IOCSCIENCE

ISSN 2685-4236

Jurnal Mantik

Editor-in-Chief:
Hengki T. Sihotang

Available online at www.iocscience.org
I0CScience

L9 eISSN 2685-4236 ‘

Jurnal Mantik =

Accreditate "4st" grade (SINTA 4) by Ministry of Research, Technology and Higher Education (RistekDikti)
of the Republic of Indonesia, Decree No.36/E/KPT/2019, December 13th 2019

A pUblished By:
~ VL‘T.T‘:L‘:', \i‘" l:, VY‘\:.‘U‘:\ mScieh

Editorial Team

Editor in Chief

e Dr. Fristi Riandari, M.Kom, Google Profile, Scopus iD: 57202376726, Medan,
Politeknik Negeri Medan, Indonesia

Editorial Board Members

e Dr. Mochamad Wahyudi, MM., M.Kom., M.Pd Google Profile, Scopus
iD: 57144449500,Universitas Bina Sarana Informatika, Jakarta, Indonesia

« Prof. Masaji Watanabe, Scopus iD: 7405488766, Okayama University, Japan

e Prof. Dr. Anton Abdulbasah Kamil, Scopus iD: 24481107300, Istanbul Gelisim
University, Turkey

e Dr. Burcu Girbiz, Scopus iD: 36864011800, Johannes Gutenberg-Universitat
Mainz, Germany

e Dr. Abdellah Salhi, Scopus iD: 8857392100, University of Essex, United Kingdom

e Dr. Husain, S.Kom.,M.Kom,Google Profile, Scopus iD: 57211276793, Lombok,
Universitas Bumigora, NTB, Indonesia

e Dr. Dadang Priyanto,S.Kom., M.Kom Google Profile, Scopus iD:
57211266124,Lombok, Universitas Bumigora, NTB, Indonesia

« Jonhariono Sihotang, M.Kom, Google Scholar, Universitas Putra Abadi Langkat,
Indonesia

Copy Editor

e Firta Sari Panjaitan, Scopus iD: 57211276113, Institute of Computer Science
(10CS), Medan, Indonesia

e Sonya Gorat, Scopus iD: 57211276189, Institute of Computer Science (I0CS),
Medan, Indonesia

o Juliana Batubara, Scopus iD: 57211276194, Institute of Computer Science (I0CS),
Medan, Indonesia

https://scholar.google.com/citations?user=sBlspVwAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57202376726
https://scholar.google.co.id/citations?user=-OXZpckAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57144449500
https://www.scopus.com/authid/detail.uri?authorId=7405488766
https://www.scopus.com/authid/detail.uri?authorId=24481107300
https://www.scopus.com/authid/detail.uri?authorId=36864011800
https://www.scopus.com/authid/detail.uri?authorId=8857392100
https://scholar.google.co.id/citations?hl=id&user=3-N-V0UAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57211276793
https://scholar.google.co.id/citations?hl=id&user=rdA4mlgAAAAJ
https://scholar.google.com/citations?user=QqMBwKcAAAAJ&hl=id&oi=ao
https://www.scopus.com/results/authorNamesList.uri?sort=count-f&src=al&sid=14bac6a4e25c74eb4dcc232fc8fe203f&sot=al&sdt=al&sl=42&s=AUTHLASTNAME%28sembiring%29+AND+AUTHFIRST%28ade%29&st1=sembiring&st2=ade&orcidId=&selectionPageSearch=anl&reselectAuthor=false&activeFlag=true&showDocument=false&resultsPerPage=20&offset=1&jtp=false¤tPage=1&previousSelectionCount=0&tooManySelections=false&previousResultCount=0&authSubject=LFSC&authSubject=HLSC&authSubject=PHSC&authSubject=SOSC&exactAuthorSearch=false&showFullList=false&authorPreferredName=&origin=searchauthorfreelookup&affiliationId=&txGid=3055e31940a30f613e228e539e2ff3a3
https://www.scopus.com/results/authorNamesList.uri?sort=count-f&src=al&sid=93efbaef6e3a97dbc19e99d6b6f3a498&sot=al&sdt=al&sl=48&s=AUTHLASTNAME%28Panjaitan%29+AND+AUTHFIRST%28suprianto%29&st1=Panjaitan&st2=suprianto&orcidId=&selectionPageSearch=anl&reselectAuthor=false&activeFlag=true&showDocument=false&resultsPerPage=20&offset=1&jtp=false¤tPage=1&previousSelectionCount=0&tooManySelections=false&previousResultCount=0&authSubject=LFSC&authSubject=HLSC&authSubject=PHSC&authSubject=SOSC&exactAuthorSearch=false&showFullList=false&authorPreferredName=&origin=searchauthorfreelookup&affiliationId=&txGid=6766b5c01d5c7ee8734108d42efac086
https://www.scopus.com/results/authorNamesList.uri?sort=count-f&src=al&sid=027c8ebe2d6a0d386a249c9b7de03fdf&sot=al&sdt=al&sl=42&s=AUTHLASTNAME%28fitrian%29+AND+AUTHFIRST%28riski%29&st1=fitrian&st2=riski&orcidId=&selectionPageSearch=anl&reselectAuthor=false&activeFlag=true&showDocument=false&resultsPerPage=20&offset=1&jtp=false¤tPage=1&previousSelectionCount=0&tooManySelections=false&previousResultCount=0&authSubject=LFSC&authSubject=HLSC&authSubject=PHSC&authSubject=SOSC&exactAuthorSearch=false&showFullList=false&authorPreferredName=&origin=searchauthorfreelookup&affiliationId=&txGid=97259fd951206eff5230d2e2def5e699

Vol. 9 No. 1 (2025): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik)
Published: 2025-05-30

Computer Science
Segmented least recently used cache replacement simulator
Marvin Chandra Wijaya, Maria Angela Kartawidjaja, Kyle Edmund

A Improving lung cancer classification with feature selection: a comparative study of random
forest and xgboost
David Kurniawan, Ega Budiman, Muhammad Fadli, Erliyan Redy Susanto

Development of digital competency curriculum framework for prospective ground handling
professionals
Nur Makkie Perdana Kusuma, Awan Awan

Sentiment analysis of mobile jkn application reviews using the multinomial naive bayes algorithm
| Putu Dedy Eka Paratama, Anak Agung Gede Bagus Ariana, Ni Luh Putu Labasariyani, Ni Luh Wiwik
Sri Rahayu G

Informtion System

Implementation of temperature and humidity monitoring system in wooden warehouse based on
distance and access location assessment

Yuvina Yuvina, Bakti Viyata Sundawa, Bayu Setiawan, Abdullah Abdullah

Comparison of standards or frameworks for IT service desk implementation
Ardhi Dwi Firmansyah, Endang Sulistiyani

The effect of work-family conflict, work-life balance on employee performance with job stress as
mediation in employees of the directorate general of health personnel of the ministry of health of
the republic of Indonesia.

Mira Weningtyas Mutiara, Slamet Mudjijah

Enhancing fraud prevention with artificial intelligence in accounting systems: A case study of e-
fishery
Nano Suyatna

Expert System
Addressing identity conflict in multicultural human resource management in Indonesia
Sari Fitri

Economy

Resilience of Mining Stocks: Impact of Gold Price Volatility and Rupiah Exchange Rate on Antam’s
Investment Performance

Ririn Fitria Dewi, Yuni Nurdini, Didik Gunawan, Lukieto Cahyadi

The Influence of Good Corporate Governance, Firm Size, and Capital Structure on Financial
Performance in PT pertamina Patra Niaga
Zuhdan Rhazes Assyaroful Akbar, Muhammad Ihsan Rangkuti

The influence of work environment, work ability, and affective commitment on performance
management at kpspam, with work motivation as a mediating variable: a study in purworejo
regency

Asih Romadhonasari, Harini Abrilia Setyawati

The role of green and digital marketing in driving impulsive buying
Johan Hendri Prasetyo, Gani Wiharso

The Influence of Social Media and E-Commerce Based Affiliate Marketing on Customer Interest
and Purchase Decisions: A Literature Review
R. Handi Bramanto, Nadia Pramudani, Murni Fadhillah, Rashell Puteri Khaneisya, Finny Redjeki

Break even point analysis of cireng lava gisting msmes
Purwanto Purwanto, Wagiyo Wagiyo, Arohman Arohman, Juliono Juliono

Building patient loyalty in the use of telemedicine applications
Oktavia Andriani, Yasintha Soelasih

The Effect of Leverage, Efficiency, and Liquidity on Profit Growth in Sharia Insurance Companies: A
Case Study of PT Sinarmas Multiartha (2016-2023)
Andika Dian Ramadhan, Wahyu Iryana, Gustika Nurmalia

Improving employee performance with transformational leadership style and work motivation
through work discipline variable intervening at PT Adis Dimension Footwear
Karsikah Karsikah, Agus David Ramdansyah, Lutfi Lutfi, Imam Sofi’i

The influence of abusive leadership on organizational commitment: The mediating role of work
stress
Khusniatun Khusniatun, Siti Nur Azizah

The relationship between social influence, perceived usefulness, and perceived ease of use on
Tokopedia's continued use intention by Gen Z in Surabaya
Tyaga Adinata Povannes, Daniel Joel Immanuel Kairupan

The effect of humanistic leadership principles on the effectiveness of leading generation Z
employees: A study in karanganyar
Intan Maharani Rosiana, Eriska Utami

Job stress and employee retention in textile crisis: the mediating role of organizational
commitment
Abdul Fatah Al Ghozy, Asep Maulana Rohimat

The influence of organizational commitment and motivation on organizational citizenship
behavior
Asti Febriani, Novita Aeni, Anna Suzana

Building strong brand image in the smartphone industry: the interplay of brand familiarity, brand
awareness, and brand extension
Nabila Salwa Kamal, Tirani Agesta, May Deduu

The influence of influencer marketing and e-wom on purchasing decisions with purchase intention
as an intervening variable
Elin Herlina, Widiakikianti Rosyid, Aang Curatman

Financial ratios' impact on stock prices in indonesian retail companies amid the covid-19 events in
2020-2022
Intania Regina Yuliestia Dana, Yusuf Iskandar, Achmad Zaki

What drives internal audit effectiveness? A systematic literature review of 20 years of evidence
Rico Putra Ramadhan

Service diversification and supply chain integration strategies in optimizing the sea toll and
pioneer shipping programs

Wawan Rudi Berlianto, Novi Iryani, Surya Murni Pangesti Lestari, Indra Pahala, Agung Wahyu
Handaru

The influence of work life balance and work environment on employee performance through job
satisfaction: a study at BNI Kebumen branch office
Liana Etika Dewi, Irfan Helmy

Leadership styles and their role in strategic decision-making
Novi Iryani, Suparno Suparno, Saparuddin Saparuddin

How risk oversight committees reduce banking risk: the amplifying role of digital innovation
Deni Ramdani, Wildan Yudhanto, Ahmad Abdul Aziz, Alex Johanes Simamora

The influence of social proof, product quality, and price on purchasing decisions for beauty
products
Abdul Rokhman, Farah Sabrina

Analyzing the impact of viral marketing and brand awareness on crocs’ purchase intentions among
millennials and gen z
Nada Hasya Zakiyyah, Sentot Basuki Prayitno

Feasibility study of catfish cultivation business using independent feed using maggot
Bayu Dwi Prasetyo, Abel Gandhy

Impact of compensation on employee performance with motivation as a moderator
| Made Aryata, | Gede Marendra

Mantik Journal, 9 (1) (2025), ISSN 2685-4236 (Online)
Published by:Institute of Computer Science (IOCS)

Jurnal Mantik

lOcsciiNneE Jounal homeoaae: www .iocscience.ora/eiournal/index.oho/mantik

Segmented least recently used cache replacement simulator

Marvin Chandra Wijaya!: Maria Angela Kartawidjaja2, Kyle Edmund3
1Program of Engineering Profession, Atma Jaya Catholic University, Jakarta, Indonesia
2Departement of Electrical Engineering, Atma Jaya Catholic University, Jakarta, Indonesia
SDepartement of Informatics Engineering, Maranatha Christian University, Bandung, Indonesia

ARTICLE INFO ABSTRACT

Article history: The block replacement process in the memory cache is an
Received Mar 27, 2025 esseptial technique ir} computing systems to improve .the
. efficiency of data retrieval from high-speed memory. Various
Revised Apr 03, 2025 . .
caching algorithms have been developed to speed up data
Accepted Apr 12, 2025 retrieval access in the memory cache, including Least Recently
Used (LRU), Least Frequently Used (LFU), and First In First Out
Keywords: (FIFO). This study aims to develop a simulator by combining the
LRU and LFU methods called Segmented Least Recently Used
(SLRU), which is able to process data retrieval from the memory
cache more efficiently. Experiments on the simulation program
created were carried out on 10 random data groups to
determine the effectiveness of each block replacement algorithm.
Based on the test results, SLRU had the best performance, with
an average hit ratio of 71.4%, followed by LRU (67%), LFU
(62%), and FIFO, which showed the lowest hit ratio performance
with a hit ratio of 55.8%. The advantage of SLRU lies in dividing
cache segmentation into two segments: the probationary
segment (LRU) and the protected segment (LFU). Based on the
experiment results, it was concluded that SLRU has more
efficient results in handling dynamic data access patterns than
other algorithms.

Block Replacement;
Cache Memory;

Hit Ratio;

SLRU.

This is an open access article under the CC BY-NC license

[otolc

Corresponding Author:

Marvin Chandra Wijaya,

Program of Engineering Profession,

Atma Jaya Catholic University,

JI. Jendral Sudirman 515, South Jakarta,Jakarta, 12930, Indonesia.
Email: marvin.cw@eng.maranatha.edu

1. INTRODUCTION

Cache replacement is the condition in which the data in the cache needs to be changed
to remain within its storage limits. The cache itself acts as temporary storage that
promptly provides the information when the system needs to access frequently used data
compared to real-time when the system would have to access that data in volatile (such
as RAM) or permanent storage (Podlipnig & Boszoérmenyi, 2003). If cache space is still
available, the new data can be placed in the cache without removing any previously
stored data. But, when the caches if full, the system should decide which data should be
removed from the cache in order to replace with the new data (Priya, Kumar, Begum, &
Ramasubramanian, 2019). Data removal is generally based simply on the frequency of
recent use or when the data was last requested/accessed. Once the previous data is

Journal homepage: www.iocscience.org/ejournal/index.php/mantik

http://iocscience.org/
http://www.iocscience.org/ejournal/index.php/mantik
https://creativecommons.org/licenses/by-nc/4.0/

170 a ISSN 2685-4236 (Online)

removed, the new required data will be then inserted into the cache for fast access upon
the next access cycle. This process is done automatically and continuously as long as the
system is operational (Wijaya, 2020). Various types of processor architectures, such as
CISC architecture and RISC architecture, require cache memory in the data retrieval
process (Bachri, Alexander, Osmond, Widawati, & Kartawidjaja, 2024). Cache
replacement is done/applied within computer systems, web storage, databases, and
hardware components operating in CPUs and SSDs, especially those that need large
cache memory (Yennimar, Faturrahman, Nesen, Guci, & Pasaribu, 2023). The data
collection process greatly influences the memory architecture used in local and shared
memory, especially in parallel computing (Satria, Barakbah, & Sudarsono, 2021).
Efficient cache management will allow the system to operate more efficiently and at less
total access time when interaction with relevant data is requested.

Least Recently Used (LRU) is a cache replacement strategy that evicts the data
that has not been accessed for the longest period (Xiong & Szefer, 2020). This strategy
effectively maintains frequently accessed data in the cache, given that access patterns are
similar (Souza & Freitas, 2024). The advantage is enhanced performance and cache
efficiency because it retains data still of value to the system, but the disadvantage is
increased complexity for implementation due to the need to track the order in which a
given element is accessed within the cache (Zheng et al., 2022).

First-In, First-Out (FIFO) replaces the data that first enters the cache, regardless
of how often it is used (J. Yang, Zhang, Qiu, Yue, & Vinayak, 2023). Simple to apply is its
advantage because it does not require keeping track of how frequently data is used. The
disadvantage is the potential of replacing data that is still used frequently, resulting in
performance that may not be optimized, especially when older data are still in active use.

Least Frequently Used (LFU) eliminates the least recently used data based on the
number of accesses (Alzakari, Dris, & Alahmadi, 2020). Its strength lies in its optimality
in terms of retaining the most frequently used data, but its weakness is significant as
well, with the potential to retain data that was frequently used in the past but is no
longer relevant in the near future.

Random Replacement (RR) causally deletes data based on randomly selected data
with no regard to patterns of access (Unterluggauer, Harris, Constable, Liu, & Rozas,
2022). A main advantage to this method is in its simplicity and ability to avoid the
additional processing cost of tracking data usage history. However, it is a large downside
of this method, as it does not consider the relevance of the data and can lead to the
removal of useful data, thereby decreasing the efficiency of the cache storage system.

In block replacement, several important parameters must be considered,
including the level of cache associativity, replacement policies such as LRU, FIFO, LFU,
or Random, as well as the age factor and frequency of block usage (Kumar & Singh,
2016). In addition, dirty bits affect whether data must be written back to memory before
block replacement, depending on the write-through or write-back policy. The cache miss
rate is also an important factor because it affects the efficiency of data access, which can
be optimized by considering temporal and spatial locality when selecting blocks to be
replaced (Asiatici & Ienne, 2019).

Several areas require improvement to enhance the current block replacement
philosophy. More precise predictions can be achieved by utilizing machine learning or Al-
enhanced replacement policies, predicting data access patterns more effectively than
classical methods like LRU or LFU (Q. Yang et al., 2023). Improved algorithms that adapt
to application usage patterns enhance efficiency (Krishna, 2025). LRU and LFU need to
reduce overhead and complexity because it will burden the memory and speed of the
computer due to the required tracking access history. Furthermore, reducing cache miss
rates is possible by combining replacement policies with smarter prefetching to ensure

Mantik Journal, Vol.9, No.1, May 2025: pp 169-178

Mantik ISSN 2685-4236 (Online) a 171

necessary data is available in the cache before it is required. Temporal locality-aware
replacement strategies help retain data that is likely to be used soon (Sonia et al., 2021).

Another key improvement is the effective management of dirty bits, which will
reduce the number of unintended writebacks to main memory by using dirty bit flushing
optimizations (such as flushing a block only if it was modified enough times). In
particular, hybrid write-through or write-back algorithms can be configured for
workloads (Young, Chishti, & Qureshi, 2019). As computing has progressed, requests for
variants of the replacement mechanism will exist to make them more efficient for multi-
core and GPU architectures, specifically as they relate to multi-threaded execution with
shared caches. Reducing power consumption is equally important, especially for mobile
devices and embedded systems, in which offering policies that account for energy for
replacement can save energy, maintain cache effectiveness and latency, and refresh the
main memory storage to conserve battery life (Sethumurugan, Yin, & Sartori, 2021). In
large data centers, these enhancements will lower operational costs (Khan et al., 2021).

Compared to other cache replacement techniques, the SLRU algorithm has
several benefits. First, it outperforms rules like FIFO and regular LRU regarding the
cache hit ratio (Hasslinger, Ntougias, Hasslinger, & Hohlfeld, 2023). Second, as
simulations like Icarus show, it minimizes latency and lowers connection load. Third, it
is appropriate for operating systems caching file blocks because of its segmented
structure, which enables it to adjust to various usage patterns. Because of these
characteristics, the SLRU algorithm is a unique option among contemporary cache
policies.

Two major gaps emerge in the research on Segmented Least Recently Used
(SLRU): first, it has been evaluated on only a small quotient of diverse, real-world
workloads; second, SLRU has never been evaluated and compared against more adaptive
algorithms. While SLRU has been evaluated in a contrived setting, it has not been
thoroughly explored with active, dynamic, and unpredictable workloads prevalent in a
modern context, including, but certainly not limited to, cloud computing or edge devices.
Furthermore, SLRU has never been adequately evaluated and compared against newer
adaptive policies, such as ARC or CAR that are adaptable in response to workload
changes. Closing the aforementioned gaps in research would provide some meaningful
insight into SLRU's practical performance in a much more meaningful way, in addition to
revealing potential defensible succinct advantages (or disadvantages).

By filling in these research gaps, the results of this study will benefit the world of
practice by providing system designers and engineers with more information to make
educated decisions during their evaluation of cache replacement policies, whether they
simply be adopting or applying them in a real-world setting. By assessing SLRU under
varying and realistic workloads, this investigation contributes insight into SLRU's
performance in real-world settings, such as cloud infrastructure, web services, or edge
computing. Such performance comparisons could improve the efficacy of memory
resources or system performance.

2. RESEARCH METHOD

The Segmented Least Recently Used (SLRU) method is a segmented cache replacement of
cache memory policy that aims to improve cache data management. It improves
performance by prioritizing frequently used data and reducing less-used elements. This
method boosts the cache hit rate, resulting in faster access to vital information. Parting
the cache into segments effectively distinguishes frequently accessed material from rare
items. There are some strategies to increase efficiency and better use existing memory
resources.

Marvin Chandra Wijaya, Segmented least recently used cache replacement simulator

172 a ISSN 2685-4236 (Online)

SLRU method improves cache performance by separating it into two parts:
probationary and protected. Data used frequently moves to the protected area, preventing
unnecessary data loss. The size of the shielded portion can be adjusted to meet the
system requirements. The SLRU algorithm monitors data usage via reference bits,
allowing vital data to be stored for longer periods. The SLRU algorithm is suitable for
various applications, including operating systems and databases.

The probationary and protected segments are the two primary segments into
which the SLRU algorithm divides the cache. The probationary phase is always where
new entries begin. The protected section prioritizes frequently used data, where an entry
goes if it is reaccessed. Due to its structure, the cache will adjust to both short-term and
long-term access patterns. When the cache is full, the program removes the least
recently utilized material from the probationary section. This method increases overall
efficiency and reduces needless cache eviction.

The SLRU algorithm uses reference bits to monitor the frequency of data access.
An entry's reference bit changes each time you visit it, indicating its importance. Less-
used entries stay in the probationary section, while entries with more reference activity
are moved to the protected segment. Due to this dynamic management, the cache
prioritizes data according to real-time usage patterns. The SLRU algorithm compromises
between allowing for new entries and keeping frequently used data by utilizing reference
bits.

By splitting the cache into two segments, the page replacement process known as
SLRU (Segmented Least Recently Used) improves on the conventional LRU (Least
Recently Used) technique (as shown in Figure 1): (a) Pages that are often accessed are
stored in the protected segment. (b) Newly uploaded pages or just removed from the
protected segment are stored in the probationary segment.

Protected
Segment

7\
EEEE TEEEN

MRU Replacement LRU MRU Replacement LRU

Priarities Priocities

Probationary
Segment

Hit

Figure 1. Protected Segment and Probationary Segment (Yamaki, 2019).

Figure 2 shows the four steps of the SLRU algorithm procedure. The CPU will give
instructions on how to retrieve data from memory. The data to be retrieved will be
checked to see whether it is in the memory cache. If it is not in the memory cache, then
the page will be retrieved and inserted into the probationary segment. Pages that are
frequently accessed will be inserted into the protected segment. Because the protected
segment has limited space, pages that are already in the protected segment but are least
used will be returned to the probationary segment.

Mantik Journal, Vol.9, No.1, May 2025: pp 169-178

Mantik ISSN 2685-4236 (Online)) 173

When a new page is accessed |, it is
placed in the probationary segment.

a page 1n the probationary segment
is accessed again before it is evicted,
it is promoted to the protected
segment.

The protected segment has a limited
size. If it becomes full, the least
recently used page in it is moved back
to the probationary segment instead of
being discarded immediately.

If a page in the probationary segment
i1s not accessed before eviction, it is
removed from the cache.

Figure 2. SLRU Algorithm

Flowchart for Segmented Least Recently Used Simulator algorithm as follows:
1. Start
2. Access a Key
a. Check if the key is in the Protected Segment (LFU)
i. If Yes, increase its frequency
b. If No, check if it's in the Probationary Segment (LRU)
i. If Yes, Promote it to the Protected Segment
ii. If No, add it to the Probationary Segment
Handle Overflows.
If the probationary segment is full, evict the least recently used item (LRU).
If the Protected Segment is full, evict the Least Frequently Used (LFU) item.
Update Cache & Log the Action
Display & Visualize Cache

Nookw

Validity in this research was addressed through specific strategies that ensured
that the SLRU algorithm was executed faithfully according to established theoretical
frameworks and previous work. This included careful modeling of various algorithm
structures (such as dividing the algorithm into probationary and protected lists to
determine the use of reference bits and others) according to specification. The simulator
was designed to provide behaviors that replicated real-world cache operations, including
the access pattern associated with memory usage, indicative of a real system. Reliability
was supported by treating simulations with consistent input parameters, workload types,
and simulation system configurations. In particular, multiple simulations were
conducted under the same conditions in order to ensure that the results (such as cache
hit rate and eviction) were reliable and thus replicable.

Marvin Chandra Wijaya, Segmented least recently used cache replacement simulator

174 a ISSN 2685-4236 (Online)

3. RESULTS AND DISCUSSIONS

The experiment will be conducted by simulating a group of data for cache memory as
follows:

a. Cache Access Simulation,

The code executes several access requests based on the listrequests= ["A", "B",
"c", "A", "D", "A", "E", "B", "F", "B", "C", "A"]. Each time an item is accessed, the code
checks for its existence in the cache and determines whether it needs to be promoted or
replaced.

b. Logging Cache Activity

Every cache change is logged in the slru_log.txt file. The log will contain
information such as: (a) Item being accessed, (b) Promotion from Probationary to
Protected Segment, (c) [tem removal if the cache is full

c. Displaying Cache Contents After Each Access
The cache is displayed after each new access. The Probationary Segment contains
newly added items, while the Protected Segment contains frequently accessed items.

d. Visualizing Access Frequency in Protected Segment

The code will display a bar chart using Matplotlib, showing how many times each
item in the Protected Segment has been accessed. If there are no items in the Protected
Segment, the message will appear: " There is no data in the Protected Segment to
visualize."

The cache is used as an initial space to temporarily store information needed in
CPU operations (Panda, Patil, & Raveendran, 2016). When the CPU requests information
stored in memory and the information is already in the cache, it is also called a cache hit
(or Hit Ratio), as in equation (1) (Ma, Hao, Shen, Tian, & Al-Rodhaan, 2018). If a cache
hit occurs, the CPU can immediately receive information from data from the cache
memory. However, if the information is not in the cache, it is called a cache miss (or Miss
Ratio), as in equation (2). When a cache miss occurs, the CPU is given data from the
main memory. Average Memory Access Time (AMAT) is a computer memory system
performance measurement for memory processes. Average Memory Access Time (AMAT)
measures the average time required to access data from memory, involving factors such
as cache hit rate and main memory access time as in equation (3) (Pedro-Zapater,
Rodriguez, Segarra, Gran Tejero, & Vinals-Yufera, 2020).

Hits

. . Hits o
Hit Ratio = e ¥ 100% (1)
Miss Ratio = —22%°_ % 100% (2)
Hits+ Misses
Average Memory Access Time (AMAT) = Hit Times + Miss Ratio X Miss Penalty 3)

Figure 3 and Figure 4 are the results of cache replacement simulation using the
SLRU algorithm designed in this study. The next experiment uses 10 different data
groups to compare the cache hit ratio and the miss ratio of the SLRU cache replacement
method designed in this study compared to the LFU, LRU, and FIFO methods.

Mantik Journal, Vol.9, No.1, May 2025: pp 169-178

Mantik ISSN 2685-4236 (Online) a 175

Cache Status:

Probationary Segment (LRU) : ['C', 'D’,
YEV]

Protected Segment (LFU) : {A": 3, 'B": 2}

Cache Performance:

Total Requests : 12

Cache Hits : 5 (41.67%)
Cache Misses :7 (58.33%)

Figure 3. Simulator Results

[] Accessing: A
0 A not found. Adding to Probationary Segment.

[0 Accessing: B
[B not found. Adding to Probationary Segment.

[0 Accessing: A
[0 A promoted to Protected Segment.
00 A found in Protected Segment. Frequency: 2

[0 Accessing: C
0 C not found. Adding to Probationary Segment.

[0 Accessing: A
0 A found in Protected Segment. Frequency: 3

[0 Accessing: B
[B promoted to Protected Segment.

] Accessing: B
1 B found in Protected Segment. Frequency: 2

Figure 4. Log file

Based on the simulation results on 10 groups of random data, the comparison
results of the hit ratio and miss ratio show that SLRU (Segmented Least Recently Used)
has the best performance compared to the LRU (Least Recently Used), LFU (Least
Frequently Used), and FIFO (First In First Out) methods. The SLRU simulation results
have an average success ratio of around 71.4% and a failure ratio of 28.6%, higher than
other algorithms, as shown in Table 1 and Figure 5.

The LRU method, which only maintains the most recently accessed elements,
shows a hit ratio of around 67%, which is slightly lower than that of SLRU. LFU is a
method that stores elements based on access frequency. Based on the test results, it
shows lower results with an average hit ratio of around 62%. The FIFO method has the
worst performance compared to other methods, with a hit ratio of only around 55.8%.

Table 1. Cache Hit Ratio and Miss Ratio Comparison

Data SL:RU SLRU LRU I_fRU LFU LFU FI.FO FIFO (Miss%)
Group (Hit%) (Miss%) (Hit%) (Miss%) (Hit%) (Miss%) (Hit%)
1 72.00% 28.00% 68.00% 32.00% 63.00% 37.00% 58.00% 42.00%
2 70.00% 30.00% 66.00% 34.00% 60.00% 40.00% 55.00% 45.00%
3 74.00% 26.00% 69.00% 31.00% 64.00% 36.00% 57.00% 43.00%
4 71.00% 29.00% 67.00% 33.00% 61.00% 39.00% 54.00% 46.00%

Marvin Chandra Wijaya, Segmented least recently used cache replacement simulator

176 a ISSN 2685-4236 (Online)

Data SLRU SI:,RU LRU LRU LFU I_fFU FI.FO FIFO (Miss%)
Group (Hit%) (Miss%) (Hit%) (Miss%) (Hit%) (Miss%) (Hit%)
5 73.00% 27.00% 68.00% 32.00% 65.00% 35.00% 59.00% 41.00%
6 69.00% 31.00% 65.00% 35.00% 60.00% 40.00% 53.00% 47.00%
7 75.00% 25.00% 70.00% 30.00% 66.00% 34.00% 60.00% 40.00%
8 68.00% 32.00% 64.00% 36.00% 59.00% 41.00% 52.00% 48.00%
9 72.00% 28.00% 67.00% 33.00% 62.00% 38.00% 56.00% 44.00%

10 70.00% 30.00% 66.00% 34.00% 60.00% 40.00% 54.00% 46.00%
Average 71.40% 28.60% 67.00% 33.00% 62.00% 38.00% 55.80% 44.20%

Cache Hit Ratio Comparison

80%
f05%%
60%
50%
4%
30%
2U0%
10%

0%

M A -] B L5 5] A & S ﬂ$.‘l q_f‘c!f

:a*“'}w
H 5LRU (Hit%) ® LRU (Hit%:) LFU {Hit%:) FIFO (Hit%:)

Figure 5. Cache Hit Ratio Comparison
4. CONCLUSION

Overall, SLRU has advantages compared to other methods because it is able to separate
the cache into two segments, namely probationary (LRU) and protected (LFU). Due to the
division of these two segments, frequently accessed data will be promoted from the
probationary segment to the protected segment. Pages in the protection segment will
remain in the cache longer. These two segments produce a more optimal combination of
the LRU and LFU methods. This explains why SLRU performed the best in this test.

Based on the test results, it can be concluded that the SLRU method is more
effective in handling various data access patterns compared to LRU, LFU, and FIFO.
SLRU can be a more efficient choice for implementing block replacement in various needs
such as database systems, memory management, or proxy servers, and this is because it
will significantly reduce the number of cache misses and increase the speed of the data
retrieval process to memory. Based on the experimental results, the average hit ratio
using the LRU method was 71.40%, which is better than the LRU method (67%), LFU
(62%) and FIFO method (55.8%).

A significant drawback is the fixed sizes of segments, which may not be optimal
for all workloads. An additional consideration is that the structure of the SLRU algorithm
is relatively complex compared with traditional replacement techniques, such as FIFO
and LRU, requiring overhead that may not be feasible in low-resource systems. Also,
SLRU functions relatively statically and does not have the potential to adapt to changes
in workload access patterns. Accordingly, it is likely to function well under organized

Mantik Journal, Vol.9, No.1, May 2025: pp 169-178

Mantik ISSN 2685-4236 (Online) a 177

conditions, but the performance of SLRU may vary in real-time or dynamically changing
workload conditions.

Further improvements to cache replacement decisions could also be achieved
through predictive or machine-learning techniques to model access patterns. In addition,
testing SLRU on realistic datasets and exploring SLRU at the hardware level in practice
will help provide further insight into the advantages and disadvantages of using SLRU.
Furthermore, future investigations may address efficiency-related investigations of these
techniques, particularly energy efficiency for use in mobile or embedded systems where
consumption is important.

REFERENCES:

Alzakari, N., Dris, A. Bin, & Alahmadi, S. (2020). Randomized Least Frequently Used Cache
Replacement Strategy for Named Data Networking. 2020 3rd International Conference on
Computer Applications & Information Security (ICCAILS), 1-6.
https://doi.org/10.1109/ICCAIS48893.2020.9096733

Asiatici, M., & lenne, P. (2019). Stop Crying Over Your Cache Miss Rate: Handling Efficiently
Thousands of Outstanding Misses in FPGAs. Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 310-319.
https://doi.org/10.1145/3289602.3293901

Bachri, K. O., Alexander, J., Osmond, E., Widawati, E., & Kartawidjaja, M. A. (2024). SPArc-subset
general-purpose microprocessor design and implementation in field programmable gate array.
Mantik, 8(3), 1447-1455. https://doi.org/10.35335/mantik.v8i3.5681

Hasslinger, G., Ntougias, K., Hasslinger, F., & Hohlfeld, O. (2023). Scope and Accuracy of Analytic
and Approximate Results for FIFO, Clock-Based and LRU Caching Performance. Future
Internet, 15(3). https://doi.org/10.3390/{i15030091

Khan, T. A., Zhang, D., Sriraman, A., Devietti, J., Pokam, G., Litz, H., & Kasikci, B. (2021). Ripple:
Profile-Guided Instruction Cache Replacement for Data Center Applications. 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA), 734-747.
https://doi.org/10.1109/ISCA52012.2021.00063

Krishna, K. (2025). Advancements in cache management: a review of machine learning innovations
for enhanced performance and security. Frontiers in Artificial Intelligence, 8, 1441250.
https://doi.org/10.3389/frai.2025.1441250

Kumar, S., & Singh, P. K. (2016). An overview of modern cache memory and performance analysis
of replacement policies. 2016 IEEE International Conference on Engineering and Technology
(ICETECH), 210-214. https://doi.org/10.1109/ICETECH.2016.7569243

Ma, T., Hao, Y., Shen, W., Tian, Y., & Al-Rodhaan, M. (2018). An Improved Web Cache Replacement
Algorithm Based on Weighting and Cost. IEEE Access, 6, 27010-27017.
https://doi.org/10.1109/ACCESS.2018.2829142

Panda, P., Patil, G., & Raveendran, B. (2016). A survey on replacement strategies in cache memory
for embedded systems. 2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics
(DISCOVER), 12-17. https://doi.org/10.1109/DISCOVER.2016.7806218

Pedro-Zapater, A., Rodriguez, C., Segarra, J., Gran Tejero, R., & Vinals-Yufera, V. (2020). Ideal and
Predictable Hit Ratio for Matrix Transposition in Data Caches. Mathematics, 8(2).
https://doi.org/10.3390/math8020184

Podlipnig, S., & Boszoérmenyi, L. (2003). A survey of Web cache replacement strategies. ACM
Comput. Surv., 35(4), 374-398. https://doi.org/10.1145/954339.954341

Priya, B. K., Kumar, S., Begum, B. S., & Ramasubramanian, N. (2019). Cache lifetime
enhancement technique using hybrid cache-replacement-policy. Microelectronics Reliability,
97, 1-15. https://doi.org/https:/ /doi.org/10.1016/j.microrel.2019.03.011

Satria, B. D., Barakbah, A. R., & Sudarsono, A. (2021). Implementation Parallel Computation for
Automatic Clustering. Mantik, 5(2), 994-1005.
https://doi.org/10.35335/jurnalmantik.Vol5.2021.1439.pp994-1005

Sethumurugan, S., Yin, J., & Sartori, J. (2021). Designing a Cost-Effective Cache Replacement
Policy using Machine Learning. 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 291-303. https://doi.org/10.1109/HPCA51647.2021.00033

Sonia, Alsharef, A., Jain, P., Arora, M., Zahra, S. R., & Gupta, G. (2021). Cache Memory: An

Marvin Chandra Wijaya, Segmented least recently used cache replacement simulator

178 a ISSN 2685-4236 (Online)

Analysis on Performance Issues. 2021 8th International Conference on Computing for
Sustainable Global Development (INDIACom), 184-188.

Souza, M. A., & Freitas, H. C. (2024). Reinforcement Learning-Based Cache Replacement Policies
for Multicore Processors. IEEE Access, 12, 79177-79188.
https://doi.org/10.1109/ACCESS.2024.3409228

Unterluggauer, T., Harris, A., Constable, S., Liu, F., & Rozas, C. (2022). Chameleon Cache:
Approximating Fully Associative Caches with Random Replacement to Prevent Contention-
Based Cache Attacks. 2022 IEEE International Symposium on Secure and Private Execution
Environment Design (SEED), 13-24. https://doi.org/10.1109/SEEDS55351.2022.00009

Wijaya, M. C. (2020). Algoritme penggantian cache proxy terdistribusi untuk meningkatkan kinerja
server web. Jurnal Teknologi Dan Sistem Komputer, 8(1), 1-5.
https://doi.org/10.14710/jtsiskom.8.1.2020.1-5

Xiong, W., & Szefer, J. (2020). Leaking Information Through Cache LRU States. 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA), 139-152.
https://doi.org/10.1109/HPCA47549.2020.00021

Yamaki, H. (2019). Flow Characteristic-Aware Cache Replacement Policy for Packet Processing
Cache BT - Advances in Information and Communication Networks. Advances in Intelligent
Systems and Computing, 886, 258-273. https://doi.org/10.1007/978-3-030-03402-3_18

Yang, J., Zhang, Y., Qiu, Z., Yue, Y., & Vinayak, R. (2023). FIFO queues are all you need for cache
eviction. Proceedings of the 29th Symposium on Operating Systems Principles, 130-149.
https://doi.org/10.1145/3600006.3613147

Yang, Q., Jin, R., Fan, N., Inupakutika, D., Davis, B., & Zhao, M. (2023). AdaCache: A
Disaggregated Cache System with Adaptive Block Size for Cloud Block Storage. Retrieved from
https:/ /arxiv.org/abs/2306.17254

Yennimar, Y., Faturrahman, M. R., Nesen, S., Guci, M. A., & Pasaribu, S. R. (2023).
Implementation of artificial neural network and support vector machine algorithm on student
graduation prediction model on time. Mantik, 7(2), 925-934.
https://doi.org/10.35335/mantik.v7i2.3992

Young, V., Chishti, Z. A., & Qureshi, M. K. (2019). TicToc: Enabling Bandwidth-Efficient DRAM
Caching for Both Hits and Misses in Hybrid Memory Systems. 2019 IEEE 37th International
Conference on Computer Design (ICCD), 341-349.
https://doi.org/10.1109/ICCD46524.2019.00055

Zheng, Q., Yang, T., Kan, Y., Tan, X., Yang, J., & Jiang, X. (2022). On the Analysis of Cache
Invalidation With LRU Replacement. IEEE Transactions on Parallel and Distributed Systems,
33(3), 654-666. https://doi.org/10.1109/TPDS.2021.3098459

Mantik Journal, Vol.9, No.1, May 2025: pp 169-178

