LAMPIRAN A
FOTO Radio Control Helikopter dan Pengendalinya



Tampak Atas

L i AN R AR R

A-1



A-2



Tampak Samping
(/ g ‘ :

AHTALTIT AP 5 .maw Ay

A-3



Tampak Belakang

A-4



Pengendali

A-5



LAMPIRAN B
PROGRAM PADA MICROSOFT VISUAL BASIC 6 DAN
PENGONTROL MIKRO ATMEGA16



MICROSOFT VISUAL BASIC 6

Private Sub Commandl_Click()
Label4.Caption = "0"
Timer5.Enabled = True
MSComm1.Output = "TC6 64 61 115 94 196" & vbCrL
If Optionl.Value = True Then
Timerl.Enabled = True

End If

If Option2.Value = True Then
Timer2.Enabled = True

End If

If Option3.Value = True Then
Timer3.Enabled = True

End If

If CStr(Label6.Caption) > 0 Then
Timer4.Enabled = True

End If

End Sub

Private Sub Command2_Click()
Timerl.Enabled = False
Timer2.Enabled = False
Timer3.Enabled = False
Timer4.Enabled = False
Timer5.Enabled = False
Fori=1To 200

B-1



MSComm1.Output =" " & vbCrLf

Next i

RichTextBox1.Text=""
End Sub
e e e
I Program Awal
e

Private Sub Form_Load()
MSComm1.PortOpen = True
MSComm1.PortOpen = True
Timerl.Enabled = False
Timer2.Enabled = False
Timer3.Enabled = False
Timer4.Enabled = False
Timer5.Enabled = False
Optionl.Value = True

End Sub

Private Sub Timerl_Timer()

Do While x < X1
X = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X1 Then

gl=1

Else:gl=0

End If
If y<Y1Then

g2=2

Else: g2=0



End If
If y>Y1 Then

g3=4

Else:g3=0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < X2
x = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X2 Then

gl=1

Else: g1 =0

End If
If y<Y2 Then

g2=2

Else: g2=0

End If
If y>Y2 Then

g3=4

Else: g3 =0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < X3
X = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X3 Then

gl=1



Else:gl1=0

End If
If y<Y3 Then

g2=2

Else:g2=0

End If
If y>Y3 Then

g3=4

Else:g3=0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < X4
X = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X4 Then

gl=1

Else: gl =0

End If
If y<Y4 Then

g2=2

Else:g2=0

End If
If y > Y4 Then

g3=4

Else: g3=0

End If
g=9gl+92+g3
MSComm2.Output = g
Loop



Do While x < x5
x = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < x5 Then

gl=1

Else: g1 =0

End If
If y <Y5 Then

g2=2

Else: g2=0

End If
If y>Y5 Then

g3=4

Else: g3 =0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
If x > x5 Then
Timerl.Enabled = False
Timer4.Enabled = False

End Sub

Private Sub Timer2_Timer()
Do While x < X1
x = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X1 Then
gl=1



Else:gl1=0

End If
If y <Y1 Then

g2=2

Else:g2=0

End If
If y>Y1 Then

g3=4

Else:g3=0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < X2
X = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X2 Then

gl=1

Else: gl =0

End If
If y<Y2 Then

g2=2

Else:g2=0

End If
If y>Y2 Then

g3=4

Else: g3=0

End If
g=9gl+92+g3
MSComm2.Output = g
Loop

B-6



Do While x < X3
x = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X3 Then

gl=1

Else: g1 =0

End If
If y<Y3 Then

g2=2

Else: g2=0

End If
If y>Y3 Then

g3=4

Else: g3 =0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < X4
X = Value(Label6.Caption)
y = Value(Label7.Caption)
If X < X4 Then

gl=1

Else:gl=0

End If
If y <Y4 Then

g2=2

Else:g2=0

End If
If y>Y4 Then

g3=4

B-7



Else: g3 =0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < x5
X = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < x5 Then

gl=1

Else:gl =0

End If
If y <Y5 Then

g2=2

Else:g2=0

End If
If y>Y5 Then

g3=4

Else:g3=0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
If x > x5 Then
Timer2.Enabled = False
Timer4.Enabled = False

End Sub

Private Sub Timer3_Timer()



Do While x < X1
x = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X1 Then

gl=1

Else: g1 =0

End If
If y<Y1Then

g2=2

Else: g2=0

End If
If y>Y1Then

g3=4

Else: g3 =0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < X2
X = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X2 Then

gl=1

Else:gl=0

End If
If y<Y2 Then

g2=2

Else:g2=0

End If
If y>Y2 Then

g3=4



Else: g3 =0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < X3
X = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < X3 Then

gl=1

Else:gl =0

End If
If y<Y3 Then

g2=2

Else:g2=0

End If
If y>Y3 Then

g3=4

Else:g3=0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < X4
x = Value(Label6.Caption)
y = Value(Label7.Caption)
If X < X4 Then

gl=1

Else: g1 =0

End If
If y<Y4 Then

B-10



g2=2

Else: g2=0

End If
If y>Y4 Then

g3=4

Else: g3 =0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
Do While x < x5
X = Value(Label6.Caption)
y = Value(Label7.Caption)
If x < x5 Then

gl=1

Else:gl=0

End If
If y <Y5 Then

g2=2

Else:g2=0

End If
If y>Y5 Then

g3=4

Else:g3=0

End If
g=9gl+9g2+g3
MSComm2.Output = g
Loop
If x > x5 Then
Timer3.Enabled = False

Timer4.Enabled = False

B-11



End Sub

Private Sub Timer4_Timer()
Label4.Caption = Val(Label4.Caption) + 1
End Sub

Private Sub Timer5_Timer()
Dim Data As Variant
Data = MSComm1.Input
RichTextBox1.Text = Data
Data = Split(Data, " ")
Label6.Caption = Data(1)
Label7.Caption = Data(2)

End Sub

B-12



PENGONTROL MIKRO ATMEGA16

/**************************************************

This program was produced by the
CodeWizardAVR V1.25.3 Professional

Automatic Program Generator

© Copyright 1998-2007 Pavel Haiduc, HP InfoTecHh.s.r

http://www.hpinfotech.com

Project : Pengontrol Remote RC Heli
Version : 1

Date :9/27/2010

Author : IVan/PiNgu/APui/ToPui
Company : UKM

Comments:

Chip type : ATmegal6
Program type . Application
Clock frequency :11.059200 MHz
Memory model : Small

External SRAM size : 0
Data Stack size : 256

kkkkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkkkkkhkkkkkkhkkkkkkkkhkkhkk

#include <megal6.h>
#include <delay.h>
#define RXB8 1
#define TXB8 0
#define UPE 2
#define OVR 3
#define FE 4

B-13

*k%

**/



#define UDRE 5
#define RXC 7

#define FRAMING_ERROR (1<<FE)

#define PARITY_ERROR (1<<UPE)

#define DATA_OVERRUN (1<<OVR)

#define DATA_REGISTER_EMPTY (1<<UDRE)
#define RX_COMPLETE (1<<RXC)

/I USART Receiver buffer
#define RX_BUFFER_SIZE 8
char rx_buffer[RX_BUFFER_SIZE];

#if RX_BUFFER_SIZE<256

unsigned char rx_wr_index,rx_rd_index,rx_counter;
#else

unsigned int rx_wr_index,rx_rd_index,rx_counter;
#endif

/I This flag is set on USART Receiver buffer ovewil

bit rx_buffer_overflow;

/I USART Receiver interrupt service routine
interrupt [USART_RXC] void usart_rx_isr(void)

{

char status,data;

status=UCSRA;

data=UDR,;

if ((status & (FRAMING_ERROR |
DATA_OVERRUN))==0)

{

B-14

PARITY_ERROR



rx_buffer[rx_wr_index]=data;
if (++rx_wr_index == RX_BUFFER_SIZE) rx_wr_indeq;
if (++rx_counter == RX_BUFFER_SIZE)

{

rx_counter=0;

rx_buffer_overflow=1;

3

#ifndef DEBUG_TERMINAL_IO_

/I Get a character from the USART Receiver buffer
#define _ALTERNATE_GETCHAR_

#pragma used+

char getchar(void)

{

char data;

while (rx_counter==0);
data=rx_buffer[rx_rd_index];

if (++rx_rd_index == RX_BUFFER_SIZE) rx_rd_index=0;
#asm("cli")

--rx_counter;

#asm("sei")

return data;

}

#pragma used-

#endif

/[ Standard Input/Output functions

#include <stdio.h>

B-15



/I Declare your global variables here

int G =0;
void main(void)
{

/I Declare your local variables here

/I Input/Output Ports initialization

/[ Port A initialization

/I Func7=0Out Func6=Out Func5=0ut Func4=0Out Func3=@unc2=0ut
Func1=0ut FuncO=0Out

/I State7=0 State6=0 State5=0 State4=0 State3+62Sta State1=0 State0=0
PORTA=0x00;

DDRA=0xFF;

/[ Port B initialization

/[ Func7=In Func6=In Func5=In Func4=In Func3=In &2win Funcl=In
FuncO=In

/I State7=T State6=T State5=T State4=T State3=B35td Statel=T StateO=T
PORTB=0x00;

DDRB=0x00;

// Port C initialization

/[ Func7=0Out Func6=Out Func5=0Out Func4=0Out Func3=@unc2=0ut
Func1=0ut FuncO=Out

/I State7=0 State6=0 State5=0 State4=0 State3+€2Sta State1=0 State0=0
PORTC=0x00;

DDRC=0xFF;

/ Port D initialization

/I Func7=0ut Func6=0ut Funcb5=In Func4=In Func3=imd2=In Funcl=In

FuncO=In

B-16



/I State7=0 State6=0 State5=T State4=T State3{€X5ta Statel=T StateO=T
PORTD=0x00;
DDRD=0xCO:;

/I Timer/Counter 0O initialization
Il Clock source: System Clock
/I Clock value: Timer O Stopped
/[ Mode: Normal top=FFh

// OCO output: Disconnected
TCCRO0=0x00;

TCNTO0=0x00;

OCRO0=0x00;

/I Timer/Counter 1 initialization

Il Clock source: System Clock

/I Clock value: Timer 1 Stopped
/l Mode: Normal top=FFFFh

/l OC1A output: Discon.

/[ OC1B output: Discon.

/I Noise Canceler: Off

/I Input Capture on Falling Edge
/[ Timer 1 Overflow Interrupt: Off
/I Input Capture Interrupt: Off

/[ Compare A Match Interrupt: Off
/I Compare B Match Interrupt: Off
TCCR1A=0x00;

TCCR1B=0x00;

TCNT1H=0x00;

TCNT1L=0x00;

ICR1H=0x00;

ICR1L=0x00;

B-17



OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

/I Timer/Counter 2 initialization
Il Clock source: System Clock
/I Clock value: Timer 2 Stopped
/ Mode: Normal top=FFh

// OC2 output: Disconnected
ASSR=0x00;

TCCR2=0x00;

TCNT2=0x00;

OCR2=0x00;

/[ External Interrupt(s) initialization
/I INTO: Off

/I INT1: Off

/I INT2: Off

MCUCR=0x00;

MCUCSR=0x00;

/[ Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;

/I USART initialization

/I Communication Parameters: 8 Data, 1 Stop, NdyPar
/I USART Receiver: On

/I USART Transmitter: Off

/I USART Mode: Asynchronous

/I USART Baud rate: 9600

B-18



UCSRA=0x00;
UCSRB=0x90;
UCSRC=0x86;
UBRRH=0x00;
UBRRL=0x47;

/I Analog Comparator initialization

/I Analog Comparator: Off

/I Analog Comparator Input Capture by Timer/CouriteOff
ACSR=0x80;

SFIOR=0x00;

I/l Global enable interrupts

#asm("sei")

/IProgram Untuk MemberikaDelay 7 Detik dan Kecepatan Motor DC dan Posisi
/IMotor Servo yang Dimulai Setelah Batere Dipasamgk

delay_ms(7000);
PORTA=0x7F;
PORTC=0X2B;
while (1)

{

I/ Place your code here

/[Program Untuk Mengendalikan Kecepatan Motor D@ @asisi Motor Servo

/IBerdasarkan “G”
G=getchar();
while (G==1)

{

B-19



PORTA=PORTA--;

}

while (G == 2)

{

PORTC--;
delay_ms(300);
PORTC++;

}

while (G == 3)

{
PORTA=PORTA--;
PORTC=PORTC--;
delay_ms(300);

PORTC=PORTC++;

}

while (G == 4)

{
PORTA=PORTA++;
}

while (G == 5)

{

PORTA=PORTA++;

PORTC=PORTC--;
delay_ms(300);

PORTC=PORTC++;

}
3

B-20



LAMPIRAN C
DATASHEET



CMUcam?2 Vision Sensor

User Guide

C-1



Getting Started

Setting Up the Hardware

In order to mitially test your CMUcam?2, you will need a serial cable, a power
adapter and a computer. The CMUcam?2 can use a power supply which pro-
duces anywhere from 6 to 15 volts of DC power capable of supplymg at least
200mA of current. This can be provided by either an AC adapter (possibly
mcluded) or a battery supply. These should be available at any local electron-
ics store. The serial cable should have been provided with your CMUcam?2.
Make sure that you have the CMOS sensor board connected to the CMUcam?2
board so that it is in the same orientation as the picture shows on the cover of

this manual_

Ikt;'r Clock Jumper pwrLED
=+
0 ©© CI\[B5%) r/
l_’g'gll l|a (DG p— |£|;.|

- — — [0,'
0010 lololololoio) ¥
@‘6{:@:" Rt

i
I'v-
¢ ©
:EL%?E? 3 ﬁ?ll .
’6“6}6 oL_r
-
| ]

o o

y |qf

u @J
cCOoO0O0OO0O0C0COCO0OOO0000
000QCO0O0C00O0000000

©®OE0)

=
L. ©
mrm
'TYTTITIIIRIIT]
LRI RINRasR1LLE

First, connect the power. Make sure
that the positive side of your power
plug is facing away from the main
components on the board. If the cam-
era came with an AC adapter, make
sure that the connector locks nto the

socket comrectly.

Now that the camera has power, con-
nect the serial hink between the cam-
era and your computer. This link is
required initially so that you can test
and focus your camera. The senal
cable should be connected so that the
ribbon part of the cable faces away
from the board You mmust also connect
the senal pass through jumper.

Check to make sure that the clock
Jumper is connected. This allows the
clock to actively dnive the processor.

Once everything is wired up, try tumn-
mg the board on. The power LED
LED should remain on. Both LEDs
tum on upon startup, and one turns off
after the camera has been sucessfully

configured



Testing the Firmware

Once you have set the board up and downloaded the firmware, a good way to
test the system is to connect it to the senal port of a computer.

Step 1: If one does not already exist, build a serial and/or power cable

Step 2: Plug both of them m.

Step 3: Open the termmal emulator of your choice.

Step 4: Inside the terminal emulator set the communication protocol
to 115,200 Baud, 8 Data bits, 1 Stop bit, no panty, local echo
on, no flow control and if possible tum on “add line feed” (add
\n to areceived \r). These setting should usually appear under
“senal port” or some other similar menu option.

Step 5: Tum on the CMUcam? board; the Power LED should hght
up and only one of the two status LEDs should remam on.

Step 6: You should see the following on your terminal enmlator:

CMUcam2 v1.0 c6

If you have seen this, the board was able to successfully
configure the camera and start the firmware.

Step7: Type g followed by the enter key. You should see the
following:

&
A
CMUcam?2 v1.0 c6

This shows the current version of the firmware. If this is
successful, your computer’s serial port is also configured
correctly and both transmit and receive are working.



Serial Commands

The senal communication parameters are as follows:

« 1,200 to 115,200 Baud
« 8 Data bits

« 1 Stop bit

« No Parity

» No Flow Control (Not Xon/Xoff or Hardware)

All commands are sent using visible ASCII characters (123 is 3 bytes “123™ ).
Upon a successful transmission of a command, the ACK stning should be re-
turned by the system. If there was a problem in the syntax of the transmission,
or if a detectable transfer error occurred, a NCK string is returned. After either
an ACK or a NCK, a \r is returned. When a promipt ("¢’ followed by a *:") is
refurned, 1t means that the camera 1s waitng for another command m the 1dle
state. White spaces do matter and are used to separate argument parameters.
The \r (ASCII 13 carniage retumn) is used to end each line and activate each-
command. If visible character transmission causes too nmch overhead, it is
possible to use varying degrees of raw data transfer.



Alphabetical Command Listing

B Bufler Minle 30 LM Laez Mode &
(= Cusrers Regoder n MD Mlaak Caffererne ]
cr Camrera Puwer ] NF Kuse Fike &
cT Set Cumers Type n oM Cuput Packet Mol &5
oc DhuSeremcs Chasmel n” m Puued Calferene a
j= 14 Diclaey Modz 13 FF Packet Filier &
s Town Sasple 13 2] Ful Mole &
FD Frueme Diffeve=ce 3 Fs Fackes Sk &
Fs Fruane Sacan 3 RF Read Frure anko Fulla &
aRr et Bullin as M R Mok i
aH et Hisoggann s = [ P
o et A 10 wnpurss s D Sheep Deeply Pl
ane et Mesn EH SF Seml Frasse “0
as et Servo Positioms 15 SL Sleep Coaranand «©
ar et Trudomg Parancien a7 a Servo Maal sl
av et Versdom w 80 Servo Oupd €
aw et Winderw E1 = Servo Panarasen ]
HC Hatorgnen Configwe i ST Set Teack Coremuand 2
HD Hyt Rewldin Dilerence £ w Servo Pasilicn £
HE HRtes Mode £ TC Tinack Cobes 3
HT Set Hisugran Track £V T Trwk Iewvered 3]
Lo Lad Control » ™ Tk Widosw “
LF Lowal Frseme 30 Differesse o] un Uphoad Daffeserne boffe 5

W Vatad Window 5




\r

This command is used to set the camera board into an idle state. Like all other
commands, you should receive the acknowledgment strmg “ACK” or the not

mand the camera board waits for further commands, which is shown by the *:’
prompt. While m this idle state a \r by itself will return an “ACK” followed by
\r and : character prompt. This is how you stop the camera while i streanung
mode.

Example of how to check if the camera is alive while in the idle state:

ACK

BM active \r

This command sets the mode of the CMUcam’s frame buffer. A value of 0 (de-
fault) means that new frames are constantly being pushed into the frame buf-
fer A value of 1, means that only a single frame remains in the frame buffer
Thas allows nmltiple processing calls to be apphed to the same frame. Instead
of grabbing a new frame, all commands are apphed to the current frame in
memory. So you could get a histogram on all three channels of the same mage
and then track a color or call get mean and have these process a single buff-
ered frame. Calling RF will then read a new frame into the buffer from the
camera. When BM 1s off, RF 1s not required to get new frames.

Example of how to track multiple colors using buffer mode:

‘-BM 1

ACK

PM1

ACK
‘TC200240030030
ACK
T2040103030502030
-RF

ACK
‘TC030200240030
ACK

T 30 50 20 40 40 60 22 31

C-6



CR [ regl valuel [reg2 value2 ... regl6 valuel6] J\r

This conumand sets the Camera’s internal Register values directly. The register locations and

possible settings can be found in the Onmivision CMOS camera documentation. All the

data sent to this command should be in decimal visible character form umless the camera has

previously been set into raw mode. It is possible to send up to 16 register-value combinations.

Previous register settings are not reset between CR calls; howewver, you may overwrite

previous settings. Calling this command with no arguments resets the camera and restores the

camera registers to their defanlt state. This conunand can be used to hard code gain values or
Register Vahe Effect

5 | Contrast 0-255

6 | Brighmess 0-255
18 | Color Mode

YCrCb Auto White Balance On
YCrCb Auto White Balance Off
RGB Auto White Balance On

*RGB Auto White Balance Off

] BB S

17 | Clock Speed

*30 fps
26 fps
17 fps
13 fps
11 fps
9fps

8 fps

7 fps
6fps
5fps

LIRS -SSR B AT e =

—
L=

19 | Auto Exposure

L
[

Anto gain off
*Auto gain on

* indicates the default state
Example of switching into YCrCb mode with White Balance off

L]
[Py

‘CR 1832
ACK

C-7



CP boolean \r

This command toggles the Camera module’s Power. A value of 0, puts the

camera module into a power down mode. A value of 1 tums the camera back
on while maintaining the current camera register values. This should be used
m situations where battery life needs to be extended, while the camera is not

actively processing image data. Images in the frame buffer may become cor-
rupt when the camera is powered down.

CT boolean \r

This command toggles the Camera Type while the camera is in slave mode.
Since the CMUcam?2 can not determine the type of the camera without com-
onmicating with the module, it 1s not possible for it to auto-detect the camera
type in slave mode. A value of 0, sets the CMUcam? into ov6620 mode. A
value of 1 sets it into ov7620 mode. The default slave mode startup value as-
sumes the ov6620.

DC value \r

This command sets the Channel that is used for frame Differencing com-
mands. A value of 0, sets the frame differencing commands LF and FD to
use the red (Cr) channel. A value of 1 (default) sets them to use the green (Y)
chammel, and 2 sets them to use the blue (Cb) channel.

C-8



DM value \r

This command sets the Delay Mode which controls the delay between char-
acters that are transmutted over the senal port. This can give slower processors
the time they need to handle serial data. The valne should be set between 0
and 2535. A value of 0 (default) has no delay and 235 sets the maximum delay.
Each delay umt 1s equal to the transfer tume of one bit at the current baud rate.

DS x_factor y_factor \r

This command allows Down Sampling of the image being processed. An
x_factor of 1 (default) means that there is no change in honzontal resolution.
Anx_factor of 2, means that the horizontal resolution 1s effectively halved.
So all commands, hke send frame and track color, will operate at thus lower
down sampled resolution. This gives you some speed mncrease and reduces the
amount of data sent m the send frame and bitmap linemodes without chpping
the mmage like virmal windowing would. Smularly, the y_factor mdependently
controls the vertical resolution. (Increasing the y_factor downsampling gives
more of a speed increase than changing the x_factor.) The virtual window 1s
reset to the full size whenever this command 1s called.

Example of down sampling the resolution by a factor of 2 on both the horizon-
tal and vertical dimension.

DS22

ACK

‘GM

ACK
$890067563
$800167562

C-9



FD threshold \r

This command calls Frame Differencing against the last loaded frame us-

g the LF command It retums a type T packet contaming the middle mass,
bounding box, pixel count and confidence of any change since the previously
loaded frame. It does thas by calculating the average color mtensity of an 8x8
gnd of 64 regions on the image and companng those phus or mmus the user as-
signed threshold. So the larger the threshold, the less sensitive the camera will
be towards differences im the image. Usually values between 5 and 20 yield
good results. (In high resolution mode a 16x16 gnd is used with 256 regions.)

FS boolean \r

This command sets the Frame Streaming mode of the camera. A value of 1,
enables frame streaming, while a 0 (default) disables it When frame stream-
g 1s active, a send frame command will contmmously send frames back to
back out the senial connection.

C-10



GB'«r

This command Gets a Button press if one has been detected. This command
retums eithera 1 ora 0. Ifa 1 is returned, this means that the button was
pressed sometime since the last call to Get Button Ifa 0 is returned, then no
button press was detected.

GH <channel> \r

This command Gets a Histogram of the channel specified by the user. The
histogram contams 28 bins each holding the number of pixels that occurred
within that bin’s range of color values. So bin 0 on channel 0 would contain
the number of red pixels that were between 16 and 23 in value. If no argu-
ments are given, get histogram uses the last channel passed fo get histogram.
If get histogram is first called with no arguments, the green channel 1s used.
The value retumned in each bin is the number of pixels i that bin divided by
the total mimber of pixels times 256 and capped at 255.

GI'y

This command Gets the auxahary /O Input values. When get inputs 1s called,
a byte is returned containing the values of the auxiliary IO pins. This can be
used to read digital mputs connected to the auxiliary 1O port. The aux I/O
pins are internally Lightly pulled high See page 22 for pm numbening Note
that the pins are pulled up internally by the processor.

Example of how to read the auxiliary VO pins. ( in this case, pins 0 and 1 are
high, while pins 2 and 3 are low).
GI

3

ACK

C-11



GM '«

This command will Get the Mean color value in the current mage. If, option-
ally, a subregion of the image is selected via virtual windowing, this function
will only operate on the selected region. The mean values will be between 16
and 240 due to the lmits of each color channel on the CMOS camera. It wall
also return a measure of the average absolute dewviation of color found m that
region. The mean together with the deviation can be a useful tool for auto-
mated tracking or detecting change n a scene. In YCrCb mode RGB maps to
CrYCb.

This command retumns a Type S data packet that by default has the following
parameters:

S Rmean Gimean Bmean Rdeviation Gdeviation Bdeviation'r

Example of how to grab the mean color of the entire window:

SW1140143
A

-GM

ACK
S899067563
$8990167562

GS servo \r
This command will Get the last position that was sent to the Servos.

Example of how to use get servo:

‘GS1
ACK
128

C-12



GT '«

This command Gets the current Track color values. This is a useful way to see
what color values track window is using.

This example shows how to get the curvent tracking values:

TW

ACK

T1234 ..

GT

ACK

200 16 16 240 20 20

GV

This command Gets the current Version of the firmware and camera module
version from the camera. It retums an ACK followed by the firmware version
string. ¢6 means that it detects an OV6620, while ¢7 means that it detected an
oV7620.

Example of how to ask for the firmware version and camera Hype:

GV
ACK
CMUcam? v1.00 c6

GWir
This command Gets the current virtual Windowing values. This command al-

lows you to confirm your current window configuration. It retumns the x1, y1,
x2 and y2 values that bound the current window.

C-13



HC #_of bins scale \r

eter takes one of three possible values. A value of 0 (default) will cause GH to
output 28 bins. A value of 1 will generate 14 bins and a value of 2 will genes-
ate 7 bmms. mmm(mo)aumummmm

with smaller counts. Bin values are scaled by 2 where scale is the second
parameter of the command.

# of bins

Input Bins
28
14

v 4

t2l— |

HD boolean \r

This command enables or disables HiRes frame Differencing. A value of 0

(default) disables the high resolution frame differencing mode, while a value

of 1 enables it When enabled, frame differencing will operate at 16x16

mstead of 8x8. The captured image is still stored internally at 8x8 The extra

resolution 1s achieved by doing 4 smaller compansons agamst each internally

stored pixel. This will only yield good results when the background image is
- relatively smooth, or has a umform color.

HR state \r

This sets the camera into HiRes mode. This is only available using the
OV6620 camera module. A stafe value of 0 (default) gives you the standard
88x143, while 1 gives you 176x287. HiRes mode truncates the image to
176x255 for tracking so that the value does not overflow 8 bits.

C-14



HT boolean \r

This command enables or disables Histogram Tracking. When histogram
tracking is enabled, only values that are within the color tracking bounds will
be displayed in the histograms. This allows you to select exact color ranges
giving you more detail, and ignonng any other background influences. A
value of 0 (default) will disable hastogram tracking, while a value of 1 wall en-
able it. Note that the tracking noise filter apples just hike it does with the TC
and TW commands.

L0 boolean \r
L1 boolean \r

These commands enable and disable the two trackmg LEDs. A value of 0
will turn the LED off, while a value of 1 will turn it on. A value of 2 (default)
will leave the LED in automatic mode. In this mode, LED 1 tums on when
the camera confidently detects an object while tracking and provides feedback
durmg a send frame. In automatic mode, LED 0 does nothing, so it can be
manually set.

LF\r

This command Loads a new Frame mto the processor’s memory to be differ-
enced from This does not have amything to do with the camera’s frame buffer.

C-15



LM type mode \r

This comunand enables Line Mode which transmuts more detailed data about
the image. It adds prefix data onto either T or S packets. Thus mode 1s intend-
ed for users who wish to do more complex image processing on less reduced
data. Due to the higher rate of data, this may not be suitable for many slower
nicrocontrollers. These are the different types and modes that ine mode ap-

phes to different processing functions:
Type | Mode | Effected Description
Command
0 0 TCTW | Default where line mode is disabled
0 1 TCTW | Sends a binary image of the pixels being tracked
0 2 TCTW | Sends the Mean, Min, Max, confidence and count for every
bonzoatal Line of the macked 1uaze.
1 0 GM Default where line mode is disabled
1 1 GM Sends the mean values for every live in the image
1 2 GM Sends the mean values and the deviatioas for every line being
Tacked 1 the miage
2 0 FD Default where line mode is disabled
2 1 FD Renwus 2 bitmap of wacked pixels much like type 0 mode 0
of track color
2 2 FD Sends the difference between the current image pixel value
and the stored image. This gives you delra frame differenced
unages.
2 3 LFFD | This gives you the actual averaged value for each element in

a differenced frame It also recumns these values when you
load in 2 pew frame This can be used to zive a very high
speed gray scale low resolution smeam of images.

Notz, that the “mode” of each “type™ of linemede can be controlied independently.

C-16




Data Packet Description

When raw mode is disabled all output data packets are m ASCII viewable
format except for the F frame and prefix packets.

ACK
Thus is the standard acknowledge stnng that indicates that the
command was received and fits a known format.

NCK
Ths is the failure string that is sent when an error occurred. The only
time this should be sent when an error has not occurred is  duning

binary data packets.
Type F data packet format:
1 Xsize Ysize2rgbrgb...rgbrgb2rgbrgb..rgbrgb3

1 - pew frame 2 - new row 3 - end of frame

RGBS (CrY(Cb) ranges from 16 - 240

RGB (CrYCb) represents two pixels color values. Each pixel shares the red and
blue.

176 cols of R G B (Cr Y Cb) packets (forms 352 pixels)

144 rows

To display the comect aspect ratio, double each columm so that your final image
is 352x144

Type H packet:
H binl binl din2 bini ... bin26 bin27 r
Thus is the return packet from calling get histogram (GH). Each bin 1s
an 8 bit value that represents the number of pixels that fell within a set
range of values on a user selected channel of the image.

Bin - munber of pixels between 16 and 23
Binl] — munber of pixels between 24 and 31

Bin27 - mumiber of pixels between 232 and 240

C-17



Type T packet:
[T mx my x1 y1 x2 y2 pixels confidence's |

This 1s the retum packet from a color tracking or frame differencing command.

mx - The nuddle of mass x value

my - The middle of mass y value

x1 - The left most comer’s x value

yI - The left most comer’s y value

x2 - The nght most comer’s x value

y2 -The right most comer’s y value

pixels -Number of Pixels in the tracked region, scaled and capped at
255: (pixels+4)/8

confidence -The (¥ of pixels / area)*256 of the bounded rectangle and
capped at 255

Type S data packet format:
[S Rmaean Gmesn Buean Rdeviation Gdeviation Bdeviation ¥

This 1s a statistic packet that gives information about the camera’s view

Rmean - the mean Red or Cr (approximates r-g) value i the current
window

Gmean - the Green or Y (approximates intensity) value found n
the current window

Bmean - the mean Blue or Cb (approximates b-g) found in the current
window

Rdeviation - the *dewviation of red or Cr found mn the current window

Gdeviation- the *deviation of green or Y found in the current window

Bdeviation- the *deviation of blue or Cb found in the current window

*deviation: The mean of the absolute difference between the pixels and the
region mean.

C-18



