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 The block replacement process in the memory cache is an 
essential technique in computing systems to improve the 

efficiency of data retrieval from high-speed memory. Various 
caching algorithms have been developed to speed up data 
retrieval access in the memory cache, including Least Recently 
Used (LRU), Least Frequently Used (LFU), and First In First Out 
(FIFO). This study aims to develop a simulator by combining the 
LRU and LFU methods called Segmented Least Recently Used 
(SLRU), which is able to process data retrieval from the memory 
cache more efficiently. Experiments on the simulation program 
created were carried out on 10 random data groups to 
determine the effectiveness of each block replacement algorithm. 
Based on the test results, SLRU had the best performance, with 
an average hit ratio of 71.4%, followed by LRU (67%), LFU 
(62%), and FIFO, which showed the lowest hit ratio performance 
with a hit ratio of 55.8%. The advantage of SLRU lies in dividing 
cache segmentation into two segments: the probationary 
segment (LRU) and the protected segment (LFU). Based on the 
experiment results, it was concluded that SLRU has more 
efficient results in handling dynamic data access patterns than 
other algorithms. 
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1. INTRODUCTION 

Cache replacement is the condition in which the data in the cache needs to be changed 

to remain within its storage limits. The cache itself acts as temporary storage that 

promptly provides the information when the system needs to access frequently used data 

compared to real-time when the system would have to access that data in volatile (such 
as RAM) or permanent storage (Podlipnig & Böszörmenyi, 2003). If cache space is still 

available, the new data can be placed in the cache without removing any previously 

stored data. But, when the caches if full, the system should decide which data should be 

removed from the cache in order to replace with the new data (Priya, Kumar, Begum, & 

Ramasubramanian, 2019).  Data removal is generally based simply on the frequency of 

recent use or when the data was last requested/accessed. Once the previous data is 

http://iocscience.org/
http://www.iocscience.org/ejournal/index.php/mantik
https://creativecommons.org/licenses/by-nc/4.0/
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removed, the new required data will be then inserted into the cache for fast access upon 
the next access cycle. This process is done automatically and continuously as long as the 

system is operational (Wijaya, 2020). Various types of processor architectures, such as 

CISC architecture and RISC architecture, require cache memory in the data retrieval 

process (Bachri, Alexander, Osmond, Widawati, & Kartawidjaja, 2024). Cache 

replacement is done/applied within computer systems, web storage, databases, and 
hardware components operating in CPUs and SSDs, especially those that need large 

cache memory (Yennimar, Faturrahman, Nesen, Guci, & Pasaribu, 2023). The data 

collection process greatly influences the memory architecture used in local and shared 

memory, especially in parallel computing (Satria, Barakbah, & Sudarsono, 2021). 

Efficient cache management will allow the system to operate more efficiently and at less 

total access time when interaction with relevant data is requested.  
Least Recently Used (LRU) is a cache replacement strategy that evicts the data 

that has not been accessed for the longest period (Xiong & Szefer, 2020). This strategy 

effectively maintains frequently accessed data in the cache, given that access patterns are 

similar (Souza & Freitas, 2024). The advantage is enhanced performance and cache 

efficiency because it retains data still of value to the system, but the disadvantage is 
increased complexity for implementation due to the need to track the order in which a 

given element is accessed within the cache (Zheng et al., 2022). 

First-In, First-Out (FIFO) replaces the data that first enters the cache, regardless 

of how often it is used (J. Yang, Zhang, Qiu, Yue, & Vinayak, 2023). Simple to apply is its 

advantage because it does not require keeping track of how frequently data is used. The 

disadvantage is the potential of replacing data that is still used frequently, resulting in 
performance that may not be optimized, especially when older data are still in active use. 

Least Frequently Used (LFU) eliminates the least recently used data based on the 

number of accesses (Alzakari, Dris, & Alahmadi, 2020). Its strength lies in its optimality 

in terms of retaining the most frequently used data, but its weakness is significant as 

well, with the potential to retain data that was frequently used in the past but is no 
longer relevant in the near future. 

Random Replacement (RR) causally deletes data based on randomly selected data 

with no regard to patterns of access (Unterluggauer, Harris, Constable, Liu, & Rozas, 

2022). A main advantage to this method is in its simplicity and ability to avoid the 

additional processing cost of tracking data usage history. However, it is a large downside 

of this method, as it does not consider the relevance of the data and can lead to the 
removal of useful data, thereby decreasing the efficiency of the cache storage system.  

In block replacement, several important parameters must be considered, 

including the level of cache associativity, replacement policies such as LRU, FIFO, LFU, 

or Random, as well as the age factor and frequency of block usage (Kumar & Singh, 

2016). In addition, dirty bits affect whether data must be written back to memory before 
block replacement, depending on the write-through or write-back policy. The cache miss 

rate is also an important factor because it affects the efficiency of data access, which can 

be optimized by considering temporal and spatial locality when selecting blocks to be 

replaced (Asiatici & Ienne, 2019). 

Several areas require improvement to enhance the current block replacement 

philosophy. More precise predictions can be achieved by utilizing machine learning or AI-
enhanced replacement policies, predicting data access patterns more effectively than 

classical methods like LRU or LFU (Q. Yang et al., 2023). Improved algorithms that adapt 

to application usage patterns enhance efficiency (Krishna, 2025). LRU and LFU need to 

reduce overhead and complexity because it will burden the memory and speed of the 

computer due to the required tracking access history. Furthermore, reducing cache miss 
rates is possible by combining replacement policies with smarter prefetching to ensure 
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necessary data is available in the cache before it is required. Temporal locality-aware 
replacement strategies help retain data that is likely to be used soon (Sonia et al., 2021). 

Another key improvement is the effective management of dirty bits, which will 

reduce the number of unintended writebacks to main memory by using dirty bit flushing 

optimizations (such as flushing a block only if it was modified enough times). In 

particular, hybrid write-through or write-back algorithms can be configured for 
workloads (Young, Chishti, & Qureshi, 2019). As computing has progressed, requests for 

variants of the replacement mechanism will exist to make them more efficient for multi-

core and GPU architectures, specifically as they relate to multi-threaded execution with 

shared caches. Reducing power consumption is equally important, especially for mobile 

devices and embedded systems, in which offering policies that account for energy for 

replacement can save energy, maintain cache effectiveness and latency, and refresh the 
main memory storage to conserve battery life (Sethumurugan, Yin, & Sartori, 2021). In 

large data centers, these enhancements will lower operational costs (Khan et al., 2021). 

Compared to other cache replacement techniques, the SLRU algorithm has 

several benefits.  First, it outperforms rules like FIFO and regular LRU regarding the 

cache hit ratio (Hasslinger, Ntougias, Hasslinger, & Hohlfeld, 2023).  Second, as 
simulations like Icarus show, it minimizes latency and lowers connection load.  Third, it 

is appropriate for operating systems caching file blocks because of its segmented 

structure, which enables it to adjust to various usage patterns.  Because of these 

characteristics, the SLRU algorithm is a unique option among contemporary cache 

policies. 

Two major gaps emerge in the research on Segmented Least Recently Used 
(SLRU): first, it has been evaluated on only a small quotient of diverse, real-world 

workloads; second, SLRU has never been evaluated and compared against more adaptive 

algorithms. While SLRU has been evaluated in a contrived setting, it has not been 

thoroughly explored with active, dynamic, and unpredictable workloads prevalent in a 

modern context, including, but certainly not limited to, cloud computing or edge devices. 
Furthermore, SLRU has never been adequately evaluated and compared against newer 

adaptive policies, such as ARC or CAR that are adaptable in response to workload 

changes. Closing the aforementioned gaps in research would provide some meaningful 

insight into SLRU's practical performance in a much more meaningful way, in addition to 

revealing potential defensible succinct advantages (or disadvantages). 

By filling in these research gaps, the results of this study will benefit the world of 
practice by providing system designers and engineers with more information to make 

educated decisions during their evaluation of cache replacement policies, whether they 

simply be adopting or applying them in a real-world setting. By assessing SLRU under 

varying and realistic workloads, this investigation contributes insight into SLRU's 

performance in real-world settings, such as cloud infrastructure, web services, or edge 
computing. Such performance comparisons could improve the efficacy of memory 

resources or system performance. 

 

2. RESEARCH METHOD 

The Segmented Least Recently Used  (SLRU) method is a segmented cache replacement of 

cache memory policy that aims to improve cache data management.  It improves 
performance by prioritizing frequently used data and reducing less-used elements.  This 

method boosts the cache hit rate, resulting in faster access to vital information.  Parting 

the cache into segments effectively distinguishes frequently accessed material from rare 

items.  There are some strategies to increase efficiency and better use existing memory 

resources. 
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SLRU method improves cache performance by separating it into two parts: 
probationary and protected. Data used frequently moves to the protected area, preventing 

unnecessary data loss. The size of the shielded portion can be adjusted to meet the 

system requirements. The SLRU algorithm monitors data usage via reference bits, 

allowing vital data to be stored for longer periods. The SLRU algorithm is suitable for 

various applications, including operating systems and databases. 
The probationary and protected segments are the two primary segments into 

which the SLRU algorithm divides the cache.  The probationary phase is always where 

new entries begin.  The protected section prioritizes frequently used data, where an entry 

goes if it is reaccessed.  Due to its structure, the cache will adjust to both short-term and 

long-term access patterns.  When the cache is full, the program removes the least 

recently utilized material from the probationary section.  This method increases overall 
efficiency and reduces needless cache eviction. 

The SLRU algorithm uses reference bits to monitor the frequency of data access.  

An entry's reference bit changes each time you visit it, indicating its importance.  Less-

used entries stay in the probationary section, while entries with more reference activity 

are moved to the protected segment.  Due to this dynamic management, the cache 
prioritizes data according to real-time usage patterns.  The SLRU algorithm compromises 

between allowing for new entries and keeping frequently used data by utilizing reference 

bits. 

By splitting the cache into two segments, the page replacement process known as 

SLRU (Segmented Least Recently Used) improves on the conventional LRU (Least 

Recently Used) technique (as shown in Figure 1): (a) Pages that are often accessed are 
stored in the protected segment. (b) Newly uploaded pages or just removed from the 

protected segment are stored in the probationary segment. 

 
Figure 1.  Protected Segment and Probationary Segment (Yamaki, 2019). 

 
Figure 2 shows the four steps of the SLRU algorithm procedure. The CPU will give 

instructions on how to retrieve data from memory. The data to be retrieved will be 

checked to see whether it is in the memory cache. If it is not in the memory cache, then 

the page will be retrieved and inserted into the probationary segment. Pages that are 

frequently accessed will be inserted into the protected segment. Because the protected 

segment has limited space, pages that are already in the protected segment but are least 
used will be returned to the probationary segment. 
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Figure 2.  SLRU Algorithm 

 

Flowchart for Segmented Least Recently Used Simulator algorithm as follows: 
1. Start 

2. Access a Key 

a. Check if the key is in the Protected Segment (LFU) 

i. If Yes, increase its frequency 

b. If No, check if it's in the Probationary Segment (LRU) 
i. If Yes, Promote it to the Protected Segment 

ii. If No, add it to the Probationary Segment 

3. Handle Overflows. 

4. If the probationary segment is full, evict the least recently used item (LRU). 

5. If the Protected Segment is full, evict the Least Frequently Used (LFU) item. 

6. Update Cache & Log the Action 
7. Display & Visualize Cache 

 

Validity in this research was addressed through specific strategies that ensured 

that the SLRU algorithm was executed faithfully according to established theoretical 

frameworks and previous work. This included careful modeling of various algorithm 

structures (such as dividing the algorithm into probationary and protected lists to 
determine the use of reference bits and others) according to specification. The simulator 

was designed to provide behaviors that replicated real-world cache operations, including 

the access pattern associated with memory usage, indicative of a real system. Reliability 

was supported by treating simulations with consistent input parameters, workload types, 

and simulation system configurations. In particular, multiple simulations were 

conducted under the same conditions in order to ensure that the results (such as cache 
hit rate and eviction) were reliable and thus replicable. 
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3. RESULTS AND DISCUSSIONS 

The experiment will be conducted by simulating a group of data for cache memory as 

follows: 

 

a. Cache Access Simulation,  

  The code executes several access requests based on the listrequests= ["A", "B", 
"C", "A", "D", "A", "E", "B", "F", "B", "C", "A"]. Each time an item is accessed, the code 

checks for its existence in the cache and determines whether it needs to be promoted or 

replaced. 

 

b. Logging Cache Activity 

  Every cache change is logged in the slru_log.txt file. The log will contain 
information such as: (a) Item being accessed, (b) Promotion from Probationary to 

Protected Segment, (c) Item removal if the cache is full 

 

c. Displaying Cache Contents After Each Access 

  The cache is displayed after each new access. The Probationary Segment contains 
newly added items, while the Protected Segment contains frequently accessed items. 

 

d. Visualizing Access Frequency in Protected Segment 

  The code will display a bar chart using Matplotlib, showing how many times each 

item in the Protected Segment has been accessed. If there are no items in the Protected 

Segment, the message will appear: " There is no data in the Protected Segment to 
visualize." 

The cache is used as an initial space to temporarily store information needed in 

CPU operations (Panda, Patil, & Raveendran, 2016). When the CPU requests information 

stored in memory and the information is already in the cache, it is also called a cache hit 

(or Hit Ratio), as in equation (1) (Ma, Hao, Shen, Tian, & Al-Rodhaan, 2018). If a cache 
hit occurs, the CPU can immediately receive information from data from the cache 

memory. However, if the information is not in the cache, it is called a cache miss (or Miss 

Ratio), as in equation (2). When a cache miss occurs, the CPU is given data from the 

main memory. Average Memory Access Time (AMAT) is a computer memory system 

performance measurement for memory processes. Average Memory Access Time (AMAT) 

measures the average time required to access data from memory, involving factors such 
as cache hit rate and main memory access time as in equation (3) (Pedro-Zapater, 

Rodríguez, Segarra, Gran Tejero, & Viñals-Yúfera, 2020). 

 

           
    

          
          (1) 

 

            
      

            
          (2) 

 

                           (    )                                     (3) 
 

Figure 3 and Figure 4 are the results of cache replacement simulation using the 

SLRU algorithm designed in this study. The next experiment uses 10 different data 

groups to compare the cache hit ratio and the miss ratio of the SLRU cache replacement 

method designed in this study compared to the LFU, LRU, and FIFO methods. 
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Cache Status: 
Probationary Segment (LRU) : ['C', 'D', 

'E'] 
Protected Segment (LFU)    : {'A': 3, 'B': 2} 
---------------------------------------- 
 
Cache Performance: 
Total Requests : 12 
Cache Hits     : 5 (41.67%) 
Cache Misses   : 7 (58.33%) 
---------------------------------------- 

Figure 3.  Simulator Results 

 

� Accessing: A 

� A not found. Adding to Probationary Segment. 
 
� Accessing: B 
� B not found. Adding to Probationary Segment. 
 
� Accessing: A 
� A promoted to Protected Segment. 
� A found in Protected Segment. Frequency: 2 
 
� Accessing: C 
� C not found. Adding to Probationary Segment. 
 
� Accessing: A 
� A found in Protected Segment. Frequency: 3 
 
� Accessing: B 
� B promoted to Protected Segment. 
 
� Accessing: B 
� B found in Protected Segment. Frequency: 2 
 

Figure 4.  Log file 

 
Based on the simulation results on 10 groups of random data, the comparison 

results of the hit ratio and miss ratio show that SLRU (Segmented Least Recently Used) 

has the best performance compared to the LRU (Least Recently Used), LFU (Least 

Frequently Used), and FIFO (First In First Out) methods. The SLRU simulation results 

have an average success ratio of around 71.4% and a failure ratio of 28.6%, higher than 
other algorithms, as shown in Table 1 and Figure 5. 

The LRU method, which only maintains the most recently accessed elements, 

shows a hit ratio of around 67%, which is slightly lower than that of SLRU. LFU is a 

method that stores elements based on access frequency. Based on the test results, it 

shows lower results with an average hit ratio of around 62%. The FIFO method has the 

worst performance compared to other methods, with a hit ratio of only around 55.8%. 
 

Table 1. Cache Hit Ratio and Miss Ratio Comparison 

Data 
Group 

SLRU 
(Hit%) 

SLRU 
(Miss%) 

LRU 
(Hit%) 

LRU 
(Miss%) 

LFU 
(Hit%) 

LFU 
(Miss%) 

FIFO 
(Hit%) 

FIFO (Miss%) 

1 72.00% 28.00% 68.00% 32.00% 63.00% 37.00% 58.00% 42.00% 

2 70.00% 30.00% 66.00% 34.00% 60.00% 40.00% 55.00% 45.00% 

3 74.00% 26.00% 69.00% 31.00% 64.00% 36.00% 57.00% 43.00% 

4 71.00% 29.00% 67.00% 33.00% 61.00% 39.00% 54.00% 46.00% 
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Data 
Group 

SLRU 
(Hit%) 

SLRU 
(Miss%) 

LRU 
(Hit%) 

LRU 
(Miss%) 

LFU 
(Hit%) 

LFU 
(Miss%) 

FIFO 
(Hit%) 

FIFO (Miss%) 

5 73.00% 27.00% 68.00% 32.00% 65.00% 35.00% 59.00% 41.00% 

6 69.00% 31.00% 65.00% 35.00% 60.00% 40.00% 53.00% 47.00% 

7 75.00% 25.00% 70.00% 30.00% 66.00% 34.00% 60.00% 40.00% 

8 68.00% 32.00% 64.00% 36.00% 59.00% 41.00% 52.00% 48.00% 

9 72.00% 28.00% 67.00% 33.00% 62.00% 38.00% 56.00% 44.00% 

10 70.00% 30.00% 66.00% 34.00% 60.00% 40.00% 54.00% 46.00% 

Average 71.40% 28.60% 67.00% 33.00% 62.00% 38.00% 55.80% 44.20% 

 

 

 
Figure 5. Cache Hit Ratio Comparison 

4. CONCLUSION 

Overall, SLRU has advantages compared to other methods because it is able to separate 
the cache into two segments, namely probationary (LRU) and protected (LFU). Due to the 

division of these two segments, frequently accessed data will be promoted from the 

probationary segment to the protected segment. Pages in the protection segment will 

remain in the cache longer. These two segments produce a more optimal combination of 

the LRU and LFU methods. This explains why SLRU performed the best in this test. 
Based on the test results, it can be concluded that the SLRU method is more 

effective in handling various data access patterns compared to LRU, LFU, and FIFO. 

SLRU can be a more efficient choice for implementing block replacement in various needs 

such as database systems, memory management, or proxy servers, and this is because it 

will significantly reduce the number of cache misses and increase the speed of the data 

retrieval process to memory. Based on the experimental results, the average hit ratio 
using the LRU method was 71.40%, which is better than the LRU method (67%), LFU 

(62%) and FIFO method (55.8%). 

A significant drawback is the fixed sizes of segments, which may not be optimal 

for all workloads. An additional consideration is that the structure of the SLRU algorithm 

is relatively complex compared with traditional replacement techniques, such as FIFO 
and LRU, requiring overhead that may not be feasible in low-resource systems. Also, 

SLRU functions relatively statically and does not have the potential to adapt to changes 

in workload access patterns. Accordingly, it is likely to function well under organized 
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conditions, but the performance of SLRU may vary in real-time or dynamically changing 
workload conditions.  

Further improvements to cache replacement decisions could also be achieved 

through predictive or machine-learning techniques to model access patterns. In addition, 

testing SLRU on realistic datasets and exploring SLRU at the hardware level in practice 

will help provide further insight into the advantages and disadvantages of using SLRU. 
Furthermore, future investigations may address efficiency-related investigations of these 

techniques, particularly energy efficiency for use in mobile or embedded systems where 

consumption is important. 
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