MANTIK

by Turnitin Turnitin

Submission date: 31-Mar-2025 12:01PM (UTC+0700)

Submission ID: 2563115555

File name: 6201-Article_Text-37008-1-18-20250328_Revisi_tanpa_comment.docx (1.6M)
Word count: 3761

Character count: 21449

Jurnal Mantik, x (x) (20xx), 1SSN 2685-4236 (Online)
Published by:Instifute of Computer Science (IOCS)

Jurmal Mantik

Journal hemepage: www.locscience.org/ejournal/index.php/mantik

I0OCSCIENCE

Segmented least recently used cache replacement
simulator

Marvin Chandra Wijaya!:2, Maria Angela Kartawidjaja3, Kyle Edmund*
Program En ineering Profession, Atma Jaya Catholic University, Jakarta, Indonesia
2Department of C uter Engineering, Maranatha Christian University, Bandung, Indonesia
“Departement of Electrical Eng‘.neerj'.ng,ntma Jaya Catholic University, Jakarta, Indonesia
4Departement of Informatics Engineering, Maranatha Christian University, Bandung, Indonesia

ARTICLE INFO ABSTRACT (9 PT)

Article history: The block replacement process in the mem cache is an
essential technique in computing systems to improve the
efficiency of data retrieval from high-speed memory. Various
caching algorithms have been developed to @ed up data
retrieval access in the memory cache, including Least Recently
Used (Im), Least Frequently Used (LFU), and First In First Out
Keywords: (FIFO). This study aims to develop a simulator by combining the

LRU and LRU methods called Segmented Least Recently Used

Received: Editor Duties
Revised: Editor Duties
Accepted: Editor Duties

Block Replacement; (SLRU), which is able to process data retrieval from the memory
Cache Memory; cache more efficiently. Experiments on the simulation program

Hit Ratio; created were carried out on 10 random data groups to determine

SLRU. the effectiveness of each block replacement algorithm. Based on

the test results, SLRU had the best performance, with an average
hit ratio of 71.4%, followed by LRU (67%), LFU (62%), and FIFO,
which showed the lowest hit ratio performance with a hit ratio of
55.8%. The adxan:age of SLRU lies in dividing cache
segmentation into two segments: the probationary segment (LRU)
and the protected segment (LFU). Based on the experiment
results, it was concluded that SLRU has more efficient results in
handlingsdynamic data access patterns than other algorithms.

This is an open access article under the CC BY-NC license.

(ot

Corresponding Author:

Marvin Chandra Wijaya,

gram of Engineering Profession,

Atma Jaya Catholic University,

Jl. Jendral Sudirman 515, South Jakarta,Jakarta, 12930, Indonesia.
Email: marvin.cwi@eng.maranatha.edu

1. INTRODUCTION

Cache replacement is the condition in which the data in the cache needs to be changed to
remain within its storage limits. The cache itself acts as temporary storage that promptly
provides the information when the system needs to access frequently used data compared
to real-time when the system would have to access that data in volatile (such as RAM) or
permanent storage (Podlipnig & Boszormenyi, 2003). If cache space is still available, the
new data can be placed in the cache without removing any previously stored data. But,
when it saves to say the cache is filled, the system would then need to decide what data to
remove in order for other more relevant data to arrive (Priva, Kumar, Begum, &

Journal homepage: www.iocscience.org/ejournal/index.php/mantik

2 a ISSN 2685-4236 (Online)

Ramasubramanian, 2019). Data removal is generally based simply on the frequency of
recent use or when the data was last requested/accessed. Once the previous data is
removed, the new required data will be then inserted into the cache for fast access upon
the next access cycle. This process is done automatically and continuously as long as the
system is operational (Wijaya, 2020). Various types of processor architectures such as
CISC architecture and RISC architecture require cache memory in the data retrieval
process (Bachri, Alexander, Osmond, Widawati, & Kartawidjaja, 2024). Cache replacement
is done/applied within computer systems, web storage, databases, and hardware
components operating in CPUs and SSDs, especially those that need large cache memory
(Yennimar, Faturrahman, Nesen, Guci, & Pasaribu, 2023). The data collection process
greatly influences the memory architecture used in local and shared memory, especially in
parallel computing (Satria, Barakbah, & Sudarsono, 2021). Efficient cache management
will allow the system to operate more efficiently and at less total access time when
interacffh with relevant data is requested.

Least Recently Used (LRU) is a cache replacement strategy that evicts the data that
has not been accessed for the longest period (Xiong & Szefer, 2020). This strategy effectively
maintains frequently accessed data in the cache, given that access patterns are similar
(Souza & Freitas, 2024). The advantage is enhanced performance and cache efficiency
because it retains data still of value to the system, but the disadvantage is increased
complexity for implementation due to the need to track the order a given element is
accessed within the cache (Zheng et al., 2022).

First-In, First-Out (FIFO) replaces the data that first enters the cache, regardless of
how often it is used (J. Yang, Zhang, Qiu, Yue, & Vinayak, 2023). Simple to apply is its
advantage because it does not require keeping track of how frequently data is used. The
disadvantage is the potential of replacing data that is still used frequently, resulting in
performance that may not be optimized, especiﬂwhen older data are still in active use.

Least Frequently Used (LFU) eliminates the least recently used data based on the
number of accesses (Alzakari, Dris, & Alahmadi, 2020). Its strength is its optimality in
terms of retaining the most frequently used data, but its weakness is significant as well,
with the potential to retain data that was frequently used in the past but is no longer
relevant in the near future.

Random Replacement (RR) causally deletes data based on randomly selected data
with no regard to patterns of access (Unterluggauer, Harris, Constable, Liu, & Rozas,
2022). A main advantage to this method is its simplicity and ability to avoid the additional
processing cost of tracking data usage history. However, this is a large downside of this
method, as it does not consider the relevance of the data and can lead to the removal of
useful data, thereby decreasing the efficiency of the cache storage system.

In block replacement, several important parameters must be considered, including
the level of cache associativity, replacement policies such as LRU, FIFO, LFU, or Random,
as well as the age factor and frequency of block usage (Kumar & Singh, 2016). In addition,
dirty bits affect whether data must be written back to memory before block replacement,
depending on the write-through or write-back policy. The cache miss rate is also an
important factor because it affects the efficiency of data access, which can be optimized by
considering temporal and spatial locality when selecting blocks to be replaced (Asiatici &
lenne, 2019).

Several areas require improvement to enhance the current block replacement
philosophy. More precise predictions can be achieved by utilizing machine learning or Al-
enhanced replacement policies, predicting data access patterns more effectively than
classical methods like LRU or LFU (Q. Yang et al., 2023). Improved algorithms that adapt
to application usage patterns enhance efficiency (Krishna, 2025). LRU and LFU need to
reduce overhead and complexity because it will burden the memory and speed of the
computer due to the required tracking access history. Furthermore, reducing cache miss
rates is possible by combining replacement policies with smarter prefetching to ensure

Jurnal Mantik, Vol.xx, No. xx, Month 20xx: pp XxX-Xx

Mantik ISSN 2685-4236 (Online) a 3

necessary data is available in the cache before it is required. Temporal locality-aware
replacement strategies help retain data that is likely to be used soon (Sonia et al., 2021).

Another key improvement is the effective management of dirty bits, which will
reduce the number of unintended writebacks to main memory by using dirty bit flushing
optimizations (such as flushing a block only if it was modified enough times). In particular,
hybrid write-through or write-back algorithms can be configured for workloads (Young,
Chishti, & Qureshi, 2019). As computing has progressed, requests for variants of the
replacement mechanism will exist to make them more efficient for multi-core and GPU
architectures, specifically as they relate to multi-threaded execution with shared caches.
Reducing power consumption is equally important, especially for mobile devices and
embedded systems, in which offering policies that account for energy for replacement can
save energy, maintain cache effectiveness and latency, and refresh the main memory
storage to conserve battery life (Sethumurugan, Yin, & Sartori, 2021). In large data centers,
these enhancements will lower operational costs (Khan et al., 2021).

Compared to other cache replacement techniques, the SLRU algorithm has several
benefits. First, it outperforms rules like FIFO and regular LRU regarding the cache hit
ratio (Hasslinger, Ntougias, Hasslinger, & Hohlfeld, 2023). Second, as simulations like
Icarus show, it minimizes latency and lowers connection load. Third, it is appropriate for
operating systems caching file blocks because of its segmented structure, which enables it
to adjust to various usage patterns. Because of these characteristics, the SLRU algorithm
is a unique option among contemporary cache policies.

2. RESEARCH METHOD

2

!he Segmented Least Recently Used (SLRU) method is a segmented cache replacement of
cache memory policy that aims to improve cache data management. It improves
performance by prioritizing frequently used data and reducing less-used elements. This
method boosts the cache hit rate, resulting in faster access to vital information. Parting
the cache into segments effectively distinguishes frequently accessed material from rare
items. There are some strategies to increase efficiency and better use existing memory
resources.

SLRU method improves cache performance by separating it into two parts:
probationary and protected. Data used frequently moves to the protected area, preventing
unnecessary data loss. The system can adjust the size of the shielded portion to meet your
system's requirements. The SLRU algorithm monitors data usage via reference bits,
allowing vital data to be stored for longer periods. The SLRU algorithm is suitable for
various applications, including operating systems and databases.

The probationary and protected segments are the two primary segments into which
the SLRU algorithm divides the cache. The probationary phase is always where new entries
begin. The protected section prioritizes frequently used data, where an entry goes if it is
reaccessed. Due [B) its structure, the cache will adjust to both short-term and long-term
access patterns. When the cache is full, the program removes the least recently utilized
material from the probationary section. This method increases overall efficiency and
reduces needless cache eviction.

The SLRU algorithm uses reference bits to monitor the frequency of data access.
An entry's reference bit changes each time you visit it, indicating its importance. Less-
used entries stay in the probationary section, while entries with more reference activity are
moved to the protected segment. Due to this dynamic management, the cache prioritizes
data according to real-time usage patterns. The SLRU algorithm compromises between
allowing for new entries and keeping frequently used data by utilizing reference bits.

First Author, Article Tittle...

4 a ISSN 2685-4236 (Online)

By splitting the cache into two segments, the page replacement process known as
SLRU (Segmented Least Recently Used) improves on the conventional LRU (Least Recently
Used) technique (as shown in Figure 1):

* Pages that are often accessed are stored in the tected segment.
* Newly uploaded pages or just removed from the protected segment are
stored in the probationary segment.

Protected Probationary
Segment Segment
Hit Hit

MRU Replacement LRU MRU Replacement LRU
Priorities rioritie:

Figure 1. Protected Segment and Probationary Segment (Yamaki, 2019).

20

%gure 2 shows the four steps of the SLRU algorithm procedure. The CPU will give
instructions to retrieve data from memory. The data to be retrieved will be checked to see
whether it is in the memory cache. If it is not in the memory cache, then the page will be
retrieved and inserted into the probationary segment. Pages that are frequently accessed
will be inserted into the protected segment. Because the protected segment has limited
space, pages that are already in the protected segment but are least used will be returned
to the probationary segment.

When a new page is accessed , it is
placed in the probationary segment.

a page in the probationary segment
is accessed again before it 1s evicted,
it is promoted to the protected
sepment.

The protected segment has a limited
size. If it becomes full, the least
recently used page in it is moved back
to the probationary segment instead of
being discarded immediately.

If a page in the probationary segment
is not accessed before eviction, it is
removed from the cache.

Figure 2. SLRU Algorithm

Jurnal Mantik, Vol.xx, No. xx, Month 20xx: pp XxX-Xx

Mantik ISSN 2685-4236 (Online)

SEGMENTED i 0
LAST REGENLY @IS
P I W START

Protocotary seguery
segment Lasst ly
/ZQ segment
Presetonry
Ssegment
ired

g Q
Chec it the
Leasst reuenly
SRU" item

Promote
seguwe= iten.

2 Provict the
SEMUED; ITEM

Figure 3. SLRU Simulator Process

Flowchart for Segmented Least Recently Used Simulator algorithm as follows (as
shown in Figure 3) :
1. Start
2. Access a Key
a. Check if the key is in the Protected Segment (LFU)
i. If Yes, increase its frequency
b. If No, check if it's in the Probationary Segment (LRU)
i. If Yes, Promote it to the Protected Segment
ii. If No, add it to the Probationary Segment
Handle Overflows.
If the probationary segment is full, evict the least recently used item (LRU).
If the Protected Segment is full, evict the Least Frequently Used (LFU) item.
Update Cache & Log the Action
Display & Visualize Cache

Nooaprw

3. RESULTS AND DISCUSSIONS

The experiment will be conducted by simulating a group of data for cache memory as
follows:

1. Cache Access Simulation
The code executes several access requests based on the list requests
["A", "B", "C", "A", "D", "A", "E", "B", "F", "B", "C", "A"].

First Author, Article Tittle...

6 a ISSN 2685-4236 (Online)

« Each time an item is accessed, the code checks for its existence in the cache
and determines whether it needs to be promoted or replaced.
2. Logging Cache Activity
« Every cache change is logged in the slru_log.txt file.
* The log will contain information such as:
i. Item being accessed
ii. Promotion from Probationary to Protected Segment
iii. Item removal if the cache is full
3. Displaying Cache Contents After Each Access
* The cache is displayed after each new access.
* The Probationary Segment contains newly added items, while the Protected
Segment contains frequently accessed items.
4. Visualizing Access Frequency in Protected Segment
* The code will display a bar chart using Matplotlib, showing how many times
each item in the Protected Segment has been accessed.
« If there are no items in the Protected Segment, the message will appear:
" There is no data in the Protected Segment to visualize."

The cache is used as an initial space to temporarily store information needed in
CPU operations (Panda, Patil, & Raveendran, 20 When the CPU requests information
stored in memory and the information is already in the cache, it is also called a cache hit
(or Hit Ratio), as in equation (1) (Ma, Hao, Shen, Tian, & Al-Rodhaan, 2018). If a cache hit
occurs, t]ﬂ CPU can immediately receive information from data from the cache memory.
However, if the marmation is not in the cache, it is called a tﬂ:he miss (or Miss Ratio), as
in equation (2). When a cache miss occurs, the CPU is given data from the main memory.
Average Memory Access Time (AMAT) is :mnmputer memory system performance
measurement for memory processes. Average Memory Access Time (AMAT) measures the
average time required to access data from memcranvolving factors such as cache hit rate
and main memory access time as in equation (3) (Pedro-Zapater, Rodriguez, Segarra, Gran
Tejero, & Vinals-Yufera, 2020).

. in = Hits 0,
Hit Ratio et % 100% (1)
Miss Ratio = —=2%__» 1009 @)
Hits+ Misses
Average Memory Access Time (AMAT) = Hit Times + Miss Ratio X Miss Penalty (3)

Figure 4 and Figure 5 are the results of cache replacement simulation using the
SLRU algorithm designed in this study. The next experiment uses 10 different data groups
to compare the cache hit ratio and the miss ratio of the SLRU cache replacement method
designed in this study compared to the LFU, LRU, and FIFO methods.

Jurnal Mantik, Vol.xx, No. xx, Month 20xx: pp XxX-Xx

Mantik

ISSN 2685-4236 (Online) a 7

Cache Status:
Probationary Segment (LRU) : [C', 'D', 'E']
Protected Segment (LFU) :{A: 3, 'B:2

Cache Performance:

Total Requests : 12

Cache Hits : 5 (41.67%)
Cache Misses :7 (58.33%)

Figure 4. Simulator Results

Q, Accessing: A
X Anot found. Adding to Probationary Segment.

Q, Accessing: B
X B not found. Adding to Probationary Segment.

Q Accessing: A
A promoted to Protected Segment.
A found in Protected Segment. Frequency: 2

Q, Accessing: C
X C not found. Adding to Probationary Segment.

Q, Accessing: A
A found in Protected Segment. Frequency: 3

Q, Accessing: B
B promoted to Protected Segment.

Q, Accessing: B
B found in Protected Segment. Frequency: 2

Figure 5. Log file

Based on the simulation results on 10 groups of random data, the comparison

results of the hit ratio and miss ratio show Lh:aSLRU (Segmented Least Recently Used)
has the best performance compared to the LRU (Least Recently Used), LFU (Least
Frequently Used), and FIFO (First [n First Out) methods. The SLRU simulation results have
an average success ratio of around 71.4% and a failure ratio of 28.6%, higher than other
algorithms, as shown in Table 1 and Figure 6.

The LRU method, which only maintains the most recently accessed elements, shows

a hit ratio of around 67%, which is slightly lower than that of SLRU. LFU is a method that
stores elements based on access frequency. Based on the test results, it shows lower results
with an average hit ratio of around 62%. The FIFO method has the worst performance
compared to other methods, with a hit ratio of only around 55.8%.

First Author, Article Tittle...

8 a ISSN 2685-4236 (Online)

Table 1. Cache Hit Ratio and Miss Ratio Comparison

Data SLRU [JLRU LRU LRU LFU LFU FIFO FIFO
Group (Hit%) (Miss%) (Hit%) (Miss%) (Hit%) (Miss%) (Hit%) (Miss%)
72.00% 28.00% 68.00% 32.00% 63.00% 37.00% 58.00% 42.00%
70.00% 30.00% 66.00% 34.00% 60.00% 40.00% 55.00% 45.00%
74.00% 26.00% 69.00% 31.00% 64.00% 36.00% 57.00% 43.00%
71.00% 29.00% 67.00% 33.00% 61.00% 39.00% 54.00% 46.00%
73.00% 27.00% 68.00% 32.00% 65.00% 35.00% 59.00% 41.00%
69.00% 31.00% 65.00% 35.00% 60.00% 40.00% 53.00% 47.00%
75.00% 25.00% 70.00% 30.00% 66.00% 34.00% 60.00% 40.00%
68.00% 32.00% 64.00% 36.00% 59.00% 41.00% 52.00% 48.00%
72.00% 28.00% 67.00% 33.00% 62.00% 38.00% 56.00% 44.00%
70.00% 30.00% 66.00% 34.00% 60.00% 40.00% 54.00% 46.00%
Average 71.40% 28.60% 67.00% 33.00% 62.00% 38.00% 55.80% 44.20%

De®NON A WN R

Cache Hit Ratio Comparison

80%

70%
60%
50%
40%
30%
20%
10%

0%

~ 2" B ™ s © A S o 2 &
o

BSLRU (Hit%) MLRU (Hit%) ® LFU (Hit%) FIFO (Hit%)

Figure 6. Cache Hit Ratio Comparison

4. CONCLUSION

Overall, SLRU has advantages compared to other methods because it is able to separate
the cache into two segments, namely probationary (LRU) and prntect (LFU). Due to the
division of these two segments, frequently accessed data will be prnmnai from the
probationary segment to the protected segment. Pages in the protection segment will
remain in the cache longer. These two segments produce a more optimal combination of
the LRU and LFU methods. This explains why SLRU performed the best in this test.
Based on the test results, it can be concluded that the SLRU method is more
effective in handling various data access patterns compared to LRU, LFU, and FIFO. SLRU
can be a more efficient choice for implementing block replacement in various needs such
as database systems, memory management, or proxy servers, and this is because it will
significantly reduce the number of cache misses and increase the speed of the data retrieval

Jurnal Mantik, Vol.xx, No. xx, Month 20xx: pp XxX-Xx

Mantik ISSN 2685-4236 (Online) a 9

process to memory. Based on the experimental results, the average hit ratio using the LRU
method was 71.40%, which is better than the LRU method (67%), LFU (62%) and FIFO
method (55.8%).

REFERENCES:

Alzakari, N., Dris, A. Bin, & Alahmadi, S. (2020). Randomized Least Frequently Used Cache Replacement
Strategy for Named Data Networking. 2020 3rd Internarional Conference on Computer Applications &
Information Security (ICCAIS), 1-6. https://doi.org/10.1109/ICCAIS48893 2020.9096733

Asiatici, M., & Tenne, P. (2019). Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of
Outstanding Misses in FPGAs. Praceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 310-319. https://doi.org/10.1145/3289602 3293901

Bachri, K. O., Alexander, J., Osmond, E., Widawati, E., & Kartawidjaja, M. A. (2024). SPArc-subset general-
purpose microprocessor design and implementation in field programmable gate array. Mantik, 8(3),
1447-1455. https://doi.org/10.35335/mantik .v8i3.5681

Hasslinger, G., Ntougias, K., Hasslinger, F., & Hohlfeld, O. (2023). Scope and Accuracy of Analytic and
Approximate Results for FIFO, Clock-Based and LRU Caching Performance. Future Interner, 15(3).
https://doi.org/10.3390/fi 15030091

Khan, T. A., Zhang, D., Sriraman, A., Devietti, I., Pokam, G., Litz, H., & Kasikci, B. (2021). Ripple: Profile-
Guided Instruction Cache Replacement for Data Center Applications. 202] ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), 734-747.
https://doi.org/10.1109/ISCA52012.2021.00063

Krishna, K. (2025). Advancements in cache management: a review of machine learning innovations for
enhanced performance and security. Frontiers in Artificial Intelligence, 8, 1441250,
https://doi.org/10.3389/frai.2025.1441250

Kumar, S., & Singh, P. K. (2016). An overview of modern cache memory and performance analysis of
replacement policies. 2016 IEEE International Conference on Engineering and Technology (ICETECH),
210-214. https://doi.org/10.1109/ICETECH 2016.7569243

Ma, T., Hao, Y., Shen, W., Tian, Y., & Al-Rodhaan, M. (2018). An Improved Web Cache Replacement
Algorithm Based on Weighting and Cost. JEEE Access, 6, 27010-27017.
https://doi.org/10.1109/ACCESS 2018.2829142

Panda, P., Patil, G., & Raveendran, B. (2016). A survey on replacement strategies in cache memory for
embedded systems. 2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics
(DISCOVER), 12-17. https://doi.org/10.1109/DISCOVER.2016.7806218

Pedro-Zapater, A., Rodriguez, C., Segarra, J., Gran Tejero, R., & Vinals-Yifera, V. (2020). Ideal and
Predictable Hit Ratio for Matrix Transposition in Data Caches. Mathematics, 8(2).
https://doi.org/10.3390/math8020184

Podlipnig, S., & Boszormenyi, L. (2003). A survey of Web cache replacement strategies. ACM Comput. Surv.,
35(4), 374-398. https://doi.org/10.1145/954339.954341

Priya, B. K., Kumar, S.,Begum, B. 5., & Ramasubramanian, N. (2019). Cache lifetime enhancement technique
using hybrid cache-replacement-policy. Microelectronics Reliability 97, 1-15.
https://doi.org/https://doi.org/10.1016/j.microrel 2019 .03.011

Satria, B. D., Barakbah, A.R., & Sudarsono, A. (2021). Implementation Paralle] Computation for Automatic
Clustering. Mantik, 5(2), 994-1005. https://doi.org/10.35335/jurnalmantik. Vol5.2021.1439.pp994-1005

Sethumurugan, S., Yin, J., & Sartori, J. (2021). Designing a Cost-Effective Cache Replacement Policy using
Machine Learning. 2021 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), 291-303. https://doi.org/10.1109/HPCAS51647.2021.00033

Sonia, Alsharef, A., Jain, P., Arora, M., Zahra, 5. R., & Gupta, G. (2021). Cache Memory: An Analysis on
Performance Issues. 20271 8th International Conference on Computing for Sustainable Global
Development (INDIACom), 184-188.

Souza, M. A., & Freitas, H. C. (2024). Reinforcement Learning-Based Cache Replacement Policies for
Multicore Processors. IEEE Access, 12,79177-79188. https://doi.org/10.1 109/ACCESS 2024.3409228

First Author, Article Tittle...

10 a ISSN 2685-4236 (Online)

Unterluggauer, T., Harris, A., Constable, S., Liu, F., & Rozas, C. (2022). Chameleon Cache: Approximating
Fully Associative Caches with Random Replacement to Prevent Contention-Based Cache Attacks. 2022
IEEE International Symposium on Secure and Private Execution Environment Design (SEED), 13-24.
https://doi.org/10.1109/SEED55351 2022.00009

Wijaya, M. C. (2020). Algoritme penggantian cache proxy terdistribusi untuk meningkatkan kinerja server
web. Jurnal Teknologi Dan Sistem Komputer, 8(1), 1-5. https://doi.org/10.14710/jtsiskom.8.1.2020.1-5

Xiong, W., & Szefer, I. (2020). Leaking Information Through Cache LRU States. 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 139-152.
https://doi.org/10.1109/HPCA47549.2020.00021

Yamaki, H. (2019). Flow Characteristic- Aware Cache Replacement Policy for Packet Processing Cache BT -
Advances in Information and Communication Networks. Advances in Intelligent Systems and
Computing, 886, 258-273. https://doi.org/10.1007/978-3-030-03402-3_18

Yang,J., Zhang, Y., Qiu, Z., Yue, Y., & Vinayak, R. (2023). FIFO queues are all you need for cache eviction.
Proceedings of the 29th Symposium on Operating Systems Principles, 130-149.
https://doi.org/10.1145/3600006 3613147

Yang, Q., Jin, R., Fan, N., Inupakutika, D., Davis, B., & Zhao, M. (2023). AdaCache: A Disag gregated Cache
System with Adaptive Block Size for Cloud Block Storage. Retrieved from
https://arxiv.org/abs/2306.1 7254

Yennimar, Y., Faturrahman, M. R., Nesen, S., Guci, M. A., & Pasaribu, S. R. (2023). Implementation of
artificial neural network and support vector machine algorithm on student graduation prediction model
on time. Mantik, 7(2),925-934. https://doi.org/10.35335/mantik .v7i2.3992

Young, V., Chishti, Z. A., & Qureshi, M. K. (2019). TicToc: Enabling Bandwidth-Efficient DRAM Caching
for Both Hits and Misses in Hybrid Memory Systems. 2019 IEEE 37th International Conference on
Computer Design (ICCD), 341-349. https://doi.org/10.1109/ICCD46524 2019.00055

Zheng, Q.. Yang, T., Kan, Y., Tan, X., Yang, I., & Jiang, X. (2022). On the Analysis of Cache Invalidation
With LRU Replacement. [EEE Transactions on Parallel and Distributed Systems, 33(3), 654-666.
https://doi.org/10.1109/TPDS.2021.3098459

Jurnal Mantik, Vol.xx, No. xx, Month 20xx: pp XxX-Xx

MANTIK

ORIGINALITY REPORT

1 O% 5% 6% 4%

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

.

Submitted to UIN Syarif Hidayatullah Jakarta

Student Paper

T

o]

Hurt, Kathlene. "Limited segmented LRU
cache replacement algorithm with set aging
for memory sensitive benchmarks.",
Proquest, 2015.

Publication

1o

Submitted to Staffordshire University /

3 %
Student Paper 0
repository.maranatha.edu 4

4 %
Internet Source
ijritcc.org /1

Internet Source %
H Submitted to Pennsylvania State System of / o
. . 0
Higher Education
Student Paper
Submitted to Syracuse University /
U %
Student Paper 0
E arxiv.org /1
Internet Source %
n csd.cmu.edu /
Internet Source %
ijafibs.pelnus.ac.id /
Internet Source %
www.scielo.br /
Internet Source %

Jang-Soo Lee, Won-Kee Hong, Shin-Dug Kim. <1 o
"An on-chip cache compression technique to ’
reduce decompression overhead and design
complexity", Journal of Systems Architecture,

2000
Publication

M. Alonso, V. Santonja. "A new destage <1 o
algorithm for disk cache: DOME", Proceedings °
25th EUROMICRO Conference. Informatics:

Theory and Practice for the New Millennium,
1999

Publication

thesai.or

Internet Sourceg <1 %

"Tenth International Conference on <1 o
Applications and Techniques in Cyber °
Intelligence (ICATCI 2022)", Springer Science
and Business Media LLC, 2023
Publication
Submitted to Florida State Universit

Student Paper y <1 %

Ke Liu, Kan Wu, Hua Wang, Ke Zhou, Peng <1 o
Wang, Ji Zhang, Cong Li. "SLAP: Segmented ’
Reuse-Time-Label Based Admission Policy for
Content Delivery Network Caching", ACM
Transactions on Architecture and Code
Optimization, 2024
Publication

Rengan, Dou. "Vertical Elasticity of Resource <1 o
Management on Clouds.", National University ’
of Singapore (Singapore)

Publication
ieeexplore.ieee.or
Internet Squrce g <1 %

journals.su.edu.ye 4
Internet Source %
jtsiskom.undip.ac.id /1
JInternet Source p %
koreascience.or.kr /1
Internet Source %
www2.mdpi.com /
Internet Source p %
Lu, Xiaoyang. "Utilizing Concurrent Data /1 o
Accesses for Data-Driven and Al Applications”, ’
lllinois Institute of Technology, 2024
Publication
Suryani, Angela O., Fons J. R. Van de Vijver, <1 %

Ype H. Poortinga, and Bernadette N. Setiadi.
"Indonesian leadership styles: A mixed-
methods approach : Indonesian leadership
styles", Asian Journal Of Social Psychology,
2012.

Publication

Exclude quotes On Exclude matches Off

Exclude bibliography ~ On

