LAMPIRAN A
FOTO ALAT

Plant Simulasi Pengendalian Temperatur

Plant Simulasi Pengendalian Pencampuran

r

A-1

Training Kit Omron

‘9@

» ©F

== omron 44 44444 Lddd¢

A-2

LAMPIRAN B
PERANGKAT LUNAK

LADDER DIAGRAM
PLC MASTER TWIDO

Ladder Diagram

MEM_STA-
0 RT_TEMP
%I0.0 %3
I —
%h3
{ |
STOP_TE- MEM_STO-
MP P_TEMP
5210.4 %h9
i =
b4
START_T-
1 EMP
%01 %M
I —
%5
{ |
%I05 %M1
1]
32MB
b4l 1= 1640106
2
bl 1= 16#0300
%hvvdZ = 1640203
A3 = 160004
S5h44 = 16#0007
%MBE:3 = ZhWA7
3
SMBAE = ZhW43

SahWED = 160112

2ahAWET = 16#0007

“hWES = 16#0210

#hWES = 16#0000

#ahAWES = 16#0005

#ahWED 1= TB#000A

FaMWTD = 2amE:2

MW = TB#0106

bW = TR#0300

hAWE = 1640303

SahdWi3 = 1620000

Fahdiidd = 16#0006

EALFERER AN

FALKER BN AL U]

Sahdi15 = 16¥0106

FahdW16 = 16#0000

hdW17 = 1640306

SahdW16 = 16#0006

Fahd19 1= 202

10

1

12

ExCHZ %ihiid0:14

#%EC0
%5C04
=3
%% 5h
cu
1 CD
#%EC0.0
f
#%EC01
f
%SC%D.Z
T

EXCH2 2hW0:13

%SC%DG

EXCHZ ZahWBD:14

EXCHZ %ahdW15:8

RUNG 13 END OF PROGRAM

LADDER DIAGRAM
PLANT SIMULASI PENGENDALIAN TEMPERATUR

%513
I
I

Ladder Diagram

Zabdwil = 450

oAW1 =100

ZMW2 =10

a3 =10

START ~ STOP STOP_MA- LED
STER
%00 %01 540 %000
—t { | 1/} —
LED
%Q00
START_M-
ASTER
Seha
-
START LED SELENOK
D_VALVE
2100 Sh3 %000 %003
— Pt 1/t { | —
SELENOK-
D_VALVE
%003 2M1B
e |
SME
' '
START_M-
ASTER
Seha
SELENOK :
D_VALVE AL
%003 %3
N Q pa
TYFE TON
TE 1sec
ADJ v
S TMOP
130
LED POMPA
Seh3 %4 2000 2001
— 1 1/F | —
POMPA
%01 %h17

10

n

POMPA, e
%Q0.1 24hdd
I TN a —
TYPE TOM
TB 1sec
ADJ N
%TMI P
28
LED PENGAD-
UK.
% EATS %000 %002
} /F | —
PENGAD-
UK.
%002 %M18
]
PID O
PENGAD- ;
il %ThZ
%002 %45
IN f
TYPE TOM
TB 1sec
ADJ N
%TMZP
300
%356 MG
4| I —
Sahdv15 = 520
S4hdd
| f
b1 = 0
43
f
SELENOI- %15 = Zhv15 - 4
D_WALVE
%ME %003
Pl { } H
POMPA MW = ZhWIE + 18
%001
_| I H

Zabdiy20 1= MBS

2eMWIE = 20010

12

MWD = 220

W11 = S TMONY

SabW12 = SIW0L1.0

oMW = 2T

oMW1 = S TIMEN

FahdizZ = Tahdvd

RUNG 13

END OF PROGRAM

LADDER DIAGRAM
PLANT SIMULASI PENGENDALIAN PENCAMPURAN

Ladder Diagram

START STOF STOP_MAS- LED
0 TER
%00 %01 %M1 Q03
— I in —
LED
#0032
START_Ma.-
STER
M0
_' P
LED START TIMERVALY- WALVE
1 E_STOP
%003 0.0 M2 ZO0.0
— | 1P} Ut —
WALVE
%0300
SEMSOR_A-
TAS
%104
START_Ma-
STER
ZM0
P
LED TIMERWALY- SENSOR_T- SENSOR_A- WALVE POMPAT
2 E_STOF EMGAH Tas
Q03 EM2 0.3 %104 Q00 Q01
— f {PF 1/ 1/ i —
POMPA1
00
LED SEMSOR_T- SEMSOR_A- WALVE POMPAZ
3 EMGAH TaS
ZE03 0.3 %104 00 ZE02
— {P 11 1/ —
POMPAZ
ZE02
' '
LED SEMSOR_B- ETMO TIMERYALY-
4 AhdiH E_STOP
ZE03 0.2 EALE
¥ IN a —
TYPE TON
TB 1sec
ADJ Y
EZTMOP
1

10

M2

SENSOR_T-
EMGAH
0.3

LED
%003
%56

SEMNSOR_&-
TAS
#10.4

TIMERVALY-
E_STOP

WALVE
#00.0

POMPAT
%001

T

— — —— cu

ADJ Y
“rop
| 5 9909

4 CD

ADJ ¥
%C1P
1 g 9939

4 CD

CLOCK_TIM-
ER
EM3

—

ZMWE = ZMWS - 10

%56
I
CLOCK_TIM- WaLVE
ER
M3 %000
—F] I
PORPAT
001
|
POMPAZ

#h0.2
I

MW = EMWE + 7

TIMERWALY-
E_STOP
e

hwE = ZMWE + 4

1r
SENSOR_A-
TAS
°/°|DI.4
k

s =0

ZMwS =850

1

M = ZI0.0.0:5

MW = 200.0.0:4

EMW2 =200V

M3 =01

HMwe = HO2Y

#MO:2 = ZMWE

RUNG 12

END OF PROGRAM

LADDER DIAGRAM
PLANT SIMULASI LIFT

10

14

13

2

26

[Program Mame : MewwProgrami]

[Section Mame : Sectiont]

il 204.00
N O
]
| |
AHP1 204.mM
| O
AkP2
|
AKP3
| |
204.00 204.02
| | iy
A
204.0
| |
TL1 AHP1 201.00
| 1 O
201.00
| |
TLZ ARP2 201.m
| | IV/1I i
201.m
—
TL3 AKP3 201.02
N ¥ O
201.02
—
TOL1 SPT1 201.03
| % O
201.03
—
TOLZ SPT2 201.04
| IV.-'1 A
1T I R

10

11

12

13

14

15

30

34

37

40

43

47

33

a9

TOLS SPT3 201.05
|} 11 r
201.05
—
201.03 =L 201 .06
|1 1] I
| 11 A
201.04 SL2 201.07
|1 1] £,
| S
201.05 =L3 201.08
|1 1] I
|
201.06 201.08
|} r
201.07
|1
|
201.08
| |
AR P 1=
|1 1
| 11
1.0 zecand ... CMT
P2 0oo
|1
|
AWPS #0009
| |
CRTOO0
| |
201.03 =L CNTOOO AKP1
{ | | 11 r
201.00
1
AKP1
| |
201.04 cL2 CHTOO0 AKP2
N || A O
201.M
1
AKP2
| |

16
63

17
71

15
v

19
g3

20
g9

Pyl
93

22
101

23
107

24
113

201.03 L3 CMTOOO AHP3
| N 1 O
201.02

| |

ARP3

| |

20€1.m 204.02 L1 L2 204.03
| % | A O
204.03

| 1
201.02 204.02 L1 EL3 204.04
| % N 1 O
204.04

| |
20 .M 204 .02 L3 512 204 05
| % N A O
204.03

| 1
201.00 204.02 SL3 =01 204.06
| 1 L‘/‘I | I l/1| i
204 .06

| 1
201.00 204.02 L2 L1 204.07
| % N % O
204 07

| 1

201.02 204.02 SL2 L3 20405
| 1 | 1 O
204.05

| 1

201.03 204.M SL2 L1 202.00
| 1 l/1| | 1 Il/ll PN
202.00

|

201.03 204.M L3 L1 202.M
| 1 | A O
202.M

| 1

201.04 204 01 Sl SL2 20202
119 | | 11 | | 11 O
20202
| |
201 .04 204 01 SL1 L2 20203
125 | | 11 | | 11 &
202.03
| |
201 .05 204 01 sz sL3 202.04
131 | | 11 | | 1/ O
202.04
| |
201.05 204 01 = SL3 20205
137 | | 11 | | 11 &
202.05
| |
202.03 20206
143 | | o
202.04
| |
20205
| |
202.00 20207
147 | | {3
202.01
| |
20202
| |
204.03 201.09 tD 204 01 [
151 | | 11 1 11 &
204.04
| |
20405
| |
202.06
| |

32
158

33
167

34
171

33
176

36
174

ar
183

35
137

204 .05 201.09 MLl 204 1AL
| | 11 11 11 <
204 06
1
20407
1
202.07
SPT1 20412
{ {_r
SPT2
1
1T
SPT3
2040 P_1=s
1 11
1T
1.0 =econd . CHT
CMTO0Y 20412 oo
{ L
#0005
204.M CMTO0Y
1 11
L I DIFLICT 3
204.09
204.M CRTOO1 P 1=
|| |1 11
1T I 1T
1.0 =econd ... DIFLICT3)
20413
204.M P_1s CMTOO
|| 1 1
1T 10 10
1.0 zecond ... DIFUCT 3
20414
204.09 ARP1
|| 1
. o MOV21)
#0020
Okl

39
190

40
194

41
195

42
2m

43
205

CMTOO

AHP1
||

11

CMTODM
|

SUB(H)

Dt

#0003

Dt

AWP2
||

ADD(30)

Dt

#0005

Dt

AkP2
I

CMTO0

MOY(21)

#0020

Cihif2

11

ChTOO1
| |

SUBE1)

D2

#0003

D2

AD0(30)

Crn2

#0003

Dz

44
209

45
2

45
2B

47
220

45
272

49
224

20413 AKP3
|] ||

CHNTOO1

MCH (2]

#0020

Dih3

20414 AKFS
| |

11

CNTO01
| |

SUB(H)

Dihtz

#0003

Dihit3

ADDr30)

D3

#0005

Diht2

DIFLIET 3

20410

DIFLUCT 3)

20411

MCH (21

#0000

()

a0

1

32

23

4

25

226

225

230

232

233

235

204 11
11 I
L MCH217
#0052
Db
P 1=
[| -
1.0 =econd ... DIFUC 3
203.06
P 1=
| -
1.0 =zecond ... DIFUC 3
205.07
203.06 ML
1| | 1
L I IMCT3E)
Dot
205.07 hACr
1| | 1
. DEC(39)
Db

EMDi01) |-

LAMPIRAN C
DATASHEET

Presentation of the different types of communication

At a Glance

Twido provides one or two serial communications ports used for communications
to remote 1/O controllers, peer controllers, or general devices. Either port, if
available, can be used for any of the services, with the exception of
communicating with Twido Soft, which can only be performed using the first
port. Three different base protocols are supported on each Twido controller:
Remote Link, ASCII, or Modbus (modbus master or modbus slave).

Moreover, the TWDLCAE40DRF compact controller provides one RJ-45
Ethernet communications port. It supports the Modbus TCP/IP client/server
protocol for peer-to-peer communications between controllers over the Ethernet
network.

Remote Link

The remote link is a high-speed master/slave bus designed to communicate a
small amount of data between the master controller and up to seven remote
(slave) controllers. Application or 1/O data is transferred, depending on the
configuration of the remote controllers. A mixture of remote controller types is
possible, where some can be remote I/O and some can be peers.

ASCII

The ASCII protocol is a simple half-duplex character mode protocol used to
transmit and/or receive a character string to/from a simple device (printer or
terminal). This protocol is supported only via the "EXCH" instruction.

Modbus

The Modbus protocol is a master/slave protocol that allows for one, and only one,
master to request responses from slaves, or to act based on the request. The master
can address individual slaves, or can initiate a broadcast message to all slaves.
Slaves return a message (response) to queries that are addressed to them
individually. Responses are not returned to broadcast queries from the master.
Modbus master - The modbus master mode allows the Twido controller to send a
modbus query to a slave and await its reply. The modbus master mode is
supported only via the "EXCH" instruction. Both Modbus ASCII and RTU are
supported in modbus master mode.

Modbus Slave - The modbus slave mode allows the Twido controller to respond
to modbus queries from a modbus master, and is the default communications
mode if no other type of communication is configured. The Twido controller
supports the standard modbus data and control functions and service extensions
for object access. Both Modbus ASCII and RTU are supported in modbus slave
mode.

C-1

mailto:Techcomm@modicon.com?subject=Feedback%20on%20TwdoSW.chm::D-NA-0005772.1

I |
Note: 32 devices (without repeaters) can be installed on an RS-485 network (1
master and up to 31 slaves), the addresses of which can be between 1 and 247.

Modbus TCP/IP

Note: Modbus TCP/IP is solely supported by TWDLCAE40DRF series of
compact controllers with built-in Ethernet network interface.

The following information describes the Modbus Application Protocol (MBAP).
The Modbus Application Protocol (MBAP) is a layer-7 protocol providing peer-
to-peer communication between programmable logic controllers (PLCs) and other
nodes on a LAN.

The current Twido controller TWDLCAE40DRF implementation transports
Modbus Application Protocol over TCP/IP on the Ethernet network. Modbus
protocol transactions are typical request-response message pairs. A PLC can be
both client and server depending on whether it is querying or answering
messages.

Modbus Communications

Introduction

The Modbus protocol is a master-slave protocol that allows for one, and only
one, master to request responses from slaves, or to act based on the request. The
master can address individual slaves, or can initiate a broadcast message to all
slaves. Slaves return a message (response) to queries that are addressed to them
individually. Responses are not returned to broadcast queries from the master.

CAUTION

UNEXPECTED EQUIPMENT OPERATION

Be sure that there is only one Modbus master controller on the
bus and that each Modbus slave has a unique address. Failure
to observe this precaution may lead to corrupted data or
unexpected and ambiguous results.
Be sure that all Modbus slaves have unique addresses. No two
slaves should have the same address. Failure to observe this
precaution may lead to corrupted data or unexpected and
ambiguous results.
Failure to follow this instruction can result in injury or equipment
damage.

Hardware Configuration

A Modbus link can be established on either the EIA RS-232 or EIA RS-485 port
and can run on as many as two communications ports at a time. Each of these
ports can be assigned its own Modbus address, using system bit %S101 and
system words %SW101 and %SW102. .

C-2

mailto:Techcomm@modicon.com?subject=Feedback%20on%20TwdoSW.chm::D-NA-0005900.5

The table below lists the devices that can be used:

\Remote

|Port|Specifications

TWDLC-A10/16/24DRF,
TWDLCA40DRF,
TWDLMDAZ20/40DTK,
TWDLMDAZ20DRT

1

Base controller supporting a 3-wire EIA RS-485
port with a miniDIN connector.

TWDNOZ232D

Communication module equipped with a 3-wire
EIA RS-232 port with a miniDIN connector.
Note: This module is only available for the
Modular controllers. When the module is
attached, the controller cannot have an Operator
Display expansion module.

TWDNOZ485D

Communication module equipped with a 3-wire
EIA RS-485 port with a miniDIN connector.
Note: This module is only available for the
Modular controllers. When the module is
attached, the controller cannot have an Operator
Display expansion module.

TWDNOZ485T

Communication module equipped with a 3-wire
EIA RS-485 port with a terminal.

Note: This module is only available for the
Modular controllers. When the module is
attached, the controller cannot have an Operator
Display expansion module.

TWDNAC232D

Communication adapter equipped with a 3-wire
EIA RS-232 port with a miniDIN connector.
Note: This adapter is only available for the
Compact 16, 24 and 40 1/0O controllers and the
Operator Display expansion module.

TWDNAC485D

Communication adapter equipped with a 3-wire
EIA RS-485 port with a miniDIN connector.
Note: This adapter is only available for the
Compact 16, 24 and 40 1/0O controllers and the
Operator Display expansion module.

TWDNACA485T

Communication adapter equipped with a 3-wire
EIA RS-485 port with a terminal connector.
Note: This adapter is only available for the
Compact 16, 24 and 40 1/0O controllers and the
Operator Display expansion module.

TWDXCPODM

Operator Display expansion module equipped
with a 3-wire EIA RS-232 port with a miniDIN
connector, a 3-wire EIA RS-485 port with a
miniDIN connector and a 3-wire EIA RS-485

port with a terminal.

C-3

Note: This module is only available for the
Modular controllers. When the module is
attached, the controller cannot have a
Communication expansion module.

Note: The presence and configuration (RS232 or RS485) of Port 2 is checked
at power-up or at reset by the firmware executive program.

Nominal Cabling

Nominal cable connections are illustrated below for both the EIA RS-232 and the
EIA RS-485 types.

Note: If port 1 is used on the Twido controller, the DPT signal on pin 5 must
be tied to the circuit common (COM) on pin 7. This signifies to the Twido
controller that the communications through port 1 is Modbus and is not the
protocol used to communicate with the TwidoSoft software.

The cable connections made to each remote device are shown below.

Mini-DIM connection

RS-2Z3Z ElA cable

Tuwido Femuote
controller peripheral
TA0 | RxD [COM 10 |Rap| com
3 4 7 [
F5-425 ElA cable
Twido Remaote R emote
controllar peripharal peripharal

DA+ |porea [com bRT D1 A+ [DO(E-)com] (D1 A+ [D0{E-) com
i gl 7S] I [[[

Terminal block connecticn

Rermote Master Rermote

controller controller controller
A Bl oy A [BE] 0V A Bl oy
5] !E- 55 [[[|

ElIA RS-485 Line Polarization on TWDLCA<«40DRFControllers

There is no internal pre-polarization in TWDLCA40DRF controllers. Therefore,
external line polarization is required when connecting the TWDLCA*40DRF
Modbus master controller to the EIA-485 Modbus network.

(When there is no data activity on an EIA-485 balanced pair, the lines are not
driven and, therefore, susceptible to external noise or interference. To ensure that
its receiver stays in a constant state, when no data signal is present, the Modbus

C-4

master device needs to bias the network via external line polarization.)

Note: EIA RS-485 external line polarization must be implemented on the
Modbus Master controller only; you must not implement it on any slave
device.

The external line polarization assembly on the TWDLCA®40DRF mini-DIN RS-
485 EIA line shall consist in:

One pull-up resistor to a 5V voltage on D1(A+) circuit,
One pull-down resistor to the common circuit on DO(B-) circuit.

The following figure illustrates the external line polarization assembly on the
TWDLCA*40DRF mini-DIN RS-485 EIA line:

External polarization can be performed in any of two ways:
Connecting externally the user-provided polarization assembly via mini-
DIN fly cable. (Please refer to pin definition for connector.)
Using a polarization tap (configured for 2-wire polarization) and
polarization assembly (available soon from the catalog).

Software Configuration

To configure the controller to use a serial connection to send and receive
characters using the Modbus protocol, you must:

Step Description

1 Configure the serial port for Modbus using TwidoSoft.

2 Create in your application a transmission/reception table that will be
used by the EXCHXx instruction.

Configuring the Port

A Twido controller can use its primary port 1 or an optionally configured port 2
to use the Modbus protocol. To configure a serial port for Modbus:

Step Action

1 Define any additional communication adapters or modules
configured to the base.

2 Right-click on the port and click Edit Controller Comm Setup... and
change serial port type to "Modbus".

3 Set the associated communication parameters.

Modbus Master

Modbus master mode allows the controller to send a Modbus query to a slave,
and to wait for the response. The Modbus Master mode is only supported via the
EXCHXx instruction. Both Modbus ASCII and RTU are supported in Modbus
Master mode.

C-5

The maximum size of the transmitted and/or received frames is 250 bytes.
Moreover, the word table associated with the EXCHXx instruction is composed of
the control, transmission and reception tables.

\ |Most significant byte \Least significant byte
Control table \Command Length
(Transmission/Reception)
|Reception offset]Transmission offset
Transmission table |Transmitted Byte 1]Transmitted Byte 2

N -

|]Transmitted Byte n

|Transmitted Byte n+1 \

Reception table |Received Byte 1 \Received Byte 2

| Received Byte p

Received Byte p+1 |

Note: In addition to queries to invidual slaves, the Modbus master controller
can initiate a broadcast query to all slaves. The command byte in case of a
boradcast query must be set to 00, while the slave address must be set to 0.

Control table

The Length byte contains the length of the transmission table (maximum 250
bytes), which is overwritten by the number of characters received at the end of
the reception, if reception is requested.

This parameter is the length in bytes of the transmission table. If the Tx Offset
parameter is equal to 0, this parameter will be equal to the length of the
transmission frame. If the Tx Offset parameter is not equal to 0, one byte of the
transmission table (indicated by the offset value) will not be transmitted and this
parameter is equal to the frame length itself plus 1.

The Command byte in case of Modbus RTU request (except for broadcast) must
always equal to 1 (Tx and Rx).

The Tx Offset byte contains the rank (1 for the first byte, 2 for the second byte,
and so on) within the Transmission Table of the byte to ignore when transmitting
the bytes. This is used to handle the issues associated with byte/word values
within the Modbus protocol. For example, if this byte contains 3, the third byte
would be ignored, making the fourth byte in the table the third byte to be
transmitted.

The Rx Offset byte contains the rank (1 for the first byte, 2 for the second byte,
and so on) within the Reception Table to add when transmitting the packet. This
is used to handle the issues associated with byte/word values within the Modbus
protocol. For example, if this byte contains 3, the third byte within the table
would be filled with a ZERO, and the third byte was actually received would be
entered into the fourth location in the table.

C-6

Transmission/reception tables

When using either mode (Modbus ASCII or Modbus RTU), the Transmission
table is filled with the request prior to executing the EXCHXx instruction. At
execution time, the controller determines what the Data Link Layer is, and
performs all conversions necessary to process the transmission and response.
Start, end, and check characters are not stored in the Transmission/Reception
tables.
Once all bytes are transmitted, the controller switches to reception mode and
waits to receive any bytes.
Reception is completed in one of several ways:

timeout on a character or frame has been detected,

end of frame character(s) received in ASCII mode,

the Reception table is full.

Transmitted byte X entries contain Modbus protocol (RTU encoding) data that is
to be transmitted. If the communications port is configured for Modbus ASCI|,
the correct framing characters are appended to the transmission. The first byte
contains the device address (specific or broadcast), the second byte contains the
function code, and the rest contain the information associated with that function
code.

Note: This is a typical application, but does not define all the possibilities. No
validation of the data being transmitted will be performed.

Received Bytes X contain Modbus protocol (RTU encoding) data that is to be
received. If the communications port is configured for Modbus ASCII, the
correct framing characters are removed from the response. The first byte contains
the device address, the second byte contains the function code (or response
code), and the rest contain the information associated with that function code.

Note: This is a typical application, but does not define all the possibilities. No
validation of the data being received will be performed, except for checksum
verification.

Modbus Slave

Modbus slave mode allows the controller to respond to standard Modbus queries
from a Modbus master.

When TSXPCX1031 cable is attached to the controller, TwidoSoft
communications are started at the port, temporarily disabling the
communications mode that was running prior to the cable being connected.

The Modbus protocol supports two Data Link Layer formats: ASCII and RTU.
Each is defined by the Physical Layer implementation, with ASCII using 7 data
bits, and RTU using 8 data bits.

When using Modbus ASCII mode, each byte in the message is sent as two ASCI|I
characters. The Modbus ASCII frame begins with a start character (*:"), and can
end with two end characters (CR and LF). The end of frame character defaults to
OxO0A (line feed), and the user can modify the value of this byte during

C-7

configuration. The check value for the Modbus ASCII frame is a simple two's
complement of the frame, excluding the start and end characters.
Modbus RTU mode does not reformat the message prior to transmitting;
however, it uses a different checksum calculation mode, specified as a CRC.
The Modbus Data Link Layer has the following limitations:

Address 1-247

Bits: 128 bits on request

Words: 125 words of 16 bits on request

Message Exchange
The language offers two services for communication:
EXCHXx instruction: to transmit/receive messages
%MSGx Function Block: to control the message exchanges.

The Twido controller uses the protocol configured for that port when processing
an EXCHXx instruction.

Note: Each communications port can be configured for different protocols or
the same. The EXCHXx instruction or %MSGx function block for each
communications port is accessed by appending the port number (1 or 2).

EXCHXx Instruction

The EXCHXx instruction allows the Twido controller to send and/or receive
information to/from Modbus devices. The user defines a table of words
(%MWi:L) containing control information and the data to be sent and/or received
(up to 250 bytes in transmission and/or reception). The format for the word table
is described earlier.

A message exchange is performed using the EXCHXx instruction:

Swntax: [EXCH: % hli:L]
where: == port number(1 arz)

L = number of wards in the control words, transmission and reception tables

The Twido controller must finish the exchange from the first EXCHXx instruction
before a second can be launched. The %MSGx function block must be used
when sending several messages.

The processing of the EXCHXx list instruction occurs immediately, with any
transmissions started under interrupt control (reception of data is also under
interrupt control), which is considered background processing.

%MSGx Function Block

The use of the %MSGx function block is optional; it can be used to manage data
exchanges. The %MSGx function block has three purposes:

Communications error checking
The error checking verifies that the parameter L (length of the Word table)

C-8

programmed with the EXCHXx instruction is large enough to contain the
length of the message to be sent. This is compared with the length
programmed in the least significant byte of the first word of the word
table.

Coordination of multiple messages

To ensure the coordination when sending multiple messages, the %MSGx
function block provides the information required to determine when
transmission of a previous message is complete.

Transmission of priority messages

The %MSGx function block allows current message transmissions to be
stopped in order to allow the immediate sending of an urgent message.

The %MSGx function block has one input and two outputs associated with it:

Input/Output Definition |Description

R

Reset input Set to 1: re-initializes communication
or resets block (%MSGx.E =0 and
%MSGx.D =1).

%MSGx.D Communication 0: request in progress.

complete 1: communication done if end of
transmission, end character received,
error, or reset of block.

%MSGX.E Error 0: message length OK and link OK.

1: if bad command, table incorrectly
configured, incorrect character
received (speed, parity, and so on.), or
reception table full.

Limitations
It is important to note the following limitations:

Port 2 presence and configuration (RS232 or RS485) is checked at power-
up or reset

Any message processing on Port 1 is aborted when the TwidoSoft is
connected

EXCHXx or %MSG can not be processed on a port configured as Remote
Link

EXCHXx aborts active Modbus Slave processing

Processing of EXCHXx instructions is not re-tried in the event of an error

Reset input (R) can be used to abort EXCHXx instruction reception
processing

EXCHXx instructions can be configured with a time out to abort reception
Multiple messages are controlled via %MSGx.D

Error and Operating Mode Conditions
If an error occurs when using the EXCHXx instruction, bits %MSGx.D and

C-9

%MSGX.E are set to 1 and system word %SW63 contains the error code for Port
1, and %SW64 contains the error code for Port 2.

System |Use
Words
%SW63 |EXCH1 error code:

0 - operation was successful

1 — number of bytes to be transmitted is too great (> 250)
2 - transmission table too small

3 - word table too small

4 - receive table overflowed

5 - time-out elapsed

6 - transmission

7 - bad command within table

8 - selected port not configured/available

9 - reception error

10 - can not use %KW if receiving

11 - transmission offset larger than transmission table
12 - reception offset larger than reception table

13 - controller stopped EXCH processing

%SW64 |EXCH?2 error code: See %SW63.

Master Controller Restart
If a master/slave controller restarts, one of the following events happens:
A cold start (%S0 = 1) forces a re-initialization of the communications.
A warm start (%S1 = 1) forces a re-initialization of the communications.
In Stop mode, the controller stops all Modbus communications.

Modbus Link Example 1
To configure a Modbus Link, you must:
1. Configure the hardware.
2. Connect the Modbus communications cable.
3. Configure the port.
4. Write an application.
5. Initialize the Animation Table Editor.
The diagrams below illustrate the use of Modbus request code 3 to read a slave’s
output words. This example uses two Twido Controllers.

Step 1: Configure the Hardware:

C-10

1 Contraller| grs.ass ElA Port 4 To zerial COM 1

haszter 5‘

Module |RS.485 ElAPot2z— - TSXPEKWU_:' z T
CH{1d=
0

-

2 Controller| R5.435 ElA Port 1
Slave
hodbus | RS-425 El4 FPort 2

The hardware configuration is two Twido controllers. One will be configured as
the Modbus Master and the other as the Modbus Slave.

Note: In this example, each controller is configured to use EIA RS-485 on Port
1 and an optional EIA RS-485 Port 2. On a Modular controller, the optional
Port 2 can be either a TWDNOZ485D or a TWDNOZ485T, or if you use
TWDXCPODM, it can be either a TWDNAC485D or a TWDNAC485T. On a
Compact controller, the optional Port 2 can be either a TWDNAC485D or a
TWDNACA485T.

To configure each controller, connect the TSXPCX1031 cable to Port 1 of the
controller.

Note: The TSXPCX1031 can only be connected to one controller at a time, on
RS-485 EIA port 1 only.

Next, connect the cable to the COM 1 port of the PC. Be sure that the cable is in
switch position 2. Download and monitor the application. Repeat procedure for
second controller.

Step 2: Connect the Modbus Communications Cable:

Mini-DIMN connection

Twido Tuwid o
Modbus Mader Modbus 5lave
O A+ | DO(B-) | C|OTI.I1 D1 (A+) | DO(B-1 Sk
1 = 7 | [

Terminal block connection

Tuwido Tuwid o
hodbus hlaster Modbus 5lave
D A+] DO(B-1 [0% DA+ [DOB-1 | 0V
I N | |

The wiring in this example demonstrates a simple point to point connection. The
three signals D1(A+), DO(B-), and COM(0V) are wired according to the
diagram.

If using Port 1 of the Twido controller, the DPT signal (pin 5) must be tied to

C-11

circuit common (pin 7). This conditioning of DPT determines if TwidoSoft is
connected. When tied to the ground, the controller will use the port configuration

set in the application to determine the type of communication.

Step 3: Port Configuration:

Hardware -= Add Option
Ti'D W 0OZ485-

Hardware -= Add Option
T D HOZ485-

Hardware == Contreller Comm. Setting

Serial Port 2

Frotocal hadbus
Address 1

Baud Rate 19200
[ata Bits S(RTL)
F arity None
Stop Bit 1

Response Timeaut (x100ms) 10
Time between frames (ms) 10

Hardware == Contreller Comm. Setting

Serial Port 2

Frotocal Madbus
Address 2
Baud Rate 19200
[rata Bits E(RTL)
Farity Maone
Stop Bit 1

Response Timeout (x100ms) 100
Time bebwean frames(msi 10

In both master and slave applications, the optional EIA RS-485 ports are
configured. Ensure that the controller's communication parameters are modified

in Modbus protocol and at different addresses.

In this example, the master is set to an address of 1 and the slave to 2. The
number of bits is set to 8, indicating that we will be using Modbus RTU mode. If
this had been set to 7, then we would be using Modbus-ASCII mode. The only
other default modified was to increase the response timeout to 1 second.

'Note: Since Modbus RTU mode was selected, the "End of Frame" parameter

was ignored.

Step 4: Write the application:

LD 1
[%hfUi0 = 1680106 |
[hfui = 1620300 |
[%hUiZ = 1680203 |
[%hfUE = 1520000 |
[S6hAUS = 1580004 |
LD 1

AND %MSG2.0
[EXCHZ %D 14]
LD %MSG2.E

ST %200

END

Using TwidoSoft, an application program is written for both the master and the
slave. For the slave, we simply write some memory words to a set of known
values. In the master, the word table of the EXCHXx instruction is initialized to
read 4 words from the slave at Modbus address 2 starting at location %MWO.

LD 1
[% b0 = AGREEEE]

[= 16#67ES |
[bz = 16#6870 |
[M = 1EHTAT2 |
END

Note: Notice the use of the RX offset set in %MW1 of the Modbus master. The
offset of three will add a byte (value = 0) at the third position in the reception
area of the table. This aligns the words in the master so that they fall correctly
on word boundaries. Without this offset, each word of data would be split
between two words in the exchange block. This offset is used for convenience.

C-12

Before executing the EXCH2 instruction, the application checks the
communication bit associated with %MSG2. Finally, the error status of the
%MSG?2 is sensed and stored on the first output bit on the local base controller
I/0. Additional error checking using %SW64 could also be added to make this
more accurate.

Step 5:Initialize the animation table editor in the master:

Address Current Retained Format

1 %his 0203 Qo000 Hexadecimal
2 %MWAS 0002 0000 Hexadecimal
3 %hWT 6555 0000 Hexadecimal
4 Whiniz G7EE 0000 Hexadecimal
A %MW §9Y0 0000 Hexadecimal
G Whwi0 7172 0000 Hexadecimal

After downloading and setting each controller to run, open an animation table on
the master. Examine the response section of the table to check that the response
code is 3 and that the correct number of bytes was read. Also in this example,
note that the words read from the slave (beginning at %MW?7) are aligned
correctly with the word boundaries in the master.

Modbus Link Example 2

The diagram below illustrates the use of Modbus request 16 to write output
words to a slave. This example uses two Twido Controllers.

Step 1: Configure the Hardware:

1 Cantreller] gs.g85 ElA Port 1 To serial COM 1
hodbus ¥

master | R5.485 EIA Pot2— Taxpgxmﬂ—:l i
C_ 143
&

2 Controller| R5.485 ElA Port 1
hodbus
=lawe RE-425 ElAa Port 2

The hardware configuration is identical to the previous example.

Step 2: Connect the Modbus Communications Cable (RS-485):

C-13

Mini-0D1M connectien

Twido
Modbus Maser
D1 A+ [D00B-1 | COhd
1

E| ?|

Tuvida
Modbus Slawve

DA+ DEIi{EI-]I| C?M

Terminal block connection

Tuwid o
hodbus hdaster

D1 A+ [D0iB-7 [o
& R

Tuvida
ladbus 5lawve

D1 A+ | DEII{lEI-]l [o
|

The Modbus communications cabling is identical to the previous example.

Step 3: Port Configuration:

Hardware -= Add Option
T D N OZ425-

Hardware -= Add Option
T [H OZ485-

Hardware == Controller Comm. Selting

Serial Port 2

Frotocal hodbus
Address 1

Baud Rate 19200
[rata Bits S(RTL)
F arity Mane
Stop Bit 1

Response Timeout (x100ms) 10
Time between frames (ms) 10

Hardwuare == Contraller Comm. Setting

Serial Fort 2

Frotocaol Maodbus
Address 2
Baud Rat= 19200
[rata Bit= S(RTL
F arity Mane
Stop Bit 1

Response Timeout (x100ms=) 100
Time between frames (ms) 10

The port configurations are identical to those in the previous example.

Step 4: Write the application:

LD 1
[% M0 = AER010C |
[% i = 160007 |
[% M2 = AGR0210 |
[% M = AG#0010 |
[% bl = 160002 |
[% MS = 1E#£0004 |
[% WG = 16#E5EE |
[%MWT = 1GRETES |

LD 1
AND WMEG2.D

[EXCHZ %hdnid:14]
LD %MSG2.E

ST %E0.0

END

Using TwidoSoft, an application program is created for both the master and the
slave. For the slave, write a single memory word %MW?18. This will allocate
space on the slave for the memory addresses from %MWO through %MW18.
Without allocating the space, the Modbus request would be trying to write to

LD 1
[M2 = 1GHEFFFF]

EHD

locations that did not exist on the slave.

C-14

In the master, the word table of the EXCH2 instruction is initialized to read 4
bytes to the slave at Modbus address 2 at the address %MW16 (10 hexadecimal).

Note: Notice the use of the TX offset set in %MW1 of the Modbus master
application. The offset of seven will suppress the high byte in the sixth word
(the value 00 hexadecimal in %MWS5). This works to align the data values in
the transmission table of the word table so that they fall correctly on word
boundaries.

Before executing the EXCH2 instruction, the application checks the
communication bit associated with %MSG2. Finally, the error status of the
%MSG2 is sensed and stored on the first output bit on the local base controller
1/0. Additional error checking using %SW64 could also be added to make this
more accurate.

Step 5:Initialize the Animation Table Editor:

Create the following animation table on the master:

Address Current Retained Format

1 %hiid 040C 0000 Hexadecimal
2 %Mt 000F 0000 Hexadecimal
3 %Wk 0210 0000 Hexadecimal
4 %k 0040 0000 Hexadecimal
5 %kl 0002 0000 Hexadecimal
G %Wkt 0004 0000 Hexadecimal
T kg 8565 0000 Hexadecimal
8 %Whw7 SFGE 0000 Hexadecimal
9 %hiig 0240 0000 Hexadecimal
10 % 0010 0000 Hexadecimal
11 %hWH0 0004 0000 Hexadecimal

Create the following animation table on the slave:

Address Current Retained Format

T %MNAG G565 0000 Hexadecimal
2 %hMT 6YGE 0000 Hexadecimal

After downloading and setting each controller to run, open an animation table on
the slave controller. The two values in %MW16 and %MW17 are written to the
slave. In the master, the animation table can be used to examine the reception
table portion of the exchange data. This data displays the slave address, the
response code, the first word written, and the number of words written starting at
%MWS8 in the example above.

Standard Modbus Requests

Introduction

These requests are used to exchange memory words or bits between remote
devices. The table format is the same for both RTU and ASCII modes.

C-15

mailto:Techcomm@modicon.com?subject=Feedback%20on%20TwdoSW.chm::D-NA-0006251.1

Bit

%Mi

\Word

%MWi

Modbus Master: Read N B

its

The following table represents requests 01 and 02.

Table |Most significant byte Least significant byte
Index
Control table 0 01 06 (Transmission length)
(Transmission/reception) ((*)
|1 |O3 (Reception offset) |00 (Transmission offset)
Transmission |2 |Slave@(1..247) |01 or 02 (Request code)
table 3 \Address of the first bit to read
|4 |N1 = Number of bits to read
Reception table |5 |Slave@(1..247) |Ol or 02 (Response code)
(after response) g 00 (byte added by Rx ~ [N2
Offset action) = Number of data bytes to
read
= [1+(N1-1)/8],
where [] means integral
part
7 Value of the 1st byte Value of the 2nd byte (if
(value =00 or 01) N1>1)
8 Value of the 3rd byte
(if N1>1)
(N2/2)+6 (if |Value of the N2th byte
N2 iseven) |(if N1>1)
(N2/2+1)+6
(if N2 is odd

(*) This byte also receives the length of the string transmitted after response

Modbus Master: Read N Words
The following table represents requests 03 and 04.

Table |Most significant byte Least significant byte
Index
Control table 0 01 06 (Transmission
(Transmission/reception) |length) (*)
1 03 (Reception Offset) |00 (Transmission
offset)
Transmission |2 |Slave@(1..247) |03 or 04 (Request

C-16

table

| |code)

(after response)

|3 |Address of the first word to read
|4 |N = Number of words to read
Reception table |5 Slave@(1..247) 03 or 04 (Response
code)
6 00 (byte added by Rx [2*N (number of bytes
Offset action) read)
7 IFirst word read
8 Second word read (if N>1)
]
IN+6 |Word N read (if N>2)

(*) This byte also receives the length of the string transmitted after response

Note: The Rx offset of three will add a byte (value = 0) at the third position
in the reception table. This ensures a good positioning of the number of
bytes read and of the read words’ values in this table.

Modbus Master: Write Bit

This table represents Request 05.

Table
Index

Most significant byte Least significant byte

Control table 0

01 06 (Transmission
(Transmission/reception) (length) (*)

table

1 00 (Reception offset) 00 (Transmission
offset)
Transmission |2 Slave@(1..247) 105 (Request code)

|Address of the bit to write

|Bit value to write

(after response) |6

Reception table |5

|Slave@(1..247) |05 (Response code)

|Address of the bit written

|Va|ue written

(*) This byte also receives the length of the string transmitted after response

Note:

This request does not need the use of offset.

The response frame is the same as the request frame here (in a normal

case).

For a bit to write 1, the associated word in the transmission table must
contain the value FFOOH, and 0 for the bit to write 0.

C-17

Modbus Master: Write Word
This table represents Request 06.

Table |Most significant byte Least significant byte

Index
Control table 0 01 06 (Transmission

(Transmission/reception) (length) (*)
1 00 (Reception offset) 00 (Transmission
offset)

Transmission |2 |Slave@(1..247) |06 (Request code)
table 3 /Address of the word to write

|4 |Word value to write
Reception table |5 |Slave@(1..247) |06 (Response code)
(after response) |g /Address of the word written

|7 |Va|ue written

(*) This byte also receives the length of the string transmitted after response

Note:

This request does not need the use of offset.
The response frame is the same as the request frame here (in a normal

case).

Modbus Master: Write of N Bits
This table represents Request 15.

Table Most significant byte Least significant byte

Index
Control table |0 01 8 + number of bytes

(Transmission/reception) (transmission)

1 00 (Reception Offset) (07 (Transmission offset)
Transmission |2 Slave@(1..247) 15 (Request code)
table
\ \3 |Number of the first bit to write
\ \4 |N1 = Number of bits to write

5 00 (byte not sent, offset |N2

effect) = Number of data bytes
to write
= [1+(N1-1)/8],
where [] means integral
part
\ \6 |Va|ue of the 1st byte |Va|ue of the 2nd byte
\ \7 |Va|ue of the 3rd byte |Va|ue of the 4th byte

C-18

transmission table.

(N2/2)+5 |Value of the N2th byte
(if N2 is
even)
(N2/2+1)+5
(if N2 is
odd
Reception | Slave@(1..247) 115 (Response code)
table (after /Address of the 1st bit written
response)] |Address of bits written (= N1)
Note:

The Tx Offset=7 will suppress the 7th byte in the sent frame. This
also allows a good correspondence of words’ values in the

Modbus Master: Write of N Words
This table represents Request 16.

Table Most significant byte Least significant byte
Index
Control table 0 01 8 + (2*N)
(Transmission/reception) |(Transmission length)
1 00 (Reception offset) 07 (Transmission
offset)
Transmission |2 Slave@(1..247) 116 (Request code)
table 3 |Address of the first word to write
4 IN = Number of words to write
5 00 (byte not sent, offset |2*N = Number of
effect) bytes to write
\6 |First word value to write
7 Second value to write
IN+5 |N values to write
Reception table [N+6 |Slave@(1..247) 116 (Response code)
(after response) [N+7 [Address of the first word written
IN+8 |Address of words written (= N)
Note: The Tx Offset = 7 will suppress the 5th MMSB byte in the sent frame.
This also allows a good correspondence of words’ values in the transmission
table.

C-19

LAMPIRAN D
GAMBAR TRENDING PARAMETER PID
PLANT SIMULASI PENGENDALIAN
TEMPERATUR

Paremeter PID Heater

Setpoint [EEEEEE < c.01°c T INEEEE 0.1 s suno HEERES
<p BEEGGEEE~ o0 To EEEEEE <0 -

S bl | o @ [= b = | = e

252007 1 0: 3400 AR

P T P WP o A A ki SR
Fr=an—— e =i ! = I_; =f=—==x
f=ooo TS et vl i
‘=FO0

s
[5 Minutes =izt 44 4+ B¢ T 5020642007 10:37:05:031 =
Objeck Tree I End Time I Craration I Tag I
—IE= Pane=1

i = FPenl 2/E/2007 10:

00:0%:00 SUHU

[u] 5 ebFoink -

Paremeter PID Heater

Setpoint | EERREE < 0.01°C Ti O = 0,15 Suhu
<o [ECGGEEE-<o.01 o EEKEGE < 0.1 s

EF bl | & @3 e el b

=t | e
252007 105700 Ah ZMEZ2007F 105200 A 252007 1 0:59:00 Ahl

F==5a —— e
I=se . "—bzl_p-’ — S r—

= dula]

[2 Minutes {44 4 b e T 4020642007 10590300140
Chbjeckt Tree | End Time | v akion | Tag |

- E= Panel
| T Feri |o/bo2o07 .. |0m0z00 |SUHL |

w7l Penz 2/E/2007 10.... 00:03:00 S etFaint

Paremeter PID Heater
setpoint [EENEEN > 0.01°C T x0.1 s sunu IEEEEE
Kp 2500 Eaupe To IEEEE < 0.1 s
e = =T T A e IR S (N B)
Sr2007F 11:12:00 A 252007 11:19:00 A0 252007 1 1|:20:DD A
1 ———
Fe=an = ﬂ“uﬂglmeﬁm,wmmm—ﬁ-ﬂmﬁJf«_ﬂ—”ﬂ"‘*‘L
moe—
F=rauls]
[2 Minutes =izt 44 4 B B T A02/06/2007 11:20:42:055 =
Objeck Tree I End Time I Ciurakion I Tag I
- E= Panel
« [l Pen2 2/6/2007 11:... 00:03:00 S etPaint

D-1

Paremeter PID Heater

Setpoint | EEGREIE - 0.01°C
Kp mmm

=== A= W= B e *a\-I\-Ialg'l

252007 11: 2500 Al

B0 4

Subiu

ZMSz007F 1 1I ppcin

00 A

[5 Minutes =izt 44 4 b ke T 4020642007 11:31:56:984 =
Objeck Tree

| End Time I Duration I Tag I
- E= Panel

Paremeter PID Heater

setpoint [EEEEEE<c.01°c T IEEEEEE <01 =
Hp IEEETE < 0 O 7o IEEEE <O S
S b | = @ (a2 e B 3= | =

11|:4D:DEI A
i

suhu IEENES

2552007 11:41:00 AR 252007 11 :42:00 A
] - T L L paen i1
%U = e e e e
p=drguln
[= Minutes =Jl= 44 4+ e T S 020642007 11:42:56:656 =
Chbjeckt Tree | End Time | Durakion | Tag |
— E= Panel
ST N ' [sudu ||
T Fenz 262007 11:.. 00:03:00 SetPoint

Paremeter PID Heater

setpornt NEEEENE < 0.01°C T MEINEN < 0.1 = sunu

Hp Td

== #@@llﬁw\%#lgl

|T-"‘1 0zZ:00 F M

% 0,15

2."6."2007 ‘1 04 o0 F R | 252007 1 ? 0500 F

‘T | I BT oI 7 Pt Ll e
[P L T U T e T e T N S A
2700

&
[5 Minutes ~Jjr=t 44 4 W T 4020842007 12:06:46:109 3
Cbject Tree | End Time | Darakion | Tag |
- E= Panel

R Fenl 2/6/2007 12 00:05:00 SUHL

Q0: 05: 00

Paremeter PID Heater

Setpoint MEEEHINE - 0.01°c 7! MEEEENE 0.1 > Sun
Kp o I < 0.1 s

= =d | ﬂwﬁ.lf o b = | e

ZM5/2007 1 2:19:00 F M ZM5/Z007 1 ?.QD.DD F b

ZM52007 1 ?:2‘1 o0 F

-]

|} F = i

— = = - —r——— - A R LT e i
S — 1 ST =

= el “_:‘_1—;. i p—————

o

o

t=1=1n

[2 Minutes ~[l+=t 44 4 ¢ #e TS 0zr0Es2007 12:21:16:500 2
Objeck Tree I End Time I Crurakion I Tag I
— E= Panel

[[Penz2 . 00:03:00 SetPoint

Paremeter PID Heater

Setpoin: NEEITNE - 0.01°C T/ EEEEE 0.1 > sun. IEEHE

p xoo1 To I

== = A A N S =

20602007 24200 PR 2."8."200? 3 <4400 F M
faTul rr——— e
- o by 124

ETwTae

[5 Minutes ==t 44 4 b ke 7T 2020642007 15:45:38:390 -

Obhjeckt Tree I End Time I Crurakion I Tag I

- E= Panel
- = T ——

. [~ IR F'en2 SetFPoint

L R]

Paremeter PID Heater

Setpoint [EEEEEN < 001°c T IIEECEEE <01 s sunu IEERS
Kp IEEEEE < 0.0 To I 0.0 s

e | & 3 [el B = |

2."5."2007 3 56 oo PR 2."5."2007 3 58 oo P

T e— ——
=Fo0

e

o
=295
[5 Minutes ~[lv=t 44 4 B #e T4 02/06/2007 15:59:07:447 2
Objeck Tree I End Time I Crurakion I Tag I
- E= Panel

s Peni 2/6/2007 2:5... 00:05:00 SUHU

D-3

[
Paremeter PID Heater

setpoint IEEEEEE > 0.01°c T TGN < 0.1 5
«p DEEEEEEEx 0.0t 7o IR < 0. S

= = T A e N S

252007 40500 F M

suhu [IEERE

ZAS/2007 40500 F

TaTw] _ B, i "L . L L .
[Zooo™
ECFCIELE]
[5 Minutes ~[lv=t 44 4 ¢ vk TS ozepeesonr 16:09:21:863 2
Objeck Tree I End Time I Crurakion Tag I
- E= Panel

w g [Fernl

24652007 4:0... SUHU

00:05:00
[]

Paremeter PID Heater

Setpoint | EEREEE < 0.01°C

ko T < 0,01
E | s @3 [e Er | @&
107 A4 6:38:00 252007 1 6:40:00 . ZAS/Z007 A 6:42:00
I T S =
=S00 I
f i
=000
E
44 4 vk 7S 02/06/2007 16:42:48:578 =
Objeck Tree End Time Curakion Tag |
- E= Panel

N

2/6/2007 16

aO0: 05: 00

Paremeter PID Heater

Setpoint [EEEEEE 0.0 "c Ti IIIEEEE -0 =

Suhu

p BEEGEEEN <001 T x0.1 s
EF =l S 3 B[] e e EE' | &
252007 155400 252007 1655600
o

CHC) - a - T = —

cunr
[5 Minutes e I T S ¥ ¥ £ 0200642007 16:57:52:072 -3
Object Tree End Time Craration Tag |
— E= Panel

B Prem 246/2007 16 00:05:00 SUHLU

D-4

Paremeter PID Heater

setpoint IEEEEENE > 0.01°c T EEGEEEN < 0.1 5 Suhu

«p DECCEEEE <00t 7o I 0.1 =
= R R e N SN e =l
I1 0400 252007 A 70500 252007 170500
: — ‘.L-‘ 1™, 7T Tl
b, ™ s ra—
=~ e
ks=ss:
[5 Minutes ~[*=t 44 4 B w74 02/06/2007 17.02:57:540 =
Objeck Tree I End Time I Curation I Tag I
- E= Panel
w A Pen 26,2007 17:... 00:05:00 SUHL

Paremeter PID Heater

Setpoint [EEREEN < 0.01°c 71 IIEEEEE 0.1 = suhu IEEREE
p =GR < 0O 7o IR < O.1 S

B | & EmE s s || e

2M52007 4 72000 252007 |1 Fi22:00
T
e

ESLETEE R i e

]

==
[5 Minutes ~J|H= 4 4+ e TS 02/0642007 17:23:26:308 2
Tbject Tree I End Time I Cyarakion I Tag I
- E= Panel
L =i T — T ——

[Il Per2 24642007 17:... 00:05:00 SetPoint

Paremeter PID Heater

Setpoint [EERENN < 0.01°C T

Hp

] # 0,15 Suhu
Td 100 = 0,15

m=2= =N R BRI S N -)

252007 172200 252007 1 72400 |
o T o e i
ETTeT= e =
[5 Minutes ~||t=t 44 4+ me T Anz/oss2007 1735259209 -
Objeck Tree I End Time I Dur akion I Tag
- E= Pan=l

~ [I

Penl

262007 1 00:05:00 SUHLU

D-5

	A)

