (Min)
		Circuit of Figure 2		1.243	1.243	V (Max)
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 1 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 40 \mathrm{~V} \end{aligned}$	1.230			V
	LM1575/LM2575			1.205/1.193	1.193/1.180	V (Min)
				1.255/1.267	1.267/1.280	V (Max)
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 1 \mathrm{~A} \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 60 \mathrm{~V} \\ & \mathrm{~V}-5 \mathrm{~V} \text { Circuit of Finure } 2 \end{aligned}$	1.230			V
	LM2575HV			1.205/1.193	1.193/1.180	V (Min)
				1.261/1.273	1.273/1.286	V (Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	77			\%

All Output Voltage Versions Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature
Range. Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathbb{I N}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{\mathbb{I N}}=$ 30 V for the 15 V version. $\mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}$.

Symbol	Parameter	Conditions	Typ	LM1575-XX	$\begin{gathered} \text { LM2575-XX } \\ \text { LM2575HV-XX } \end{gathered}$	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
DEVICE PARAMETERS						
I_{b}	Feedback Bias Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ (Adjustable Version Only)	50	100/500	100/500	nA
f_{0}	Oscillator Frequency	(Note 13)	52			kHz
				47/43	47/42	kHz(Min)
				58/62	58/63	kHz(Max)
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~A}($ Note 5$)$	0.9			V
				1.2/1.4	1.2/1.4	V (Max)
DC	Max Duty Cycle (ON)	(Note 6)	98			\%
				93	93	\%(Min)
I_{CL}	Current Limit	Peak Current (Notes 5, 13)	2.2			A
				1.7/1.3	1.7/1.3	A(Min)
				3.0/3.2	3.0/3.2	A(Max)
$\overline{\mathrm{I}}$	Output Leakage Current	(Notes 7, 8) Output $=0 \mathrm{~V}$ Output $=-1 \mathrm{~V}$ Output $=-1 \mathrm{~V}$	7.5	2	2	mA(Max)
						mA
				30	30	$m A(M a x)$
I_{Q}	Quiescent Current	(Note 7)	5			mA
				10/12	10	mA(Max)
$I_{\text {STBY }}$	Standby Quiescent	ON /OFF Pin = 5V (OFF)	50			μ
	Current			200/500	200	A

Inductor Value Selection Guides

(For Continuous Mode Operation)

1147510
FIGURE 3. LM2575(HV)-3.3

FIGURE 4. LM2575(HV)-5.0

FIGURE 5. LM2575(HV)-12

FIGURE 6. LM2575(HV)-15

FIGURE 7. LM2575(HV)-ADJ

in Figure 2)

Use the following formula to select the appropriate resistor values.

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right) \quad \text { where } V_{\text {REF }}=1.23 V
$$

R_{1} can be between 1 k and 5 k . (For best temperature coefficient and stability with time, use 1% metal film resistors)

$$
\mathrm{R} 2=\mathrm{R} 1\left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{REF}}}-1\right)
$$

2. Inductor Selection (L1)

A. Calculate the inductor Volt • microsecond constant,
$E \cdot T(V \cdot \mu s)$, from the following formula:
$E \cdot T=\left(V_{\text {IN }}-V_{\text {OUT }}\right) \frac{V_{\text {OUT }}}{V_{\text {IN }}} \cdot \frac{1000}{F(\text { in } k H z)}(V \cdot \mu \mathrm{~S})$
B. Use the $\mathrm{E} \cdot \mathrm{T}$ value from the previous formula and match it with the E•T number on the vertical axis of the Inductor Value Selection Guide shown in Figure 7.
C. On the horizontal axis, select the maximum load current.
D. Identify the inductance region intersected by the $E \cdot T$ value and the maximum load current value, and note the inductor code for that region.
E. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in Figure 9. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2575 switching frequency (52 kHz) and for a current rating of $1.15 \times$ $\mathrm{I}_{\text {LOAD }}$. For additional inductor information, see the inductor section in the application hints section of this data sheet.

3. Output Capacitor Selection ($\mathrm{C}_{\mathrm{OUT}}$)

A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation, the capacitor must satisfy the following require-ment:

$$
\mathrm{C}_{\text {OUT }} \geq 7,785 \frac{\mathrm{~V}_{\text {IN }}(\mathrm{Max})}{\mathrm{V}_{\text {OUT }} \cdot \mathrm{L}(\mu \mathrm{H})}(\mu \mathrm{F})
$$

The above formula yields capacitor values between $10 \mu \mathrm{~F}$ and 2000 $\mu \mathrm{F}$ that will satisfy the loop requirements for stable operation. But to achieve an acceptable output ripple voltage, (approximately 1% pf the output voltage) and transient response, the output capacitor may need to be several times larger than the above formula yields.
B. The capacitor's voltage rating should be at last 1.5 times greater than the output voltage. For a 10 V regulator, a rating of at least 15 V

EXAMPLE (Adjustable Output Voltage Versions)

Given:

$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$
$V_{\text {IN }}($ Max $)=25 \mathrm{~V}$
$\mathrm{I}_{\text {LOAD }}(\mathrm{Max})=1 \mathrm{~A}$
$\mathrm{F}=52 \mathrm{kHz}$
1.Programming Output Voltage (Selecting R1 and R2)

$$
\begin{gathered}
V_{\text {OUT }}=1.23\left(1+\frac{R 2}{R 1}\right) \quad \text { Select } R 1 \\
R 2=R 1\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)=1 \mathrm{k}\left(\frac{10 \mathrm{~V}}{1.23 \mathrm{~V}}-1\right.
\end{gathered}
$$

$\mathrm{R} 2=1 \mathrm{k}(8.13-1)=7.13 \mathrm{k}$, closest 1% value is 7.15 k

2. Inductor Selection (L1)

A. Calculate $\mathrm{E} \cdot \mathrm{T}(\mathrm{V} \cdot \mu \mathrm{s})$

$$
E \cdot T=(25-10) \cdot \frac{10}{25} \cdot \frac{1000}{52}=115 \mathrm{~V} \cdot \mu \mathrm{~S}
$$

B. $E \cdot T=115$
$\mathrm{V} \cdot \mu \mathrm{s}$
C. $\mathrm{I}_{\text {LOAD }}(\operatorname{Max})=1 \mathrm{~A}$
D. Inductance Region $=\mathrm{H} 470$
E. Inductor Value $=470 \mu \mathrm{H}$ Choose from AIE part \#4300634,
Pulse Engineering part \#PE-53118, or Renco part \#RL-1961.

3. Output Capacitor Selection ($\mathrm{C}_{\mathrm{OUT}}$)

A.

To further simplify the buck regulator design procedure, National Semiconductor is making available computer design software to be used with the Simple Switcher line of switching regulators. Switchers Made Simple (version 3.3) is available on a ($31 / 2^{\prime \prime}$) diskette for IBM compatible computers from a National Semiconductor sales office in your area.

V_{R}	Schottky		Fast Recovery	
	1A	3A	1A	3A
20V	1N5817 MBR120P SR102	$\begin{aligned} & \hline \text { 1N5820 } \\ & \text { MBR320 } \\ & \text { SR302 } \end{aligned}$	The following diodes are all rated to 100 V 11DF1 MUR110 HER102	The following diodes are all rated to 100 V 31DF1 MURD310 HER302
30 V	1N5818 MBR130P 11DQ03 SR103	1N5821 MBR330 31DQ03 SR303		
40V	1N5819 MBR140P 11DQ04 SR104	IN5822 MBR340 31DQ04 SR304		
50V	MBR150 11DQ05 SR105	MBR350 31DQ05 SR305		
60V	MBR160 11DQ06 SR106	MBR360 31DQ06 SR306		

FIGURE 8. Diode Selection Guide

Inductor Code		Inductor Value		Schott (Note 15)		Pulse Eng. (Note 16)		Renco (Note 17)
L100	$100 \mu \mathrm{H}$	67127000	PE-92108	RL2444				
L150	$150 \mu \mathrm{H}$	67127010	PE-53113	RL1954				
L220	$220 \mu \mathrm{H}$	67127020	PE-52626	RL1953				
L330	$330 \mu \mathrm{H}$	67127030	PE-52627	RL1952				
L470	$470 \mu \mathrm{H}$	67127040	PE-53114	RL1951				
L680	$680 \mu \mathrm{H}$	67127050	PE-52629	RL1950				
H150	$150 \mu \mathrm{H}$	67127060	PE-53115	RL2445				
H220	$220 \mu \mathrm{H}$	67127070	PE-53116	RL2446				
H330	$330 \mu \mathrm{H}$	67127080	PE-53117	RL2447				
H470	$470 \mu \mathrm{H}$	67127090	PE-53118	RL1961				
H680	$680 \mu \mathrm{H}$	67127100	PE-53119	RL1960				
H1000	1000	67127110	PE-53120	RL1959				
H1500	1500	67127120	PE-53121	RL1958				
H2200	2200	67127130	PE-53122	RL2448				

Note 15: Schott Corp., (612) 475-1173, 1000 Parkers Lake Rd., Wayzata, MN 55391.
Note 16: Pulse Engineering, (619) 674-8100, P.O. Box 12236, San Diego, CA 92112.
Note 17: Renco Electronics Inc., (516) 586-5566, 60 Jeffryn Blvd. East, Deer Park, NY 11729.
FIGURE 9. Inductor Selection by Manufacturer's Part Number

Application Hints

INPUT CAPACITOR ($\mathrm{C}_{\text {IN }}$)

To maintain stability, the regulator input pin must be bypassed with at least a $47 \mu \mathrm{~F}$ electrolytic capacitor. The capacitor's leads must be kept short, and located near the regulator.
If the operating temperature range includes temperatures below $-25^{\circ} \mathrm{C}$, the input capacitor value may need to be larger. With most electrolytic capacitors, the capacitance value decreases and the ESR increases with lower temperatures and age. Paralleling a ceramic or solid tantalum capacitor will increase the regulator stability at cold temperatures. For maximum capacitor operating lifetime, the capacitor's RMS ripple current rating should be greater than

$$
\begin{aligned}
& 1.2 \times\left(\frac{t_{O N}}{T}\right) \times I_{\text {LOAD }} \\
& \text { where } \frac{t_{O N}}{T}=\frac{V_{O U T}}{V_{I N}} \text { for a buck regulator } \\
& \text { and } \frac{t_{O N}}{T}=\frac{\left|V_{O U T}\right|}{\left|V_{O U T}\right|+V_{\text {IN }}} \text { for a buck-boost regulator. }
\end{aligned}
$$

INDUCTOR SELECTION

All switching regulators have two basic modes of operation: continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulator performance and requirements.
The LM2575 (or any of the Simple Switcher family) can be used for both continuous and discontinuous modes of operation.
The inductor value selection guides in Figure 3through Figure 7 were designed for buck regulator designs of the continuous inductor current type. When using inductor values shown in the inductor selection guide, the peak-to-peak inductor ripple current will be approximately 20% to 30% of the maximum DC current. With relatively heavy load currents, the circuit operates in the continuous mode (inductor current always flowing), but under light load conditions, the circuit will be forced to the discontinuous mode (inductor current falls to zero for a period of time). This discontinuous mode of operation is perfectly acceptable. For light loads (less than approximately 200 mA) it may be desirable to operate the regulator in the discontinuous mode, primarily because of the lower inductor values required for the discontinuous mode.
The selection guide chooses inductor values suitable for continuous mode operation, but if the inductor value chosen is prohibitively high, the designer should investigate the possibility of discontinuous operation. The computer design software Switchers Made Simple will provide all component
circuits, or can give incorrect scope readings because of induced voltages in the scope probe.
The inductors listed in the selection chart include ferrite pot core construction for AIE, powdered iron toroid for Pulse Engineering, and ferrite bobbin core for Renco.
An inductor should not be operated beyond its maximum rated current because it may saturate. When an inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This will cause the switch current to rise very rapidly. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor.
The inductor manufacturer's data sheets include current and energy limits to avoid inductor saturation.

INDUCTOR RIPPLE CURRENT

When the switcher is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input voltage and output voltage, the peak-to-peak amplitude of this inductor current waveform remains constant. As the load current rises or falls, the entire sawtooth current waveform also rises or falls. The average DC value of this waveform is equal to the DC load current (in the buck regulator configuration).
If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will change to a discontinuous mode of operation. This is a perfectly acceptable mode of operation. Any buck switching regulator (no matter how large the inductor value is) will be forced to run discontinuous if the load current is light enough.

OUTPUT CAPACITOR

An output capacitor is required to filter the output voltage and is needed for loop stability. The capacitor should be located near the LM2575 using short pc board traces. Standard aluminum electrolytics are usually adequate, but low ESR types are recommended for low output ripple voltage and good stability. The ESR of a capacitor depends on many factors, some which are: the value, the voltage rating, physical size and the type of construction. In general, low value or low voltage (less than 12V) electrolytic capacitors usually have higher ESR numbers.
The amount of output ripple voltage is primarily a function of the ESR (Equivalent Series Resistance) of the output capacitor and the amplitude of the inductor ripple current ($\Delta \mathrm{I}_{\mathrm{IND}}$). See the section on inductor ripple current in Application Hints.
The lower capacitor values ($220 \mu \mathrm{~F}-680 \mu \mathrm{~F}$) will allow typi- cally 50 mV to 150 mV of output ripple voltage, while larger- value capacitors will reduce the ripple to approximately 20 mV to 50 mV .

$$
\text { Output Ripple Voltage }=\left(\Delta I_{\text {IND }}\right)\left(E S R \text { of } C_{\text {OUT }}\right)
$$

values for discontinuous (as well as continuous) mode of operation.
Inductors are available in different styles such as pot core, toriod, E-frame, bobbin core, etc., as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin core type, consists of wire wrapped on a ferrite rod core. This type of construction makes for an inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more electromagnetic interference (EMI). This EMI can cause problems in sensitive readily conducted through the leads to the printed circuit board copper, which is acting as a heat sink
For best thermal performance, the ground pins and all the unconnected pins should be soldered to generous amounts of printed circuit board copper, such as a ground plane. Large areas of copper provide the best transfer of heat to the sur- rounding air. Copper on both sides of the board is also helpful in getting the heat away from the package, even if there is no direct copper contact between the two sides. Thermal resis-
tance numbers as low as $40^{\circ} \mathrm{C} / \mathrm{W}$ for the SO package, and $30^{\circ} \mathrm{C} / \mathrm{W}$ for the N package can be realized with a carefully engineered pc board.
Included on the Switchers Made Simple design software is a more precise (non-linear) thermal model that can be used to determine junction temperature with different input-output parameters or different component values. It can also calculate the heat sink thermal resistance required to maintain the regulators junction temperature below the maximum operating temperature.

Additional Applications

INVERTING REGULATOR

Figure 10 shows a LM2575-12 in a buck-boost configuration to generate a negative 12 V output from a positive input voltage. This circuit bootstraps the regulator's ground pin to the negative output voltage, then by grounding the feedback pin, the regulator senses the inverted output voltage and regulates it to -12 V .
For an input voltage of 12 V or more, the maximum available output current in this configuration is approximately 0.35 A . At lighter loads, the minimum input voltage required drops to approximately 4.7 V .
The switch currents in this buck-boost configuration are higher than in the standard buck-mode design, thus lowering the available output current. Also, the start-up input current of the buck-boost converter is higher than the standard buck-mode regulator, and this may overload an input power source with a current limit less than 1.5A. Using a delayed turn-on or an undervoltage lockout circuit (described in the next section)
would allow the input voltage to rise to a high enough level before the switcher would be allowed to turn on.
Because of the structural differences between the buck and the buck-boost regulator topologies, the buck regulator design procedure section can not be used to select the inductor or the output capacitor. The recommended range of inductor values for the buck-boost design is between $68 \mu \mathrm{H}$ and 220 $\mu \mathrm{H}$, and the output capacitor values must be larger than what is normally required for buck designs. Low input voltages or high output currents require a large value output capacitor (in the thousands of micro Farads).
The peak inductor current, which is the same as the peak switch current, can be calculated from the following formula:

$$
I_{p} \approx \frac{\operatorname{LOAD}\left(V_{I N}+\left|V_{O}\right|\right)}{V_{I N}}+\frac{V_{I N}\left|V_{O}\right|}{V_{I N}+\left|V_{O}\right|} \times \frac{1}{2 L_{1} f_{O S C}}
$$

Where $f_{\text {osc }}=52 \mathrm{kHz}$. Under normal continuous inductor current operating conditions, the minimum $\mathrm{V}_{\mathbb{I N}}$ represents the worst case. Select an inductor that is rated for the peak current anticipated.
Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage. For a -12 V output, the maximum input voltage for the LM2575 is +28 V , or +48 V for the LM2575HV.
The Switchers Made Simple (version 3.3) design software can be used to determine the feasibility of regulator designs using different topologies, different input-output parameters, different components, etc.

FIGURE 10. Inverting Buck-Boost Develops -12V

LM1577/LM2577

SIMPLE SWITCHER ${ }^{\circledR}$ Step-Up Voltage Regulator
 General Description
 Features

The LM1577/LM2577 are monolithic integrated circuits that provide all of the power and control functions for step-up (boost), flyback, and forward converter switching regulators. The device is available in three different output voltage versions: 12V, 15V, and adjustable.
Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Listed in this data sheet are a family of standard inductors and flyback transformers designed to work with these switching regulators.

Included on the chip is a 3.0A NPN switch and its associated protection circuitry, consisting of current and thermal limiting, and undervoltage lockout. Other features include a 52 kHz fixed-frequency oscillator that requires no external components, a soft start mode to reduce in-rush current during start-up, and current mode control for improved rejection of input voltage and output load transients.

Connection Diagrams

Straight Leads 5-Lead TO-220 (T)

Top View
Order Number LM2577T-12, LM2577T-15, or LM2577T-ADJ
See NS Package Number T05A
n Requires few external components
n NPN output switches 3.0 A , can stand off 65 V
n Wide input voltage range: 3.5 V to 40 V
n Current-mode operation for improved transient response, line regulation, and current limit
n 52 kHz internal oscillator
n Soft-start function reduces in-rush current during start-up
n Output switch protected by current limit, under-voltage lockout, and thermal shutdown

Typical Applications

n Simple boost regulator
n Flyback and forward regulators
n Multiple-output regulator

16-Lead DIP (N)

Top View
No internal Connection

Order Number LM2577N-12, LM2577N15, or LM2577N-ADJ
See NS Package Number N16A

24-Lead Surface Mount (M)

*No internal Connection
Top View
Order Number LM2577M-12, LM2577M-
15, or LM2577M-ADJ
See NS Package Number M24B

TO-263 (S)
5-Lead Surface-Mount Package

Side View
Order Number LM2577S-12, LM2577S-15,
or LM2577S-ADJ
See NS Package Number TS5B

Bottom View
Order Number LM1577K-12/883, LM1577K-
15/883, or LM1577K-ADJ/883
See NS Package Number K04A

Ordering Information

Temperature Range	Package Type	Output Voltage			NSC$\begin{gathered}\text { Package } \\ \text { Drawing }\end{gathered}$	Package
		12 V	15 V	ADJ		
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	24-Pin Surface Mount	LM2577M-12	LM2577M-15	LM2577M-ADJ	M24B	So
	16-Pin Molded DIP	LM2577N-12	LM2577N-15	LM2577N-ADJ	N16A	N
	5-Lead Surface Mount	LM2577S-12	LM2577S-15	LM2577S-ADJ	TS5B	TO-263
	5-Straight Leads	LM2577T-12	LM2577T-15	LM2577T-ADJ	T05A	TO-220
	5-Bent Staggered	LM2577T-12	LM2577T-15	LM2577T-ADJ	T05D	TO-220
	Leads	Flow LB03	Flow LB03	Flow LB03		
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$	4-Pin TO-3	LM1577K-12/883L	M1577K-15/883	LM1577K- ADJ/883	K04A	TO-3

Typical Application

Note: Pin numbers shown are for TO-220 (T) package.

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage 45V
Output Switch Voltage 65V
Output Switch Current (Note 2) 6.0A
Power Dissipation Internally Limited
Storage Temperature Range -65* C to +150 %
Lead Temperature
(Soldering, 10 sec.)
\(260^{\circ} \mathrm{C}\)
Maximum Junction Temperature \(150^{\circ} \mathrm{C}\)
```

Minimum ESD Rating
($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)
2 kV

Operating Ratings

Supply Voltage	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$
Output Switch Voltage	$0 \mathrm{~V} \leq \mathrm{V}_{\text {SWITCH }} \leq 60 \mathrm{~V}$
Output Switch Current	$\mathrm{I}_{\text {SWITCH }} \leq 3.0 \mathrm{~A}$
Junction Temperature Range	
LM1577	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$
LM2577	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$

Electrical Characteristics-LM1577-12, LM2577-12

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature

SYSTEM PARAMETERS Circuit of Figure 1 (Note 6)

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \\ & (\text { Note 3) } \end{aligned}$	12.0	$\begin{aligned} & 11.60 / 11.40 \\ & 12.40 / 12.60 \end{aligned}$	$\begin{aligned} & 11.60 / 11.40 \\ & 12.40 / 12.60 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\min) \\ \mathrm{V}(\max) \end{gathered}$
$\frac{\Delta \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{~V}_{\mathrm{IN}}}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA} \end{aligned}$	20	50/100	50/100	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \end{gathered}$
$\frac{\Delta \mathrm{V}_{\mathrm{OUT}}}{\Delta_{\mathrm{LOAD}}}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \end{aligned}$	20	50/100	50/100	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=800 \mathrm{~mA}$	80			\%
DEVICE PARAMETERS						
$\mathrm{I}_{\text {S }}$	Input Supply Current	$\mathrm{V}_{\text {FEedback }}=14 \mathrm{~V}$ (Switch Off)	7.5	10.0/14.0	10.0/14.0	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
		$\begin{aligned} & \mathrm{I}_{\text {SWITCH }}=2.0 \mathrm{~A} \\ & \left.\mathrm{~V}_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle }\right) \end{aligned}$	25	50/85	50/85	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
$\mathrm{V}_{u V}$	Input Supply Undervoltage Lockout	$\mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA}$	2.90	$\begin{aligned} & 2.70 / 2.65 \\ & 3.10 / 3.15 \end{aligned}$	$\begin{aligned} & 2.70 / 2.65 \\ & 3.10 / 3.15 \end{aligned}$	V $V(\min)$ $V(\max)$
f_{0}	Oscillator Frequency	Measured at Switch Pin $I_{\text {SWITCH }}=100 \mathrm{~mA}$	52	$\begin{aligned} & 48 / 42 \\ & 56 / 62 \end{aligned}$	$\begin{aligned} & 48 / 42 \\ & 56 / 62 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \end{gathered}$
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COMP}}=1.0 \mathrm{~V} \end{aligned}$	12	$\begin{aligned} & 11.76 / 11.64 \\ & 12.24 / 12.36 \end{aligned}$	$\begin{aligned} & 11.76 / 11.64 \\ & 12.24 / 12.36 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\min) \\ \mathrm{V}(\max) \end{gathered}$
$\frac{\Delta \mathrm{V}_{\mathrm{REF}}}{\Delta \mathrm{~V}_{\mathrm{IN}}}$	Output Reference Voltage Line Regulator	$\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V	7			mV
$\mathrm{R}_{\text {FB }}$	Feedback Pin Input Resistance		9.7			$k \Omega$
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	370	$\begin{aligned} & 225 / 145 \\ & 515 / 615 \end{aligned}$	$\begin{aligned} & 225 / 145 \\ & 515 / 615 \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$ (min) μ mho(max)

Electrical Characteristics—LM1577-15, LM2577-15 (Continued)
Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature
Range. Unless otherwise specified, $\mathrm{V}_{I N}=5 \mathrm{~V}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

Symbol	Parameter	Conditions	Typical	$\begin{gathered} \hline \text { LM1577-15 } \\ \text { Limit } \\ \text { (Notes 3, 4) } \\ \hline \end{gathered}$	LM2577-15 Limit (Note 5)	Units (Limits)
DEVICE PARAMETERS						
	NPN Switch Current Limit	$\mathrm{V}_{\text {СОМР }}=2.0 \mathrm{~V}$	4.3	$\begin{aligned} & 3.7 / 3.0 \\ & 5.3 / 6.0 \end{aligned}$	$\begin{aligned} & 3.7 / 3.0 \\ & 5.3 / 6.0 \end{aligned}$	

Electrical Characteristics—LM1577-ADJ, LM2577-ADJ

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {FEEDBACK }}=\mathrm{V}_{\text {REF }}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

Symbol	Parameter	Conditions	Typical	LM1577-ADJ Limit (Notes 3, 4)	LM2577-ADJ Limit (Note 5)	Units (Limits)

SYSTEM PARAMETERS Circuit of Figure 3 (Note 6)

$\mathrm{V}_{\text {OUt }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \\ & \text { (Note 3) } \end{aligned}$	12.0	$\begin{aligned} & 11.60 / 11.40 \\ & 12.40 / 12.60 \end{aligned}$	$\begin{aligned} & 11.60 / 11.40 \\ & 12.40 / 12.60 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\min) \\ \mathrm{V}(\max) \end{gathered}$
$\begin{aligned} & \Delta \mathrm{V}_{\text {OUT }} / \\ & \Delta \mathrm{V}_{\text {IN }} \\ & \hline \end{aligned}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA} \end{aligned}$	20	50/100	50/100	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \hline \end{gathered}$
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta \mathrm{I}_{\text {LOAD }}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{LOAD}}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \end{aligned}$	20	50/100	50/100	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=800 \mathrm{~mA}$	80			\%
DEVICE PARAMETERS						
I_{S}	Input Supply Current	$\mathrm{V}_{\text {FEEDBACK }}=1.5 \mathrm{~V}$ (Switch Off)	7.5	10.0/14.0	10.0/14.0	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{max}) \end{gathered}$
		$\begin{aligned} & I_{\text {SWITCH }}=2.0 \mathrm{~A} \\ & V_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle) } \end{aligned}$	25	50/85	50/85	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
V ${ }_{\text {uv }}$	Input Supply Undervoltage Lockout	$\mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA}$	2.90	$\begin{aligned} & 2.70 / 2.65 \\ & 3.10 / 3.15 \end{aligned}$	$\begin{aligned} & 2.70 / 2.65 \\ & 3.10 / 3.15 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\min) \\ \mathrm{V}(\max) \end{gathered}$
f_{0}	Oscillator Frequency	Measured at Switch Pin $I_{\text {SWITCH }}=100 \mathrm{~mA}$	52	$\begin{aligned} & 48 / 42 \\ & 56 / 62 \end{aligned}$	$\begin{aligned} & 48 / 42 \\ & 56 / 62 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \end{gathered}$
$\mathrm{V}_{\text {REF }}$	Reference Voltage	Measured at Feedback Pin $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	1.230	$\begin{aligned} & 1.214 / 1.206 \\ & 1.246 / 1.254 \end{aligned}$	$\begin{aligned} & 1.214 / 1.206 \\ & 1.246 / 1.254 \end{aligned}$	V $\mathrm{V}(\min)$ $\mathrm{V}(\max)$
$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{REF}} / \\ & \Delta \mathrm{V}_{\mathrm{IN}} \\ & \hline \end{aligned}$	Reference Voltage Line Regulation	$\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V	0.5			mV
I_{B}	Error Amp Input Bias Current	$\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$	100	300/800	300/800	$\begin{gathered} \mathrm{nA} \\ \mathrm{nA}(\max) \end{gathered}$
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	3700	$\begin{aligned} & 2400 / 1600 \\ & 4800 / 5800 \end{aligned}$	$\begin{aligned} & 2400 / 1600 \\ & 4800 / 5800 \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$ (min) μ mho(max)
$\mathrm{A}_{\text {VOL }}$	Error Amp Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{COMP}}=1.1 \mathrm{~V} \text { to } 1.9 \mathrm{~V} \\ & \left.\mathrm{R}_{\mathrm{COMP}}=1.0 \mathrm{M} \Omega \text { (Note } 7\right) \end{aligned}$	800	500/250	500/250	$\begin{gathered} \mathrm{V} / \mathrm{V} \\ \mathrm{~V} / \mathrm{V}(\min) \end{gathered}$

Electrical Characteristics—LM1577-ADJ, LM2577-ADJ
(Continued)
Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {FEEDBACK }}=\mathrm{V}_{\text {REF }}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

Symbol	Parameter	Conditions	Typical	LM1577-ADJ Limit (Notes 3, 4)	$\begin{aligned} & \hline \text { LM2577-ADJ } \\ & \text { Limit } \\ & \text { (Note 5) } \\ & \hline \end{aligned}$	Units (Limits)
DEVICE PARAMETERS						
	Error Amplifier Output Swing	Upper Limit $V_{\text {FEEDBACK }}=1.0 \mathrm{~V}$	2.4	2.2/2.0	2.2/2.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\mathrm{~min}) \end{gathered}$
		Lower Limit $V_{\text {FEEDBACK }}=1.5 \mathrm{~V}$	0.3	0.40/0.55	0.40/0.55	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\max) \\ \hline \end{gathered}$
	Error Amp Output Current	$\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=1.0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	± 200	$\begin{gathered} \pm 130 / \pm 90 \\ \pm 300 / \pm 400 \end{gathered}$	$\begin{gathered} \pm 130 / \pm 90 \\ \pm 300 / \pm 400 \end{gathered}$	
$\mathrm{I}_{\text {ss }}$	Soft Start Current	$\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=0 \mathrm{~V} \end{aligned}$	5.0	$\begin{aligned} & 2.5 / 1.5 \\ & 7.5 / 9.5 \end{aligned}$	$\begin{aligned} & 2.5 / 1.5 \\ & 7.5 / 9.5 \end{aligned}$	
D	Maximum Duty Cycle	$\begin{aligned} & \mathrm{V}_{\text {COMP }}=1.5 \mathrm{~V} \\ & \mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA} \end{aligned}$	95	93/90	93/90	$\begin{gathered} \% \\ \%(\min) \\ \hline \end{gathered}$
$\Delta \mathrm{I}_{\text {switch }} /$ $\Delta \mathrm{V}_{\text {сомP }}$	Switch Transconductance		12.5			A/V
I_{L}	Switch Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {SWITCH }}=65 \mathrm{~V} \\ & \mathrm{~V}_{\text {FEEDBACK }}=1.5 \mathrm{~V} \text { (Switch Off) } \end{aligned}$	10	300/600	300/600	
$\mathrm{V}_{\text {SAT }}$	Switch Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\text {SWITCH }}=2.0 \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle) } \end{aligned}$	0.5	0.7/0.9	0.7/0.9	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\max) \end{gathered}$
	NPN Switch Current Limit	$\mathrm{V}_{\text {COMP }}=2.0 \mathrm{~V}$	4.3	$\begin{aligned} & 3.7 / 3.0 \\ & 5.3 / 6.0 \end{aligned}$	$\begin{aligned} & 3.7 / 3.0 \\ & 5.3 / 6.0 \end{aligned}$	
THERMAL PARAMETERS (All Versions)						
$\begin{aligned} & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \\ & \hline \end{aligned}$	Thermal Resistance	K Package, Junction to Ambient K Package, Junction to Case	$\begin{aligned} & \hline 35 \\ & 1.5 \\ & \hline \end{aligned}$			${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\begin{aligned} & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{Jc}} \end{aligned}$		T Package, Junction to Ambient T Package, Junction to Case	$\begin{gathered} \hline 65 \\ 2 \end{gathered}$			
$\theta_{\text {JA }}$		N Package, Junction to Ambient (Note 8)	85			
$\theta_{\text {JA }}$		M Package, Junction to Ambient (Note 8)	100			
$\theta_{\text {JA }}$		S Package, Junction to Ambient (Note 9)	37			

Application Hints
 (Continued)

STEP-UP (BOOST) REGULATOR

Figure 4 shows the LM1577-ADJ/LM2577-ADJ used as a Step-Up Regulator. This is a switching regulator used for producing an output voltage greater than the input supply voltage. The LM1577-12/LM2577-12 and LM1577-15/ LM2577-15 can also be used for step-up regulators with 12 V or 15 V outputs (respectively), by tying the feedback pin directly to the regulator output.
A basic explanation of how it works is as follows. The LM1577/LM2577 turns its output switch on and off at a frequency of 52 kHz , and this creates energy in the inductor (L). When the NPN switch turns on, the inductor current charges up at a rate of $\mathrm{V}_{I N} / L$, storing current in the inductor. When the switch turns off, the lower end of the inductor flies above $\mathrm{V}_{\mathrm{IN}^{\prime}}$, discharging its current through diode (D) into the output capacitor ($\mathrm{C}_{\text {OUT }}$) at a rate of $\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right) / \mathrm{L}$. Thus, energy stored in the inductor during the switch on time is transferred to the output during the switch off time. The output voltage is controlled by the amount of energy transferred which, in turn, is controlled by modulating the peak inductor current. This is done by feeding back a portion of the output voltage to the error amp, which amplifies the difference between the feedback voltage and a 1.230 V reference. The error amp output voltage is compared to a voltage proportional to the switch current (i.e., inductor current during the switch on time).
The comparator terminates the switch on time when the two voltages are equal, thereby controlling the peak switch current to maintain a constant output voltage.
Voltage and current waveforms for this circuit are shown in Figure 5, and formulas for calculating them are given in Figure 6.

FIGURE 5. Step-Up Regulator Waveforms

Duty Cycle	D	$\frac{V_{\text {OUT }}+V_{F}-V_{\text {IN }}}{V_{\text {OUT }}+V_{F}-V_{\text {SAT }}} \approx \frac{V_{\text {OUT }}-V_{\text {IN }}}{V_{\text {OUT }}}$
Average Inductor Current	$\mathrm{I}_{\text {IND(AVE) }}$	$\frac{\text { LOAD }}{1-\mathrm{D}}$
Inductor Current Ripple	$\Delta \mathrm{I}_{\text {IND }}$	$\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {SAT }}}{\mathrm{L}} \frac{\mathrm{D}}{52,000}$
Peak Inductor Current	$\mathrm{I}_{\text {IND(PK) }}$	$\frac{\mathrm{I}_{\text {LOAD (max) }}}{1-\mathrm{D}_{(\text {max })}}+\frac{\Delta_{\text {IND }}}{2}$
Peak Switch Current	$\mathrm{I}_{\mathrm{SW}(\mathrm{PK})}$	$\frac{I_{\operatorname{LOAD}(\max)}}{1-\mathrm{D}_{(\max)}}+\frac{\Delta l_{\mathrm{IND}}}{2}$
Switch Voltage When Off	$\mathrm{V}_{\text {SW(OFF) }}$	$\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {F }}$
Diode Reverse Voltage	V_{R}	$\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {SAT }}$
Average Diode Current	$I_{\text {D(AVE) }}$	$I_{\text {LOAD }}$
Peak Diode Current	$I_{\text {D(PK) }}$	$\frac{\mathrm{L}_{\text {LOAD }}}{1-\mathrm{D}_{(\text {max }}}+\frac{\left.\Delta\right\|_{\text {IND }}}{2}$
Power Dissipation of LM1577/2577	P_{D}	$0.25 \Omega\left(\frac{I_{\text {LOAD }}}{1-D}\right)^{2} D+\frac{\mathrm{L}_{\text {LOAD }} D V_{I N}}{50(1-D)}$

FIGURE 6. Step-Up Regulator Formulas

STEP-UP REGULATOR DESIGN PROCEDURE
The following design procedure can be used to select the appropriate external components for the circuit in Figure 4, based on these system requirements.

Given:

$\mathrm{V}_{\mathrm{IN} \text { (min) }}=$ Minimum input supply voltage
$\mathrm{V}_{\text {Out }}=$ Regulated output voltage
$\mathrm{I}_{\mathrm{LOAD}(\max)}=$ Maximum output load current
Before proceeding any further, determine if the LM1577/
LM2577 can provide these values of $\mathrm{V}_{\text {Out }}$ and $\mathrm{I}_{\text {LOAD(max) }}$ when operating with the minimum value of $\mathrm{V}_{\mathrm{IN}^{\prime}}$. The upper limits for $\mathrm{V}_{\text {OUt }}$ and $\mathrm{I}_{\text {LOAD(max) }}$ are given by the following equations.

$$
\begin{gathered}
\mathrm{V}_{\text {OUT }} \leq 60 \mathrm{~V} \\
\text { and } \quad \mathrm{V}_{\text {OUT }} \leq 10 \times \mathrm{V}_{\text {IN }(\min)}
\end{gathered}
$$

$$
\mathrm{I}_{\mathrm{LOAD}(\max)} \leq \frac{2.1 \mathrm{~A} \times \mathrm{V}_{\mathrm{IN}(\min)}}{\mathrm{V}_{\mathrm{OUT}}}
$$

These limits must be greater than or equal to the values specified in this application.

1. Inductor Selection (L)
A. Voltage Options:
2. For 12 V or 15 V output

From Figure 7 (for 12V output) or Figure 8 (for 15V output), identify inductor code for region indicated by $\mathrm{V}_{\mathrm{IN}(\min)}$ and $\mathrm{I}_{\text {LOAD (max) }}$. The shaded region indicates con

Application Hints

ditions for which the LM1577/LM2577 output switch would be operating beyond its switch current rating. The minimum operating voltage for the LM1577/LM2577 is 3.5 V .

From here, proceed to step \boldsymbol{C}.
2. For Adjustable version

Preliminary calculations:
The inductor selection is based on the calculation of the following three parameters:
$\mathrm{D}_{(\max)}$, the maximum switch duty cycle $(0 \leq \mathrm{D} \leq 0.9)$:

$$
\mathrm{D}_{(\max)}=\frac{\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{IN}(\min)}}{\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{F}}-0.6 \mathrm{~V}}
$$

where $V_{F}=0.5 \mathrm{~V}$ for Schottky diodes and 0.8 V for fast recovery diodes (typically);
$E \cdot T$, the product of volts x time that charges the inductor:

$$
\mathrm{E} \bullet \mathrm{~T}=\frac{\mathrm{D}_{(\max)}\left(\mathrm{V}_{\mathrm{IN}(\min)}-0.6 \mathrm{~V}\right) 10^{6}}{52,000 \mathrm{~Hz}} \quad(\mathrm{~V} \bullet \mu \mathrm{~s})
$$

$I_{I N D, D C}$, the average inductor current under full load;

$$
\mathrm{I}_{\mathrm{IND}, \mathrm{DC}}=\frac{1.05 \times \mathrm{I}_{\mathrm{LOAD}(\max)}}{1-\mathrm{D}_{(\max)}}
$$

B. Identify Inductor Value:

1. From Figure 9, identify the inductor code for the region indicated by the intersection of $E \cdot T$ and $I_{\text {IND,DC }}$. This code gives the inductor value in microhenries. The L or H prefix signifies whether the inductor is rated for a maximum $\mathrm{E} \cdot \mathrm{T}$ of $90 \mathrm{~V} \cdot \mu \mathrm{~s}(\mathrm{~L})$ or $250 \mathrm{~V} \cdot \mu \mathrm{~s}(\mathrm{H})$.
2. If $D<0.85$, go on to step C. If $D \geq 0.85$, then calculate the minimum inductance needed to ensure the switching regulator's stability:

$$
\mathrm{L}_{\mathrm{MIN}}=\frac{6.4\left(\mathrm{~V}_{\mathrm{IN}(\min)}-0.6 \mathrm{~V}\right)\left(2 \mathrm{D}_{(\max)}-1\right)}{1-\mathrm{D}_{(\max)}}
$$

If $L_{\text {MIN }}$ is smaller than the inductor value found in step $B 1$, go on to step C. Otherwise, the inductor value found in step B1 is too low; an appropriate inductor code should be obtained from the graph as follows:

1. Find the lowest value inductor that is greater than $L_{\text {MIN }}$.
2. Find where $E \cdot T$ intersects this inductor value to determine if it has an L or H prefix. If $E \cdot T$ intersects both the L and H regions, select the inductor with an H prefix.

FIGURE 7. LM2577-12 Inductor Selection Guide

FIGURE 8. LM2577-15 Inductor Selection Guide

01146812
Note: These charts assume that the inductor ripple current inductor is approximately 20% to 30% of the average inductor current (when the regulator is under full load). Greater ripple current causes higher peak switch currents and greater output ripple voltage; lower ripple current is achieved with larger-value
inductors. The factor of 20 to 30% is chosen as a convenient balance between the two extremes.

FIGURE 9. LM1577-ADJ/LM2577-ADJ Inductor Selection Graph
C. Select an inductor from the table of Figure 10 which cross-references the inductor codes to the part numbers of three different manufacturers. Complete specifications for these inductors are available from the respective manufacturers. The inductors listed in this table have the following characteristics:
AIE: ferrite, pot-core inductors; Benefits of this type are low electro-magnetic interference (EMI), small physical size, and very low power dissipation (core loss). Be careful not to operate these inductors too far beyond their maximum ratings for $E \cdot T$ and peak current, as this will saturate the core.
Pulse: powdered iron, toroid core inductors; Benefits are low EMI and ability to withstand $\mathrm{E} \cdot \mathrm{T}$ and peak current above rated value better than ferrite cores.
Renco: ferrite, bobbin-core inductors; Benefits are low cost and best ability to withstand $E \cdot T$ and peak current above rated value. Be aware that these inductors gener- ate more EMI than the other types, and this may interfere with signals sensitive to noise.
C. Calculate the minimum value of C_{C}.

$$
\mathrm{C}_{\mathrm{C}} \geq \frac{58.5 \times \mathrm{V}_{\mathrm{OUT}}{ }^{2} \times \mathrm{C}_{\mathrm{OUT}}}{\mathrm{R}_{\mathrm{C}}{ }^{2} \times \mathrm{V}_{\mathrm{IN}(\text { min })}}
$$

The compensation capacitor is also part of the soft start circuitry. When power to the regulator is turned on, the switch duty cycle is allowed to rise at a rate controlled by this capacitor (with no control on the duty cycle, it would immediately rise to 90%, drawing huge currents from the input power supply). In order to operate properly, the soft start circuit requires $C_{C} \geq 0.22 \mu \mathrm{~F}$.
The value of the output filter capacitor is normally large enough to require the use of aluminum electrolytic capacitors. Figure 11 lists several different types that are recommended for switching regulators, and the following parameters are used to select the proper capacitor.
Working Voltage (WVDC): Choose a capacitor with a working voltage at least 20% higher than the regulator output voltage.
Ripple Current: This is the maximum RMS value of current that charges the capacitor during each switching cycle. For step-up and flyback regulators, the formula for ripple current is

$$
\mathrm{I}_{\mathrm{RIPPLE}(\mathrm{RMS})}=\frac{\mathrm{I}_{\mathrm{LOAD}(\max)} \times \mathrm{D}_{(\max)}}{1-\mathrm{D}_{(\max)}}
$$

Choose a capacitor that is rated at least 50\% higher than this value at 52 kHz .
Equivalent Series Resistance (ESR) : This is the primary cause of output ripple voltage, and it also affects the values of R_{C} and C_{C} needed to stabilize the regulator. As a result, the preceding calculations for C_{C} and R_{C} are only valid if ESR doesn't exceed the maximum value specified by the following equations.

$$
\mathrm{ESR} \leq \frac{0.01 \times \mathrm{V}_{\mathrm{OUT}}}{\mathrm{I}_{\mathrm{RIPPLE}(\mathrm{P}-\mathrm{P})}} \text { and } \leq \frac{8.7 \times(10)-3 \times \mathrm{V}_{\mathrm{IN}}}{\mathrm{I}_{\mathrm{LOAD}(\max)}}
$$

where

$$
\mathrm{I}_{\operatorname{RIPPLE}(P-P)}=\frac{1.15 \times \mathrm{I}_{\mathrm{LOAD}(\max)}}{1-\mathrm{D}_{(\max)}}
$$

Select a capacitor with ESR, at 52 kHz , that is less than or equal to the lower value calculated. Most electrolytic capacitors specify ESR at 120 Hz which is 15% to 30% higher than at 52 kHz . Also, be aware that ESR increases by a factor of 2 when operating at $-20^{\circ} \mathrm{C}$.

In general, low values of ESR are achieved by using large value capacitors ($\mathrm{C} \geq 470 \mu \mathrm{~F}$), and capacitors with high WVDC, or by paralleling smaller-value capacitors.

Application Hints

(Continued)

3. Output Voltage Selection (R1 and R2)

This section is for applications using the LM1577-ADJ/ LM2577-ADJ. Skip this section if the LM1577-12/LM2577-12 or LM1577-15/LM2577-15 is being used.
With the LM1577-ADJ/LM2577-ADJ, the output voltage is given by

$$
\mathrm{V}_{\text {OUT }}=1.23 \mathrm{~V}(1+\mathrm{R} 1 / \mathrm{R} 2)
$$

Resistors R1 and R2 divide the output down so it can be compared with the LM1577-ADJ/LM2577-ADJ internal 1.23 V reference. For a given desired output voltage $\mathrm{V}_{\text {OUT }}$, select R1 and R2 so that

$$
\frac{\mathrm{R} 1}{\mathrm{R} 2}=\frac{\mathrm{V}_{\mathrm{OUT}}}{1.23 \mathrm{~V}}-1
$$

4. Input Capacitor Selection ($\mathrm{C}_{\text {IN }}$)

The switching action in the step-up regulator causes a trian- gular ripple current to be drawn from the supply source. This in turn causes noise to appear on the supply voltage. For proper operation of the LM1577, the input voltage should be decoupled. Bypassing the Input Voltage pin directly to ground with a good quality, low ESR, 0.1 $\mu \mathrm{F}$ capacitor (leads as short as possible) is normally sufficient.

Cornell Dublier - Types 239, 250, 251, UFT,
300 , or 350
P.O. Box 128, Pickens, SC 29671
(803) 878-6311

Nichicon - Types PF, PX, or PZ
927 East Parkway,
Schaumburg, IL
60173
(708) 843-7500

Sprague - Types 672D, 673D, or 674D Box 1, Sprague Road, Lansing, NC 28643
(919) 384-2551

United Chemi-Con - Types LX, SXF, or SXJ

9801 West Higgins
Road, Rosemont, IL
60018
(708) 696-2000

FIGURE 11. Aluminum Electrolytic Capacitors

Recommended for Switching
Regulators

If the LM1577 is located far from the supply source filter capacitors, an additional large electrolytic capacitor (e.g. $47 \mu \mathrm{~F}$) is often required.
5. Diode Selection (D)

The switching diode used in the boost regulator must withstand a reverse voltage equal to the circuit output voltage, and must conduct the peak output current of the LM2577. A suitable diode must have a minimum reverse breakdown voltage greater than the circuit output voltage, and should be rated for average and peak current greater than $\mathrm{I}_{\text {LOAD (max) }}$ and $I_{D(P K)}$. Schottky barrier diodes are often favored for use in switching regulators. Their low forward voltage drop allows higher regulator efficiency than if a (less expensive) fast recovery diode was used. See Figure 12 for recommended part numbers and voltage ratings of 1 A and 3 A diodes.

$\begin{aligned} & \mathrm{V}_{\text {OUT }} \\ & \text { (max) } \end{aligned}$	Schottky		Fast Recovery	
	1 A	3A	1 A	3A
20V	1N5817 MBR120P	$\begin{gathered} \text { 1N5820 } \\ \text { MBR320P } \end{gathered}$		
30V	1N5818 MBR130P 11DQ03	$\begin{gathered} \text { 1N5821 } \\ \text { MBR330P } \\ \text { 31DQ03 } \end{gathered}$		
40V	1N5819 MBR140P 11DQ04	$\begin{gathered} \text { 1N5822 } \\ \text { MBR340P } \\ \text { 31DQ04 } \end{gathered}$		
50V	$\begin{gathered} \text { MBR150 } \\ \text { 11DQ05 } \end{gathered}$	$\begin{aligned} & \text { MBR350 } \\ & \text { 31DQ05 } \end{aligned}$	1N4933 MUR105	
100V			1N4934 HER102 MUR110 10DL1	$\begin{gathered} \text { MR851 } \\ \text { 30DL1 } \\ \text { MR831 } \\ \text { HER302 } \end{gathered}$

FIGURE 12. Diode Selection Chart

BOOST REGULATOR CIRCUIT EXAMPLE

By adding a few external components (as shown in Figure 13), the LM2577 can be used to produce a regulated output voltage that is greater than the applied input voltage. Typical performance of this regulator is shown in Figure 14 and Figure 15. The switching waveforms observed during the operation of this circuit are shown in Figure 16.

Application Hints

flyback regulator

A Flyback regulator can produce single or multiple output voltages that are lower or greater than the input supply voltage. Figure 18 shows the LM1577/LM2577 used as a flyback regulator with positive and negative regulated outputs. Its operation is similar to a step-up regulator, except the output switch contols the primary current of a flyback transformer. Note that the primary and secondary windings are out of phase, so no current flows through secondary when current flows through the primary. This allows the primary to charge up the transformer core when the switch is on. When the switch turns off, the core discharges by sending current through the secondary, and this produces voltage at the outputs. The output voltages are controlled by adjusting the peak primary current, as described in the step-up regulator section.
Voltage and current waveforms for this circuit are shown in Figure 17, and formulas for calculating them are given in Figure 19.

FLYBACK REGULATOR DESIGN PROCEDURE

1. Transformer Selection

A family of standardized flyback transformers is available for creating flyback regulators that produce dual output voltages, from $\pm 10 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, as shown in Figure 18. Figure 20lists these transformers with the input voltage, output voltages and maximum load current they are designed for.

2. Compensation Network ($\mathrm{C}_{\mathrm{c}}, \mathrm{R}_{\mathrm{c}}$) and

 Output Capacitor ($\mathrm{C}_{\text {оuт }}$) SelectionAs explained in the Step-Up Regulator Design Procedure, $\mathrm{C}_{\mathrm{C}}, \mathrm{R}_{\mathrm{C}}$ and $\mathrm{C}_{\text {OUT }}$ must be selected as a group. The following procedure is for a dual output flyback regulator with equal turns ratios for each secondary (i.e., both output voltages have the same magnitude). The equations can be used for a single output regulator by changing $\sum \mathrm{I}_{\mathrm{LOAD}(\max)}$ to $\mathrm{I}_{\mathrm{LOAD}(\max)}$ in the following equations.
A. First, calculate the maximum value for \mathbf{R}_{C}.

$$
R_{\mathrm{C}} \leq \frac{750 \times \Sigma \mathrm{I}_{\mathrm{LOAD}(\max)} \times\left(15 \mathrm{~V}+\mathrm{V}_{\mathrm{IN}(\min)} \mathrm{N}\right)^{2}}{\mathrm{~V}_{\mathrm{IN}(\min)^{2}}}
$$

Where $\sum I_{\text {LOAD (max) }}$ is the sum of the load current (magni- tude) required from both outputs. Select a resistor less than or equal to this value, and no greater than $3 \mathrm{k} \Omega$.
B. Calculate the minimum value for $\Sigma \mathrm{C}_{\text {out }}$ (sum of Cout
at both outputs) using the following two equations.

$$
\mathrm{C}_{\mathrm{OUT}} \geq \frac{0.19 \times \mathrm{R}_{\mathrm{C}} \times \mathrm{L}_{\mathrm{P}} \times \Sigma \mathrm{I}_{\mathrm{LOAD}(\max)}}{15 \mathrm{~V} \times \mathrm{V}_{\mathrm{IN}(\min)}}
$$

and

$$
\mathrm{C}_{\mathrm{OUT}} \geq \frac{\mathrm{V}_{\mathrm{IN}(\min)} \times \mathrm{R}_{\mathrm{C}} \times \mathrm{N}^{2} \times\left(\mathrm{V}_{\mathrm{IN}(\min)}+\left(3.74 \times 10^{5} \times \mathrm{L}_{\mathrm{P}}\right)\right)}{487,800 \times(15 \mathrm{~V})^{2} \times\left(15 \mathrm{~V}+\mathrm{V}_{\mathrm{IN}(\min)} \times \mathrm{N}\right)}
$$

The larger of these two values must be used to ensure regulator stability.

FIGURE 17. Flyback Regulator Waveforms

LM3914

Dot/Bar Display Driver

General Description

The LM3914 is a monolithic integrated circuit that senses analog voltage levels and drives 10 LEDs, providing a linear analog display. A single pin changes the display from a moving dot to a bar graph. Current drive to the LEDs is regulated and programmable, eliminating the need for resistors. This feature is one that allows operation of the whole system from less than 3V.
The circuit contains its own adjustable reference and accurate 10 -step voltage divider. The low-bias-current input buffer accepts signals down to ground, or V^{-}, yet needs no protection against inputs of 35 V above or below ground. The buffer drives 10 individual comparators referenced to the precision divider. Indication non-linearity can thus be held typically to $1 / 2 \%$, even over a wide temperature range.
Versatility was designed into the LM3914 so that controller, visual alarm, and expanded scale functions are easily added on to the display system. The circuit can drive LEDs of many colors, or low-current incandescent lamps. Many LM3914s can be "chained" to form displays of 20 to over 100 seg ments. Both ends of the voltage divider are externally available so that 2 drivers can be made into a zero-center meter.
The LM3914 is very easy to apply as an analog meter circuit. A 1.2 V full-scale meter requires only 1 resistor and a single 3 V to 15 V supply in addition to the 10 display LEDs. If the 1 resistor is a pot, it becomes the LED brightness control. The simplified block diagram illustrates this extremely simple external circuitry.
When in the dot mode, there is a small amount of overlap or "fade" (about 1 mV) between segments. This assures that at no time will all LEDs be "OFF", and thus any ambiguous display is avoided. Various novel displays are possible.

Much of the display flexibility derives from the fact that all outputs are individual, DC regulated currents. Various effects can be achieved by modulating these currents. The indi- vidual outputs can drive a transistor as well as a LED at the same time, so controller functions including "staging" control can be performed. The LM3914 can also act as a programmer, or sequencer.
The LM3914 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The
LM3914N-1 is available in an 18-lead molded (N)
package. The following typical application illustrates adjusting of the
reference to a desired value, and proper grounding for ac-
curate operation, and avoiding oscillations.

Features

n Drives LEDs, LCDs or vacuum fluorescents
n Bar or dot display mode externally selectable by user
n Expandable to displays of 100 steps
n Internal voltage reference from 1.2 V
to 12 V n Operates with single supply of less than $3 V \mathrm{n}$ Inputs operate down to ground
. Output current programmable from 2 mA to 30 mA
n No multiplex switching or interaction between outputs
n Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
n LED driver outputs are current regulated, open-collectors
n Outputs can interface with TTL or CMOS logic
n The internal 10 -step divider is floating and can be referenced to a wide range of voltages

Typical Applications

$$
\begin{aligned}
& \text { Ref Out } V=1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right) \\
& \mathrm{I}_{\mathrm{LED}} \cong \frac{12.5}{\mathrm{R} 1}
\end{aligned}
$$

[^0]Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Power Dissipation (Note 6)
Molded DIP (N)
Supply Voltage
Voltage on Output Drivers
Input Signal Overvoltage (Note 4)
Divider Voltage
Reference Load Current

Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
\quad Dual-In-Line Package	$260^{\circ} \mathrm{C}$
\quad Soldering $(10$ seconds)	
Plastic Chip Carrier Package	$215^{\circ} \mathrm{C}$
Vapor Phase $(60$ seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Notes 2, 4)

Parameter	Conditions (Note 2)		Min	Typ	Max	Units
COMPARATOR						
Offset Voltage, Buffer and First Comparator	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RLO}}=\mathrm{V}_{\mathrm{RH}} \leq 12 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{LED}}=1 \mathrm{~mA} \end{aligned}$			3	10	mV
Offset Voltage, Buffer and Any Other Comparator	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RLO}}=\mathrm{V}_{\mathrm{RHI}} \leq 12 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{LED}}=1 \mathrm{~mA} \\ & \hline \end{aligned}$			3	15	mV
Gain ($\Delta \mathrm{I}_{\text {LED }} / \Delta \mathrm{V}_{\text {IN }}$)	$\mathrm{I}_{\text {L(REF) }}=2 \mathrm{~mA}, \mathrm{I}_{\text {LED }}=10 \mathrm{~mA}$		3	8		$\mathrm{mA} / \mathrm{mV}$
Input Bias Current (at Pin 5)	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}^{+}-1.5 \mathrm{~V}$			25	100	nA
Input Signal Overvoltage	No Change in Display		-35		35	V
VOLTAGE-DIVIDER						
Divider Resistance	Total, Pin 6 to 4		8	12	17	$\mathrm{k} \Omega$
Accuracy	(Note 3)			0.5	2	\%
VOLTAGE REFERENCE						
Output Voltage	$\begin{aligned} & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{LREEF})} \leq 4 \mathrm{~mA}, \\ & \mathrm{~V}^{+}=\mathrm{V}_{\text {LED }}=5 \mathrm{~V} \\ & \hline \end{aligned}$		1.2	1.28	1.34	V
Line Regulation	$3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 18 \mathrm{~V}$			0.01	0.03	\%/V
Load Regulation	$\begin{aligned} & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {LREF) }} \leq 4 \mathrm{~mA}, \\ & \mathrm{~V}^{+}=\mathrm{V}_{\text {LED }}=5 \mathrm{~V} \end{aligned}$			0.4	2	\%
Output Voltage Change with Temperature	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=1 \mathrm{~mA}, \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \end{aligned}$			1		\%
Adjust Pin Current				75	120	$\mu \mathrm{A}$
OUTPUT DRIVERS						
LED Current	$\mathrm{V}^{+}=\mathrm{V}_{\text {LED }}=5 \mathrm{~V}, \mathrm{I}_{\text {L(REF) }}=1 \mathrm{~mA}$		7	10	13	mA
LED Current Difference (Between Largest and Smallest LED Currents)	$\mathrm{V}_{\text {LED }}=5 \mathrm{~V}$	$\mathrm{I}_{\text {LED }}=2 \mathrm{~mA}$		0.12	0.4	mA
		$\mathrm{I}_{\text {LED }}=20 \mathrm{~mA}$		1.2	3	
LED Current Regulation	$2 \mathrm{~V} \leq \mathrm{V}_{\text {LED }} \leq 17 \mathrm{~V}$	$\mathrm{I}_{\text {LED }}=2 \mathrm{~mA}$		0.1	0.25	mA
		$\mathrm{I}_{\text {LED }}=20 \mathrm{~mA}$		1	3	
Dropout Voltage	$\begin{aligned} & \mathrm{I}_{\text {LED(ON) }}=20 \mathrm{~mA}, \mathrm{~V}_{\text {LED }}=5 \mathrm{~V}, \\ & \Delta \mathrm{I}_{\text {LED }}=2 \mathrm{~mA} \end{aligned}$				1.5	V
Saturation Voltage	$\mathrm{I}_{\text {LED }}=2.0 \mathrm{~mA}, \mathrm{I}_{\text {L(REF) }}=0.4 \mathrm{~mA}$			0.15	0.4	V
Output Leakage, Each Collector	(Bar Mode) (Note 5)			0.1	10	$\mu \mathrm{A}$
Output Leakage	(Dot Mode) (Note 5)	Pins 10-18		0.1	10	$\mu \mathrm{A}$
		Pin 1	60	150	450	$\mu \mathrm{A}$
SUPPLY CURRENT						
Standby Supply Current (All Outputs Off)	$\begin{array}{\|l} \mathrm{V}^{+}=5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=0.2 \mathrm{~mA} \end{array}$			2.4	4.2	mA

[^0]: Note: Grounding method is typical of all uses. The $2.2 \mu \mathrm{~F}$ tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic capacitor is needed if leads to the LED supply are 6 " or longer.

