

Development of adaptive congestion control mechanism for real-time multimedia streaming in variable network condition

Eastern-European Journal of Enterprise Technologies

Vol. 5 No. 9 (137)

Korespondensi:

1. Email submission / pengiriman artikel (7 Agustus 2025)
2. Email konfirmasi submision (7 Agustus 2025)
3. Email konfirmasi kedua tentang submision (7 Agustus 2025)
4. Email permintaan revisi dari hasil Pre-Review oleh Jurnal Editor (11 Agustus 2025)
5. Email pemberitahuan pengiriman revisi artikel (15 Agustus 2025)
6. Artikel Hasil Revisi 1 (15 Agustus 2025)
7. Email permintaan revisi kedua untuk Pre-review oleh jurnal editor (16 Agustus 2025)
8. Email pengiriman Revisi kedua (18 Agustus 2025)
9. Sebagian tampilan revisi kedua (18 Agustus 2025)
10. Email pemberitahun hasil review dari Reviewer (25 Agustus 2025)
11. Email pengiriman Revisi 3 (29 Agustus 2025)
12. Artikel hasil revisi 3 (29 Agustus 2025)
13. Email penerimaan / accepted artikel (9 September 2025)
14. Email Permintaan perbaikan layout (17 September 2025)
15. Email hasil perbaikan layout (19 September 2025)

1. Email submission / pengiriman artikel (7 Agustus 2025)

Marvin Chandra Wijaya <marvinchw@gmail.com>

Article Submission

2 messages

Marvin Chandra Wijaya <marvinchw@gmail.com>
To: eejet@entc.com.ua, c7508990@gmail.com

Thu, Aug 7, 2025 at 12:16 PM

Dear Editors!

Please find attached the original research article "Adaptive Congestion Control Mechanism For Real-Time Multimedia Streaming In Variable Network Conditions" for publication in "Eastern-European Journal of Enterprise Technologies" written by author Marvin Chandra Wijaya for your kind consideration for publication.

All authors have read and approved this variant of the paper. No part of it has been published or presented elsewhere. The authors have no conflicts of interest related to the research described in the manuscript. The author Marvin Chandra Wijaya, submitting a manuscript to the editors of the "Eastern-European Journal of Enterprise Technologies", is familiar with and agree to all the requirements for registration, submission of the article manuscript, payment, General Terms and Conditions, which are on the official website of the journal via links, and bear full responsibility in case of violation of these requirements.

We look forward to receiving comments from reviewers.

On behalf of all the authors of this manuscript,

Marvin Chandra Wijaya, PhD, +6285100290135

2 attachments

Marvin_Cover Letter EEJET_2025.doc
31K

Marvin_manuscript.docx
103K

2. Email konfirmasi submision (7 Agustus 2025)

Marvin Chandra Wijaya <marvinchw@gmail.com>

Article Submission

Oksana Nikitina <0661966nauka@gmail.com>

Thu, Aug 7, 2025 at 12:34 PM

To: Marvin Chandra Wijaya <marvinchw@gmail.com>

Good day!

I have submitted your article for review. Please wait for an answer.

If you have any questions, please call or write, we will be happy to answer them.

We work 24/7 and are ready to help you around the clock!

with respect, General Manager Oksana Hiba (Nikitina)

Viber/ Telegram/ WhatsApp +38050-303-38-01

✉ 0661966nauka@gmail.com

Editorial staff of the "Eastern-European Journal of Enterprise Technologies"

Website: <https://jet.com.ua/en/>, <http://journals.uran.ua/eejet/>

чт, 7 авг. 2025 г. в 08:17, Marvin Chandra Wijaya <marvinchw@gmail.com>:

[Quoted text hidden]

3. Email konfirmasi kedua tentang submision (7 Agustus 2025)

Marvin Chandra Wijaya <marvinchw@gmail.com>

from "Eastern-European Journal of Enterprise Technologies" _Marvin Chandra Wijaya

2 messages

Oksana Nikitina <0661966nauka@gmail.com>

Thu, Aug 7, 2025 at 8:47 PM

To: Marvin Chandra Wijaya <marvinchw@gmail.com>

Good afternoon.

We can accept the article in the October issue (№5.2025) of the journal if you agree to our terms.

We inform you that the article should be at least 15 pages, designed according to the requirements of the site <http://jet.com.ua/en/publication-terms/rules-for-submitting> (the cost of 1 page is 25 euro - <http://jet.com.ua/en/publication-terms/terms-of-payment>) + 50 euro is the submission fee.

Our website has all the information you need:

Information Site: <http://jet.com.ua/en/>

Journal Archive: <http://journals.uran.ua/eejet/issue/archive>

"Eastern-European Journal of Enterprise Technologies" journal is an open-access journal indexed by **Scopus**: <https://www.scopus.com/sourceid/21100450083> (SNIP 2024 - 0.597, SJR - 0.274).

Scimago: <https://www.scimagojr.com/journalsearch.php?q=21100450083&tip=sid&clean=0> (H-INDEX 41).

I am waiting for your reply as soon as possible (no later than 24 hours), so as not to delay the work on the article. All you have to do is write that you agree with the terms, and I will let you know immediately what to do next.

If you have any questions, call or write; we will happily answer them.

With respect, General Manager Oksana Hiba (Nikitina)

Editorial staff of the "[Eastern-European Journal of Enterprise Technologies](#)"

Website: <https://jet.com.ua/en/>, <http://journals.uran.ua/eejet/>

Publishing House [TECHNOLOGY CENTER PC®](#)

[Visit site](#)

[Visit site](#)

Увага! Автор (колектив авторів), подаючи рукопис до редакції журналу **«Eastern-European Journal of Enterprise Technologies»**, погоджується з усіма вимогами до оформлення, подачі рукопису статті та оплати та несе повну відповідальність у разі порушення цих вимог.

Our company may rely on your freely given consent at the time you provided your personal data to us replying on this email then the lawfulness of such processing is based on that consent under EU GDPR 2016/679. You have the right to withdraw consent at any time.

[Subscribe](#)

2 attachments

 [Marvin_Cover Letter EEJET_2025.doc](#)
31K

 [Marvin_manuscript.docx](#)
103K

4. Email permintaan revisi dari hasil Pre-Review oleh Jurnal Editor (11 Agustus 2025)

Marvin Chandra Wijaya <marvinchw@gmail.com>

from "Eastern-European Journal of Enterprise Technologies" - Wijaya M. C. (stage 2, No. 5(137).2025 (October))

3 messages

Oksana Nikitina <0661966nauka@gmail.com>

Mon, Aug 11, 2025 at 4:56 PM

To: Marvin Chandra Wijaya <marvinchw@gmail.com>

Good afternoon, dear authors.

The article was accepted for consideration of the possibility of publication in (No. 5(137).2025).

At the 2-stage of editing, please take into account the comments of the editor (article in the application, color notes are highlighted).

We ask you to right strictly in the option which is in the attachment (see attachment).

We ask you not to delete the comments so that we can see all your edits. All corrections by the author, please highlight in green.

Please provide an edited version of the article **by 15.08.2025**.

If you have any questions, please call or write, we will be happy to answer them.

With best regards, Manager Yu. Prylutska

TECHNOLOGY CENTER GROUP LTD
Viber/ WhatsApp/ Telegram: +380 (50) 3033801

Editorial staff of the "[Eastern-European Journal of Enterprise Technologies](#)"
Website: <https://jet.com.ua/en/>, <http://journals.uran.ua/eejet/>

--

[Visit site](#)

[Visit site](#)

Увага! Автор (колектив авторів), подаючи рукопис до редакції журналу «**Eastern-European Journal of Enterprise Technologies**», погоджується з усіма вимогами до оформлення, подачі рукопису статті та оплати та несе повну відповіальність у разі порушення цих вимог.

Our company may rely on your freely given consent at the time you provided your personal data to us replying on this email then the lawfulness of such processing is based on that consent under EU GDPR 2016/679. You have the right to withdraw consent at any time.

[Subscribe](#)

Wijaya 22-ок-(1).doc

242K

5. Email pemberitahuan pengiriman revisi artikel (15 Agustus 2025)

Marvin Chandra Wijaya <marvinchw@gmail.com>

**from "Eastern-European Journal of Enterprise Technologies" - Wijaya M. C.
(stage 2, No. 5(137).2025 (October))**

Marvin Chandra Wijaya <marvinchw@gmail.com>
To: Oksana Nikitina <0661966nauka@gmail.com>

Fri, Aug 15, 2025 at 3:18 PM

Dear EEJET Editor,

I have revised the article based on the comment of the reviewer.
I hereby attach the revised article.
Hopefully the article can be published.

Thank you,

Best regards

Marvin Chandra Wijaya
[Quoted text hidden]

Wijaya 22-ок-(1) rev.doc
245K

6. Artikel Hasil Revisi 1 (15 Agustus 2025)

Warna merah → Komentar dari Jurnal Editor,

Warna Hijau → Perubahan hasil revisi

Accepted date:

UDC 004.55

DEVELOPMENT OF ADAPTIVE CONGESTION CONTROL MECHANISM FOR REAL-TIME MULTIMEDIA STREAMING IN VARIABLE NETWORK CONDITION

The title should tell you what your research was about: development, comparison, implementation, etc.

Marvin Chandra Wijaya

First name Surname | Current address | Past name | Major/Chaining | Supervisor | Advisor

The sum of abstract + keywords should be 1800-1900 characters with spaces.

Abstract should contain the following information:

- object of research

- problem that was solved

- results obtained

- brief interpretation of the results (what explains them)

- features and distinctive features of the results obtained, thanks to which they allowed to solve the problem under study

- the scope and conditions of practical use of the results obtained

The object of this study is to manage congestion control in real-time multimedia streaming (image, video, audio, and text) under varying network conditions. The problem addressed is the inability of standard RTP and RTCP mechanisms to adapt to changes in bandwidth, packet loss, and jitter. These changes in network conditions can cause video quality degradation, increased latency, and unstable bitrates. The proposed solution improves standard RTP and RTCP by incorporating an adaptive streaming mechanism that uses RTCP feedback to dynamically adjust bitrate and bandwidth for real-time network conditions. Experimental results show that in simulated environments with packet loss (2% to 10%) and jitter (40 ms to 150 ms), and latency (10 ms to 60 ms), using the proposed system, the average packet loss from 5.2% to 1.4% and end-to-end latency from 220 ms to 125 ms. By reducing packet loss and latency, this system is able to maintain higher and more stable frame rates compared to standard RTP and RTCP. This system has several advantages compared to multimedia streaming with NADA, GCC, and SCREAM protocols. The success of this system is based on the system's ability to continuously optimize transmission parameters based on network feedback. A distinctive feature of this method is the combined adaptation of bitrate and framerate, which ensures stable playback even under severe network fluctuations. The results are practically applicable to real-time video conferencing, live broadcasting, gaming, and telemedicine provided that the endpoint supports RTP RTCP feedback processing. The scope of this research is testing under variable network conditions such as wireless networks and shared networks.

Keywords: adaptive system, multimedia, network congestion, real-time transport control protocol, video streaming

1. Introduction

In the section Introduction it is necessary to justify the relevance to the present scientific topics. I pay attention - not the relevance of this work (article), but exactly the topic. It is necessary to give arguments in favor of the fact that it is very important to carry out research on this topic, and that the results of such research are needed in practice.

After all, it may turn out that the topic itself is no longer needed, outdated, because science is already much further ahead. In this case, why waste time on research? Note that relevance is understood precisely in the sense of the importance of this scientific topic (issue), not in the sense of this work (article).

If such arguments will be given, it is clear why further analysis of the literature - since this scientific topic is important, it is necessary to understand what achievements in the research of this topic already have and what do not, and therefore requires a new study.

Thus, the logic of the construction of the article should be as follows:

The introduction section proves that this research topic needs to be dealt with, hence the Literature review and problem statement, which specifies what the problem is, and requires research, hence the justified purpose of the research which is set out in the aims and objectives of the research section.

Therefore, in the Introduction section it is not necessary to annotate your article (This article explores...), and this section should end with a text that will conclude that this research topic (problematic) is relevant. For example:

Therefore, research on the development of so-and-so is relevant.

Multimedia streaming delivers audio, video, and other media from a server over the internet to users in real time [1]. Multimedia streaming is a ubiquitous part of everyday life today [2]. It is widely used for various purposes, such as

and DQN algorithms in Montreal, Berlin, and Beijing. The results show that modified RL and DQN algorithms result in substantial improvements in packet delivery, network throughput, fairness between traffic sources, packet delay, and a wide range of quality of service. However, adaptive congestion control with self-learning algorithms needs further enhancement.

Congestion control in multimedia streaming remains a challenging problem. This problem occurs due to the unpredictable nature of network traffic, the difficulty of running real-time algorithms on lightweight devices, and the cost of implementation. The development of better feedback and adaptive mechanisms capable of predicting congestion can be beneficial for improving the quality of multimedia streams. Study [15] shows that standard RTCP feedback is slow, fixed in a certain manner, and cannot predict future congestion. All this leads to the conclusion that efficient and adaptive congestion control for real-time streaming is a very difficult task. However, several new challenges remain, including fast and accurate adaptation to changing network conditions.

These unresolved issues are due to objective constraints (such as packet feedback rate and codec adaptation rate), the need for appropriate complexity, design in multimedia programming algorithms, and the lack of interaction with existing RTP/RTCP. Highly reliable packet communication [16] is a challenge for critical applications in future wireless networks. Achieving highly reliable communication with an effective probability requires a new communication paradigm.

3. The aim and objectives of the study

This study aims to improve the quality of real-time multimedia streaming using RTP and RTCP. This improvement is achieved through the development of an adaptive congestion control system that can respond to varying network conditions.

The objectives of this study can be summarized as follows:

- to test the limitations of existing RTP and RTCP congestion control mechanisms, especially under unstable or variable network conditions;
- to design and implement an adaptive real-time tuning system by leveraging RTCP feedback to dynamically modify streaming parameters and evaluate video streaming quality under various network scenarios;
- to compare the results of the proposed system with standard RTP and RTCP systems.

4. Materials and methods

The object of study is a real-time multimedia streaming system based on RTP/RTCP, which focuses on handling network congestion to maintain media quality in unstable network conditions.

The subject of the research is the development of an adaptive congestion control mechanism to improve multimedia streaming performance using RTP/RTCP as real-time feedback to adjust streaming parameters based on network conditions.

This study hypothesizes that implementing an adaptive congestion control mechanism based on real-time RTCP feedback will improve the quality, stability, and responsiveness of multimedia streaming. The quality of RTP/RTCP multimedia streaming with adaptive congestion control will be better than that of a standard RTP/RTCP system.

4.1. Evaluating the Limitations of Multimedia Streaming Congestion Control Abbreviations in section names are not allowed

Section title no more than 10-12 words

The section title can be a detailed analysis of how RTP and RTCP operate in real-time streaming to identify the limitations of the RTP and RTCP protocols. RTP and RTCP are complementary standard protocols for real-time data transmission over IP networks, such as audio and video. The relationship between RTP and RTCP is based on how RTCP sends feedback and examines how RTP responds to this feedback during network congestion.

Therefore, this study will utilize simulation tools to observe the behavior of RTP/RTCP in real-time conditions. GStreamer software will be used to simulate multimedia streaming under various network conditions. Key performance indicators such as packet loss, jitter, delay, and video quality will be monitored and recorded.

Some experimental scenarios include the following:

- sudden bandwidth drops or increases;
- network congestion due to background traffic;
- variable delays and jitter, as found in cellular or wireless networks.

By observing the data collected in these various situations, this study can identify specific weaknesses in each condition. The data collected will be compared across various scenarios to analyze which issues are serious, fatal, and frequently occurring.

4.2. Designing an Adaptive Mechanism Using Feedback from Real-Time Transport

A stepwise approach was used to design and implement an adaptive RTP/RTCP streaming system capable of customizing streaming parameters based on changing network conditions. This approach involved system architecture, implementation with GStreamer, modeling various network conditions, and experimental testing using the aforementioned metrics.

RTCP allows the receiver to periodically send reports, which in this case can include reports that provide packet loss rates, round-trip delay (RTT), and jitter. Real-time data from RTCP is then processed using Python to adjust RTP

increasingly popular due to internet speed and bandwidth advances. However, unstable internet conditions make real-time multimedia streaming difficult to handle [3]. Problems including packet loss, delays, jitter, and bandwidth fluctuations are still common [4]. These problems are more prevalent on cellular and wireless networks. These issues directly impact the user experience, causing video lag, poor audio quality, and interference. Stable transmission and adaptive system mechanisms are crucial for various applications such as telemedicine, remote work, virtual classrooms, and emergency communication systems [5].

Fast and stable communication over a network requires a system that utilizes the Real-Time Transport Protocol (RTTP) and the RTP Control Protocol (RTCP). Media such as text, video, audio, animation, and many others use RTTP as their data delivery protocol [6]. RTCP is used to monitor the quality of an application's connection while streaming data [7]. A multimedia presentation, consisting of video and audio, is combined with a shared screen or text chat and then sent over the internet [8]. The data is often compressed using codes such as H.264 for video or Opus for audio, allowing faster transmission over the network [9].

One of the biggest challenges in multimedia streaming is network congestion. Congestion occurs when too much data is sent over a network simultaneously. Congestion is unavoidable and uncontrollable by the system, as users control much of the data being transmitted. When the network is overloaded, data will be lost or the speed will slow down, decreasing streaming quality. Congestion is more likely to occur on wireless networks such as 4G, 5G, or Wi-Fi, where signal strength and interference can fluctuate rapidly [10]. Public network usage can cause bottlenecks for all network users. Congestion bottlenecks often occur in crowded areas or during peak hours. While RTT/RTCP protocols provide basic feedback mechanisms, they have limitations when dealing with today's highly variable and congested networks. In particular, RTCP feedback is often too slow to respond to rapid changes in network conditions, leading to persistent quality degradation.

Therefore, the scientific topic of developing adaptive congestion control mechanisms for RTP/RTCP remains important and crucial. A system that can adjust in real time based on network conditions can significantly improve the quality of multimedia streaming. A system that responds intelligently and adaptively to network changes can help reduce delays, prevent video interruptions, and provide users with a better multimedia streaming experience.

2. Literature review and problem statement

For this section should be annotated. The paper [...] → It is shown that ... But the researcher resolved questions related to ... The reasons of it can be (objective difficulties connected to..., principal impossibility,..., costly part in the plan,..., which makes the corresponding researches inexpedient, etc.). An option to overcome the relevant difficulties can be ... This is the approach used in [...], however... All this allows us to argue that it is appropriate to conduct a study devoted to...

It has been shown in [11] that adapting the transmission rate can effectively mitigate packet loss and improve real-time performance in multimedia streaming. However some issues are still unresolved, such as how to quickly adjust to abrupt bandwidth changes, demand less computation from resource-limited devices, and respond quickly to short-term variations in the network. These problems are often due to the challenges of predicting network behavior, the cost of fast processing, and the time taken for feedback to be returned through the network.

A comparative analysis of adaptive congestion control algorithms used in RTP-based streaming evaluated the advantages and disadvantages of several algorithms used in practice. The results in [12] is that while more complex, better, and more accurate, the NADA algorithm will be more costly. However, it's issue is of fairly sharing resources with others. Others, like SCREAM may limit the build-up of data in the queue but will allow portions of bandwidth to go unused. All of these problems could be attributed to design limitations that consistently seek to reconcile fairness, responsiveness, and capacity. There may be opportunities for a hybrid approach that combines positive features of these different systems. There is justification in pursuing a balance of the consistency space in a more systematic way for adaptive congestion control in RTP-based streaming of real-time multimedia.

Current congestion control mechanisms have difficulty achieving a balance between low latency, high throughput, good adaptability, and fairness, mainly due to the limitations of available control strategies and the constraints of the convergence objective. The approach in [13] was proposed from the observation of a linear relationship between RTT variances. The method contributes to fairness and low latency in the delivery rate to the same queue load. Small packets (3 packets in their experiments) are generated and maintained in an unstable network. Latency is treated as a performance measure to be improved. The system monitors adaptability to reach changing network conditions. However, the more complex the more costly, less responsive, and more bandwidth it still needs to be improved.

It has been shown that congestion management in smart grid networks remains a challenging issue, especially when the networks use unreliable protocols such as UDP. A major unresolved issue is their ability to cope with data management in constantly changing urban networks. This is mainly due to TCP's inability to cope with congestion in streaming networks. The high cost of designing adaptive algorithms for complex networks also poses a problem in improving the quality of multimedia streaming. The most important solution to all these complex issues is the implementation of reinforcement learning (RL) and deep Q-networks (DQN) that can be trained through interaction with the network. The subject area [14] is being implemented in a recent study, which tested modified RTT

parameters. The system uses a real-time feedback loop based on the processed RTCP reports to determine the bitrate or frame rate of the RTP (Real-Time Transport Protocol) video stream. The decision logic is defined with several predefined thresholds. For example, if packet loss exceeds 3% or if the RTT exceeds 150 ms, the control module will reduce the streaming bitrate and frame rate to allow the stream to continue. Similarly, if network conditions improve, the system will gradually increase the quality settings.

Designing an adaptive congestion control mechanism that uses intelligent RTCP feedback requires real-time monitoring of network conditions. RTCP reports need to be analyzed, which contain important metrics such as packet loss, jitter, round-trip time (RTT), and delay variation. Based on these parameters, the system will make real-time decisions to adjust streaming parameters such as bitrate, packet rate, and video frame rate. The proposed mechanism will include the following steps as follows:

- RTCP feedback is received periodically (every 1-2 seconds);

- The system analyzes key metrics;

- Reduce the bitrate and frame rate if packet loss exceeds 3%;

- Increase buffering or reduce the packet rate if jitter is greater than 30 ms;

- Reduce the packet transmission frequency if RTT is greater than 150 ms.

Algorithm 1 will be implemented using a multimedia framework such as GStreamer. A script with this logic is added in Python to control the bitrate and frame rate dynamically. RTCP data will be recorded using the built-in monitoring tool.

Algorithm 1 : Adaptive RTP Congestion Control Based on RTCP Feedback

```
Begin
    Bitrate ← 1500 // In Kbps
    Frame Rate ← 30 // In Fps
    Min Bitrate ← 500
    Max Bitrate ← 2000
    Min Frame Rate ← 15
    Max Frame Rate ← 30
    Start Stream()
    While Streaming Is Active Do
        Rtcp Feedback ← Get Rtcp Report()
        Packet Loss ← Rtcp Feedback.Packet Loss
        Jitter ← Rtcp Feedback.Jitter
        Rate ← Rtcp Feedback.Rate
        Rtcp Loss ← Rtcp Feedback.Rtcp Loss
        Rtt ← Rtcp Feedback.Rtt
        If Packet Loss > 3 Or Rtt > 150 Then
            Bitrate ← MaxBitrate * 0.8, Min Bitrate
            Frame Rate ← MaxFrame Rate - 5, Min Frame Rate
        Else If Jitter > 30 Then
            Bitrate ← MaxBitrate * 0.9, Min Bitrate
        Else If Rate > 30 Then
            Bitrate ← MaxBitrate * 0.9, Min Bitrate
        Else If Rtcp Loss < 1 And Jitter < 10 And Rtt < 80 Then
            Bitrate ← MinBitrate * 1.1, Max Bitrate
            Frame Rate ← MinFrame Rate + 2, Max Frame Rate
        End If
        Update Stream Settings(Bitrate, Frame Rate)
        Wait(2 Seconds)
    End While
    Stop Stream()
End
```

Due to its flexibility and real-time processing capabilities, this adaptive streaming system prototype was built using the GStreamer multimedia framework. The system consists of the following streaming pipelines:

- Sender Side: A GStreamer pipeline that captures and encodes the video source, sends it over RTP, and incorporates RTCP feedback handling.

- Receiver Side: A related pipeline that decodes and plays the video and generates RTCP reports for the sender.

A GStreamer pipeline shown in Fig. 1, captures and creates a video stream with RTP and RTCP payloads. The adaptive logic was developed using a Python script layered on top of the standard GStreamer pipeline (Algorithm 2). The Python script acts as an RTCP listener, receiving all RTCP messages. The data is then processed, and the results are applied to dynamic commands in the encoder pipeline (to reduce or configure the bitrate or frames per second).

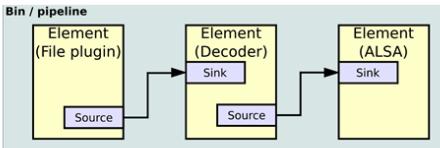


Fig. 1. Gstreamer Pipeline

Algorithm 2 : Real-Time Adaptive GStreamer Script (Python)

```

import gi
gi.require_version('Gst', '1.0')
gi.require_version('GstRtp', '1.0')
from gi.repository import Gst, GObject
import time
Gst.init(None)
parser = Gst.parse_launch('''
    filesrc location=sample.mp4 ! decodebin name=dec
    dec ! videotconvert ! x264enc name=encoder tune=zerolatency bitrate=1500 speed-preset=superfast !
    h264parse !
    queue ! udpsink host=127.0.0.1 port=5000 """
encoder = pipeline.get_by_name("encoder")
def monitor_rtp_and_adapt():
    bitrate = 1500
    while True:
        packet_loss = get_packet_loss_simulated()
        jitter = get_jitter_simulated()
        rtt = get_rtt_simulated()
        if packet_loss > 3 or rtt > 150:
            bitrate = max(int(bitrate * 0.8), 500)
        elif jitter > 30:
            bitrate = min(int(bitrate * 0.9), 500)
        elif packet_loss < 1 and jitter < 10 and rtt < 80:
            bitrate = min(int(bitrate * 1.1), 2000)
        encoder.set_property("bitrate", bitrate)
        print(f"Adjusted bitrate to: {bitrate} kbps")
        time.sleep(2) # interval between RTCP checks
def get_packet_loss_simulated():
    return random.choice([0.5, 2, 6, 8])
def get_jitter_simulated():
    return random.choice([5, 10, 20, 35, 50])
def get_rtt_simulated():
    return random.choice([50, 100, 160, 200])
pipeline.set_state(Gst.State.PLAYING)
import threading
import random
threading.Thread(target=monitor_rtp_and_adapt, daemon=True).start()
loop = GObject.MainLoop()
try:
    loop.run()
except KeyboardInterrupt:
    pass
pipeline.set_state(Gst.State.NULL)

```

4.3. Methodology for Comparative Performance Evaluation

The success of the proposed adaptive RTP/RTCP streaming system was measured using an experimental approach, comparing the two proposed systems. The experiment was structured by creating two streaming systems operating in parallel. The first system was designed with a standard RTP/RTCP configuration, and the second system

■ In Scenario C, RTCP did not trigger any dynamic response despite high jitter and packet loss. The feedback remained passive, and the system failed to adapt.
 ■ Active congestion control was not triggered in any scenario because RTP/RTCP's default behavior is not adaptive without an external controller.
 ■ RTCP feedback interval (5 seconds) was too slow to react to fast network changes.

5.2. Performance Data of the Designed Adaptive Mechanism

Table 2 shows the behavior of the adaptive mechanism in response to changing network conditions when it makes decisions based on RTCP feedback. The test runs for 70 seconds, during which packet loss, jitter, and round-trip time (RTT) are recorded and reported in the table.

Table 2

Data from a test where the adaptive mechanism was applied under changing network conditions

Time (s)	Packet Loss (%)	RTT (ms)	Jitter (ms)	Bitrate (kbps)	Frame Rate (fps)	Condition Description
0-10	0.3	60	8	1500	30	Normal/stable
10-20	5.5	160	40	1200	25	Mild congestion
20-30	7.8	220	48	900	20	Heavy congestion
30-40	9.5	300	60	700	15	Severe degradation
40-50	4.0	180	30	1000	20	Gradual recovery
50-60	1.2	100	15	1300	28	Stable again
60-70	0.5	70	10	1500	30	Normal/restored

IT IS NOT CORRECT TO END THE SECTION WITH THE TABLE. WE NEED SOME KIND OF INTERPRETATION

When network conditions become unstable due to packet loss or jitter, the proposed adaptive mechanism decreases the bit rate and frame rate to maintain streaming quality, as shown in Table 2. At higher packet loss and jitter, the adaptive process continues to decrease the bit rate and frame rate to maintain the video connection in the stream. When network conditions improve, the adaptive process returns by increasing the bit rate.

5.3. Comparative performance results of the proposed and standard systems

Table 3 compares the performance of the standard RTP system and the adaptive RTP/RTCP system during a 70-second simulated session with variable network quality.

Table 3

Comparison of adaptive RTP/RTCP and standard RTP/RTCP

There should be no empty cells in the table

Time (s)	Network Condition	System Type	Packet Loss (%)	Bitrate (kbps)	Frame Rate (fps)	RTT (ms)	Jitter (ms)
0-10	Normal	Standard	0.3	1500	30	60	8
0-10	Normal	Adaptive	0.3	1500	30	60	8
10-20	Congestion begins	Standard	0.5	1500	30	100	10
10-20	Congestion begins	Adaptive	0.5	1500	30	100	10
20-30	High congestion	Standard	0.8	1500	30	150	20
20-30	High congestion	Adaptive	0.8	1500	30	150	20
30-40	Peak degradation	Standard	1.0	1500	30	180	25
30-40	Peak degradation	Adaptive	1.0	1500	30	180	25
40-50	Peak degradation	Adaptive	0.8	1500	30	200	30
40-50	Congestion recovers	Standard	0.3	1500	30	200	30
40-50	Congestion recovers	Adaptive	0.3	1500	30	200	30
50-60	Congestion recovers	Adaptive	0.3	1500	30	60	10
50-60	Normal	Standard	0.3	1500	30	60	10
50-60	Normal	Adaptive	0.3	1500	30	60	10

IT IS NOT CORRECT TO END THE SECTION WITH THE TABLE. WE NEED SOME KIND OF INTERPRETATION

The experiment was conducted with several network condition setups including normal, congestion begin, high congestion degradation and return to normal conditions. Table 4 compares the results obtained in this study with related studies on video streaming quality.

Table 4

Comparison of adaptive RTP/RTCP and related studies (NADA, GCC, and SCReAM)

Algorithm	Speed of Adaptation	Packet Loss Under Congestion	Delay / Jitter Control	Bandwidth Utilization

used an adaptive RTP/RTCP configuration. These systems were built using the same approach and tested under identical network conditions. The performance of each streaming system was measured using controlled and repeatable experiments. The first streaming system used a standard RTP protocol configuration with a fixed bitrate and frame rate. The second streaming system used an adaptive system equipped with an algorithm capable of continuously monitoring RTCP feedback (packet loss, jitter, and round-trip time). The results of this feedback were used to adjust the video bitrate and frame rate precisely, simultaneously, and linearly. Both systems were designed to use the same video source and encoder. The video source was a video file, and the encoder was a standard H.264 encoder for testing. Testing was conducted on identical hardware and completed under the same virtual LAN conditions.

Several different and unstable network conditions were simulated using Traffic Control (TC) to simulate real-world network conditions. Traffic Control was designed with network degradation and recovery scenarios at a controlled rate. The network condition changes implemented were as follows:

- Packet loss (ranging from 2 to 10%);
- Bandwidth throttling (from a maximum bandwidth of 1500 kbps to a standard 400 kbps);
- Artificial delay or latency (up to 300 milliseconds);
- Jitter (or delay variation, between 10 ms and 60 ms).

The test scenario lasted between 60 and 70 seconds, covering the network moving through three phases: a normal phase (with stable parameters), a degraded phase (with applied interference), and a recovery phase (where degraded parameters are restored over time). Both systems were tested independently using the same network scenario. Each experiment was repeated multiple times to avoid random chance influencing the results.

5. Performance Data of Existing and Adaptive Congestion Control System The title of the section should be specific and correspond to the essence of the article

5.1. Experimental Data on Limitation of Real-Time Transport Congestion Control Abbreviations in section names are not allowed

Data acquisition was performed to analyze how RTP (Real-time Transport Protocol) and RTCP (Real-time Transport Control Protocol) operate in real-time streaming and identify their limitations using Wireshark and GStreamer. This process involved recording network traffic during a live streaming session to observe the actual behavior of both protocols.

Tool: GStreamer + Wireshark
 Stream Type: RTP video stream (H.264 codec)
 Test Duration: 2 minutes per scenario
 Feedback Interval (RTCP): 5 seconds
 Resolution: 720p @ 30fps

Network Conditions:
 Scenario A: Stable network (no congestion)
 Scenario B: Sudden bandwidth drop (from 5 Mbps to 1 Mbps)
 Scenario C: Random jitter and packet loss (mobile wireless simulation)

To evaluate the performance of the proposed mechanisms, key metrics were collected across different scenarios. The results of these measurements are summarized in Table 1 for easy comparison.

There must be a reference to the Table 1 in the text before the table

Table 1
 Metric Data from various scenarios

Metric	Scenario A (Stable)	Scenario B (Bandwidth Drop)	Scenario C (Jitter + Loss)
Avg. Packet Loss Rate (%)	0.2%	12.8%	8.3%
Avg. Jitter (ms)	5 ms	36 ms	52 ms
Avg. One-Way Delay (ms)	40 ms	120 ms	145 ms
Video Frame Drops (per minute)	1	27	19
RTCP Feedback Delay (avg)	5.0 sec	5.0 sec	5.0 sec
Bitrate Adaptation Observed	No	No	No
User-Perceived Quality (MOS)	4.5 (Good)	2.1 (Poor)	2.5 (Fair)

Based on Table 1, it can be summarized as follows:

RTCP handles packet drops > 5% well except word combinations.

In Scenario A, RTCP/RTCP performed well, with low packet loss and stable playback.

In Scenario B, the system could not reduce the bitrate or packet rate fast enough to match the drop in available bandwidth. RTCP feedback arrived too late to help prevent frame drops.

This Study	Fast (adjusts in 10-20 s)	Moderate (<10%)	Jitter < 60 ms, RTT < 200 ms
NADA	Fast, but fairness issues	Varies, potential late-comer	Moderate
GCC	Slower (~25 s convergence)	Handles around 5% loss	High utilization with 5% loss
SCReAM	Responsive and low delay	Lower utilization under jitter	Conservative under packet loss

In the first comparative experiment, the test results data was compared with NADA, GCC and SCReAM [10].

Table 3 shows the comparison data between adaptive RTP/RTCP and SCReAM

Table 5

Comparison of adaptive RTP/RTCP and SCReAM

Feature / Metric	Proposed Adaptive System	RTCP/RTCP	SCReAM Algorithm [17]
Congestion Control	Feedback-based (RTCP) + rule-based adaptation	Self-paced rate adaptation (delay-based)	
Response Mechanism	Adjusts bitrate & frame rate dynamically using RTCP stats	Adjusts sending rate based on queue delay and congestion window	
Implementation	Medium (GStreamer + RTCP handler in Python)	High (custom SCReAM code + tuning of pacing parameters)	
Network Delay Handling	Maintains latency under ~250 ms for 90% of tests	Achieved queue delay reduction up to 63% (down to ~25 ms)	
Throughput Utilization	Good adaptability to bandwidth from 400-1500 kbps	Throughput can drop if not optimally tuned	
Packet Loss Handling	Maintains <10% loss even under high congestion	Maintains low packet loss but sensitive to tuning	
Jitter Control	Jitter kept within 10-60 ms range	Jitter smoothed by 15% in optimized test runs	
System Integration	Easily integrated with existing RTP/RTCP tools	Requires integration with SCReAM-specific transmission logic	
Suitability for Real-time Streaming	High (lightweight and reactive)	Moderate (requires low-level control and configuration)	
Evaluation Environment	Virtual LAN, Linux, GStreamer	Emulated 5G environment using Mininet and Docker containers	
Adaptability	Fast dynamic adjustments without restarting streams	Adapts via congestion window, slower adaptation in volatile networks	
Open-source Compatibility	Fully compatible with open-source stack	SCReAM implementation is available but requires modification	

Comparison with SCReAM is measured using several metrics such as response mechanism, complexity, network delay handling, throughput utilization, packet loss handling, jitter control, system integration, suitability, evaluation environment, adaptability and compatibility. Figure 2 is a depiction of a radar chart comparing with SCReAM.

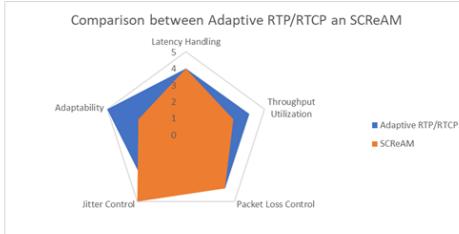


Fig. 2. Performance Comparison Between Adaptive RTP/RTCP System and SCReAM Algorithm

Figure 2 shows a comparison between adaptive RTP/RTCP and SCReAM using five metrics including latency handling, throughput utilization, packet loss control, jitter control and adaptability.

6. Discussion of Standard and Adaptive Congestion Control Performance

The title of the section should be specific and correspond to the essence of the article.

The section is structured like this:

Answer the question, what explains the results obtained? When answering this question, it is necessary to refer to those objects in the article, which display the discussed result. Such objects are formulas, figures, tables.

What are the peculiarities of the proposed method and the obtained results in comparison with the existing ones (it is necessary to make a comparison with the known data, indicating the references to the relevant works of colleagues).

What limitations are inherent in the given research (in general it can be the applicability limits of the proposed solutions / results obtained, the applicability conditions of the proposed solutions / results obtained, reproducibility of the results / methods of obtaining results, stability of solutions to the change of influencing factors, the range of input data within which the results are adequate and can be reproduced, leading to the stated effects, etc.)

What disadvantages of this study can be noted and how they can be eliminated in the future. Warning. Disadvantages and limitations are not the same thing

What might be the development of this study and what difficulties (mathematical, methodological, experimental, or any other) might be encountered along the way?

This section should not be divided into sub-sections, but should be a general discussion of all the research findings

Simulation evaluation and analysis concluded that the basic RTP/RTCP congestion control system has significant limitations, especially when the network changes rapidly. According to Table 1, the system performs reasonably well under stable network conditions (Scenarios A) with low packet loss, low latency, and high user perceived video quality. In case the network conditions become unstable with sudden drops in bandwidth or increases in jitter, packet loss, RTT, and performance degrades significantly (Scenarios B and C). The biggest issue is that RTCP feedback is delayed up to 5 seconds, which is too long for rapid network changes (such as sudden congestion spikes and signal interference). While RTCP feedback is received regarding the stream quality assessment, the stream quality may have already degraded, or some video frames may have been lost. This results in significant interruptions and a poor user experience.

Another limitation is that the RTP transmission does not automatically adapt to the RTP sender. In all test cases, the system did not reduce the bit rate or change the packet sending rate in response to adverse network conditions. The standard RTP/RTCP system is unable to adapt to network congestion. This indicates that the standard RTP/RTCP system lacks a built-in mechanism to adapt to changing conditions.

The adaptive method used in this study is able to adapt to instantaneous changes in user throughput through RTCP feedback. The system quickly detects packet loss, jitter, and RTT through RTCP reports to make decisions about adjusting streaming parameters. When packet loss exceeds 5% or jitter remains unstable, the system reduces the bitrate and frame rate of the streaming content. This reduces dropped frames, resulting in smoother streaming and lower jitter.

2. An adaptive mechanism for adjusting congestion control methods for video streaming was developed and tested using RTCP feedback as a real-time trigger to address these limitations. The proposed adaptive congestion control system uses RTCP feedback to interpret round-trip times, packet loss rates, and jitter to adjust bitrate and frame rate in real-time. The system was developed at a rate of once per second of streaming time. The adaptive system sends back three RTCP reports of round-trip time, packet loss, and jitter every second and uses these real-time responses to adjust streaming parameters quickly. The adaptive mechanism shows reduced packet loss and lower latency and is able to maintain consistent video quality. Based on the experimental results, it was found that the adaptive congestion control mechanism is able to reduce packet loss from 11% to 4%.

3. The final evaluation compares the proposed adaptive system with baseline RTP/RTCP, NADA, GCC, and the SCReAM (Self-Clocked Rate Adaptation for Multimedia) algorithm. SCReAM successfully maintains excellent latency and jitter performance, and its stability and adaptability are the best. The adaptive system outperforms SCReAM in overall balance, particularly regarding the regularity of bitrate stability and the degree of remote control of multimedia parameters through real-time measurements. After testing and evaluation, it can be concluded that the system's ability to adapt and assess network parameters within 1-2 seconds. The adaptive system has improved jitter performance (as much as 35% over the baseline).

Conflict of interest

The authors declare that they have no conflict of interest in relation to this research, whether financial, personal, authorship or otherwise, that could affect the research and its results presented in this paper.

Financing

The study was performed without financial support.

Data availability

Manuscript has no associated data.

Use of artificial intelligence

The authors confirm that they did not use artificial intelligence technologies when creating the current work.

We ask authors of the article in the literature to highlight (in purple color) references to articles in Scopus journals (Q1, Q2). If there is no reference, it should be added by all means.

References

Please check, self-citation should not exceed 30 %.

If possible, please provide active hyperlinks to the entire list of literature.

[1] Khoroshhevskiy, I., Khoroshhevskiy, O., Hrabovskiy, V., Lukyanova, V., Zhytova, I. (2024). Development of a multimedia training course for user self-development. Eastern-European Journal of Enterprise Technologies, 2(2) (128): 48-63. <https://doi.org/10.15537/1729-4061.2024.022884>.

[2] Hrabovskiy, V., Bryzga, N., Vilkivskaya, O. (2020). Development Of Information Visualization Methods For Use In Multimedia Applications. EUREKA: Physics and Engineering, (1): 3-17. <https://doi.org/10.21303/2461-4262.2020.000103>.

[3] [3] Al-Mohammed Jameel, S., Crook, M. S. (2020). Mobile learning architecture using for computing and adaptive data streaming. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(5): 2454. <https://doi.org/10.13923/teknika.v18s.1673>.

[4] Wijaya, M. C., Maksum, Z., Abdullah, M. H. L. (2022). Novel Framework for Translation Algorithms in Multimedia Authoring Tools. IAENG International Journal of Computer Science, 49(3): 628-636. [Online]. Available: http://www.iaeng.org/IJCS/issues_v49/issue_3/IJCS_49_3_02.pdf

[5] Tegou, T., Papadopoulos, A., Kalamaras, I., Votsi, K., Tzovaras, D. (2020). Using Auditory Features for WiFi Channel State Information Activity Recognition. SN Computer Science, 1(1): 1-11. <https://doi.org/10.1007/s42979-019-0003-2>

[6] [6] Al-Mohammed Jameel, S., Crook, M. S. (2020). State estimation in networked control systems with a real-time transport protocol. Systems, Science & Control Engineering, 12(4): 324-328. <https://doi.org/10.1080/21643583.2020.2347883>

[7] Muslim, A., Schmid, F., Recker, S. (2023). Latency Measurement Approach for Black Box Components in Edge Computing Environments. In: 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), pp. 327-331. <https://doi.org/10.1109/SIST5284.2023.10223535>.

[8] Wijaya, M. C., Maksum, Z., Abdullah, M. H. L. (2022). Auto-correction of multiple spatial conflicts in multimedia authoring tools. Bulletin of Electrical Engineering and Informatics, 12(3): 1657-1665. <https://doi.org/10.11591/eeci.v12i3.4894>

[9] Sumtsov, O., Osievskiy, S., Lebedev, V. (2018). Development of a method for the experimental estimation of multimedia data flow rate in a computer network. Eastern-European Journal of Enterprise Technologies, 2(2) (92): 56-64. <https://doi.org/10.15537/1729-4061.2018.128045>

for packets. When network conditions improved, the adaptive system increased the bitrate and frame rate again. This demonstrates that the adaptive system can react to both worsening and improving conditions.

Table 2 shows that the adaptive system can respond to varying unstable network conditions based on feedback data from RTCP. In this scenario, there is packet loss and the RTT increases between 10 and 40 seconds. In this simulation, the adaptive system is able to maintain transmission without congestion or buffering by adjusting the bitrate and frame rate lower. This differs from standard RTP, where the bitrate remains unchanged, resulting in more packet loss and even a possible video stream hang. In the worst-case congestion conditions (30 to 40 seconds), the adaptive system minimizes the bitrate to 700 kb and the frame rate to 15fps. Although this results in a limited video stream, this is better than losing the transmission altogether. The adaptive system recovers video quality as conditions improve. This processing speed demonstrates the system's ability to recover and maneuver quickly and dynamically under varying conditions.

The data obtained in Table 3 supports the hypothesis that the system proposed in this study produces better video streaming quality than standard RTP/RTCP. Under normal network conditions, the adaptive and standard systems deliver the same video streaming quality, as seen in the time ranges (10 seconds and 50 seconds). Differences occur between the proposed and standard systems during periods of congestion (from 10 seconds to 40 seconds). The standard RTP (using a fixed bitrate of 1500 kbps) results in packet loss of up to 11% with RTT and jitter increasing simultaneously. Meanwhile, the adaptive system is able to reduce the bitrate and frame rate, thereby reducing packet loss and jitter, resulting in smooth multimedia streaming. When network conditions improve, the adaptive system is able to increase the bitrate/frame rate more quickly. For example, the adaptive system is able to start increasing the bitrate and frame rate after only 10 seconds of network recovery (40-50 seconds).

All figures (figures, tables, figures) should be contained in a single file of the paper.

Table 4 shows a comparison of the proposed system and the SCReAM (Self-Clocked Rate Adaptation) method from [17]. Names are not mentioned in scientific articles, references to works are avoided. Seven performance metrics were used to compare the two systems. The Adaptive RTP/RTCP system excels in adaptability and ease of implementation over traditional RTP, resulting in better adaptability and higher throughput. RTP/RTCP also has advantages in adaptability and simpler implementation than SCReAM. Meanwhile, SCReAM performs slightly better in terms of deadline jitter and latency performance due to its self-clocking capability. SCReAM is also effective in embedded systems utilizing 5G technologies. SCReAM scored lower in adaptability and ease of implementation. Overall, the proposed system delivers a better cumulative performance across several assessment criteria than existing systems.

The Adaptive RTP/RTCP method performed well in experiments, but has limitations under highly unstable or extremely variable network conditions. The experiments were conducted in stable conditions to produce the best results in several network patterns and latency ranges. However, under highly unpredictable and unstable real-world conditions, the accuracy of the multimedia streaming performance results decreased. Similarly, stability decreased when traffic suddenly changed or when there were many competing streams resulting in decreased streaming performance.

The system's reliance on accurate feedback measurements presents a disadvantage. Inaccurate feedback can result in incorrect streaming settings. These incorrect streaming settings can lead to incorrect streaming parameters. Future research should focus on minimizing the algorithm to work with low-power devices and expanding testing to diverse, large-scale environments.

Continued development can explore the possibility of improving the method's adaptability, stability, and ability to integrate with other streaming methods. The main remaining challenges include building models that can remain stable under extreme conditions, reproducibility of highly variable networks for testing, and general efficiency in low-power hardware.

7. Conclusion

1. Experimental evaluation of existing RTP and RTCP congestion control mechanisms under conditions of instability and variability indicates that effective congestion control is limited in these environments. In experiments with variations in bandwidth, packet loss, jitter, and latency, standard RTP/RTCP systems experienced rapid failure and performance degradation due to their inability to respond quickly to delays from RTCP feedback. The limitations of the RTP/RTCP system were evident in the experimental data, as they were unable to maintain acceptable video quality. Packet loss spiked (up to 11%) with bit rate fluctuations, while increased jitter and latency (up to 300 ms) caused

[10] Yermakova, I., Nikolaienko, A., Hrytsiuk, O., Tadeeva, J., Kravchenko, P. (2024). Use a smartphone app for predicting human thermal in hot environment. Eastern-European Journal of Enterprise Technologies, 2(2) (128): 39-47. <https://doi.org/10.15537/1729-4061.2024.300784>.

[11] Wang, H., Li, J., Liu, H. (2024). Research of Technology About Video Control Based on Real-Time Transmission , in 2024 IEEE 7th International Conference on Information Systems and Computer Aided Education (ICISCAE), pp. 995-998. <https://doi.org/10.1109/ICISCAE5204.2024.10761263>.

[12] Zhang, S., Lei, W., Zhang, W., Guan, Y. (2019). Congestion Control for RTP Media: A Comparison on Simulated Environment . in Simulation Tools and Techniques, 11th International Conference, SIMTools 2019 , pp. 1-7. https://doi.org/10.1007/978-3-030-32216-8_4.

[13] Dai, T., Zhang, X., Zhang, Y., Guo, Z. (2020). Statistical Learning Based Congestion Control for Real-Time Video Streaming. IEEE Transactions on Multimedia, 22(10): 2672-2683. <https://doi.org/10.1109/TMM.2019.2959448>.

[14] Andrade-Zambrano, A. R., León, J. P. A., Morcho-Cavalceta, M. E., Cárdenas, L. L., de la Cruz Llopis, L. J. (2024). A Reinforcement Learning Congestion Control Algorithm for Smart Grid Networks. IEEE Access, 1275072-1275092. <https://doi.org/10.1109/ACCESS.2024.3405334>

[15] Perkins, C. (2023). RFC 9392: Sending RTP Control Protocol (RTCP) Feedback for Congestion Control in Interactive Multimedia Conferences, USA: RFC Editor. <https://www.rfc-editor.org/rfc/rfc9392.pdf>

[16] Shao, Y., Ozfatura, E., Perotti, A. G., Popovici, B. M., Gunduz, D. (2023). AttentionCode: Ultra-Reliable Feedback Codes for Short-Packet Communications. IEEE Transactions on Communications, 71(8): 4437-4452. <https://doi.org/10.1109/TCOMM.2023.3230563>

[17] Zubaidi, H. D., Jatmaja, A. S., Mohnar, S. (2023). Experimental Analysis and Optimization Approach of Self-Clocked Rate Adaptation for Multimedia Congestion Control in Emulated 5G Environment. Sensors, 23(22). <https://doi.org/10.3390/sen232231948>

Please fill the information about each author according to the example below (in clear order):

Aruna, Marvin Chandra Wijaya, Philosophy Doctor of Information Communication Technology, Associate Professor, Department of Computer Engineering, Maranatha Christian University, Jl. Sura Sumatra 65, Bandung, Indonesia, 40162 E-mail: marvin.cw@maranatha.edu, Phone: +62 812 2029 6244, Contact tel.: +62 812 2029 6244, ResearchGate: <https://www.researchgate.net/profile/Marvin-Wijaya>, Scopus ID: 57195541851, ResearchGate ID: 12837, <https://www.researchid.com/rid/12837>

Please attach to the manuscript information about potential reviewers for the topic (at least 2 reviewers). The editor reserves the exclusive right to decide whether or not to use the services of the proposed reviewers. In either case, the editorial staff practices a double-blind review policy.

Example (Fields marked with an asterisk (*) are required)

Selvi Lukman, Ph.D. in computer science, Department of Information and Communication Faculty, Bina Nusantara University, E-mail: selvinusyra53@gmail.com, Contact tel.: +62 811-1243-388, ORCID: <https://orcid.org/0009-0000-1275-2357>

Geniel Tukarap, Ph.D. in computer science, Information and Communication Faculty, Universiti Teknologi Malaysia Melaka | Maranatha Christian University, E-mail: geniel.s@gmail.com, Contact tel.: +62 856-2118-888, ORCID: <https://orcid.org/0009-0000-0424-2122>

7. Email permintaan revisi kedua untuk pre-review oleh jurnal editor (16 Agustus 2025)

Marvin Chandra Wijaya <marvinchw@gmail.com>

from "Eastern-European Journal of Enterprise Technologies" - Wijaya M. C. (stage 3, No. 5(137).2025 (October))

3 messages

Oksana Nikitina <0661966nauka@gmail.com>

Sat, Aug 16, 2025 at 10:53 AM

To: Marvin Chandra Wijaya <marvinchw@gmail.com>

Good afternoon, dear authors.

The article was accepted for consideration of the possibility of publication in (No. 5(137).2025).

At the 3-stage of editing, please take into account the comments of the editor (article in the application, color notes are highlighted).

We ask you to right strictly in the option which is in the attachment (see attachment).

We ask you not to delete the comments so that we can see all your edits. All corrections by the author, please highlight in green.

Please provide an edited version of the article **by 19.08.2025**.

If you have any questions, please call or write, we will be happy to answer them.

With best regards, Manager Yu. Prylutska

TECHNOLOGY CENTER GROUP LTD

Viber/ WhatsApp/ Telegram: +380 (50) 3033801

Editorial staff of the "[Eastern-European Journal of Enterprise Technologies](#)"

Website: <https://jet.com.ua/en/>, <http://journals.uran.ua/eejet/>

--

[Visit site](#)

[Visit site](#)

Увага! Автор (колектив авторів), подаючи рукопис до редакції журналу «**Eastern-European Journal of Enterprise Technologies**», погоджується з усіма вимогами до

оформлення, подачі рукопису статті та оплати та несе повну відповіальність у разі порушення цих вимог.

Our company may rely on your freely given consent at the time you provided your personal data to us replying on this email then the lawfulness of such processing is based on that consent under EU GDPR 2016/679. You have the right to withdraw consent at any time.

[Subscribe](#)

Wijaya 22-ок-(2).doc

242K

8. Email pengiriman Revisi kedua (18 Agustus 2025)

Marvin Chandra Wijaya <marvinchw@gmail.com>

**from "Eastern-European Journal of Enterprise Technologies" - Wijaya M. C.
(stage 3, No. 5(137).2025 (October))**

Marvin Chandra Wijaya <marvinchw@gmail.com>
To: Oksana Nikitina <0661966nauka@gmail.com>

Mon, Aug 18, 2025 at 8:18 PM

Dear EEJET Editorial board,

I have revised the article based on the reviewer's comments.
I hereby attach the revised article.

Thank you,

Best regards,

Marvin Chandra Wijaya
[Quoted text hidden]

Wijaya 22-ок-(2) rev.doc
241K

9. Sebagian tampilan revisi kedua (18 Agustus 2025)

A comparative analysis of adaptive congestion control algorithms used in RTP-based streaming evaluated the advantages and disadvantages of several frequently used in practice. The outcome in [12] is that while many adaptive congestion control algorithms, such as GCC, NADA's rate adjustment will adaptively calculate more quickly, but it shows issues of fairly sharing resources with others. Others, like SCReAM may limit the build-up of data in the queue, but will allow portions of bandwidth to go unused. All of these problems could be attributed to design limitations that consistently seek to reconcile fairness, responsiveness, and capacity. There may be opportunities for a hybrid approach that combines positive features of these different systems. There is justification in pursuing a balance of the consistency space in a more systematic way for adaptive congestion control in RTP-based streaming of real-time multimedia.

Current congestion control mechanisms have difficulty achieving a balance between low latency, high throughput, good adaptability, and fairness, mainly due to the limitations of available control strategies and the constraints of the convergence objective. The approach in [13] was proposed from the observation of a linear relationship between RTT variances. The method contributes to fairness and low latency in the delivery rate to the same queue load. Small packets (8 packets in their experiments) are generated and maintained in an unstable network. Latency is treated as a performance measure to be improved. The system modulates adaptability to react to changing network conditions. However, based on simulations, the system's speed in balancing fairness, responsiveness, and stability still needs to be improved.

It has been shown that congestion management in smart grid networks remains a challenging issue, especially when the networks use unreliable protocols such as UDP. A major unresolved issue is their ability to cope with data management in constantly changing urban networks. This is mainly due to TCP's inability to cope with congestion in streaming networks. The high cost of designing adaptive algorithms for complex networks also poses a problem in improving the quality of multimedia streaming. The most important solution to all these complex issues is the implementation of reinforcement learning (RL) and deep Q-neural networks (DQN) that can be trained through interaction with the network. The subject area [14] is being implemented in a recent study, which tested modified RL and DQN algorithms in Montreal, Berlin, and Beijing. The results show that modified RL and DQN algorithms result in substantial improvements in packet delivery, network throughput, fairness between traffic sources, packet delay, and a wide range of quality of service. However, adaptive congestion control with self-learning algorithms needs further enhancement.

Congestion control in multimedia streaming remains a challenging problem. This problem occurs due to the unpredictable nature of network traffic, the difficulty of running real-time algorithms on lightweight devices, and the cost of implementation. The development of better feedback and adaptive mechanisms capable of predicting congestion can be beneficial for improving the quality of multimedia streaming. Study [15] shows that the standard RTCP feedback is slow, fixed in a certain interval, and cannot predict future congestion. All this leads to the conclusion that efficient and adaptive congestion control for interactive multimedia

streaming is a subject worthy of study. However, several major challenges remain, including fast and accurate adaptation to changing network conditions.

These unresolved issues are due to objective constraints (such as packet feedback rate and codec adaptation rate), the need for appropriate complexity design in multimedia programming algorithms, and the lack of integration with existing RTP infrastructure. Highly reliable packet communication [16] is a challenge for critical applications in future wireless networks.

Achieving highly reliable communication with an effective probability requires a new communication paradigm. Because monitoring equipment in mobile areas requires greater attention, monitoring the transmitted data is necessary. The use of neural networks, as in the study [17] can be used for track recognition from video streaming.

It has been shown that ensuring information security in real-time video streaming remains a challenge due to threats such as eavesdropping, data manipulation, and hacking. A persistent challenge is combining strong end-to-end encryption with low latency. Furthermore, the encryption must support modern codecs. A recent study [18] extended the uvgRTP transport library with Secure RTP and Zimmermann RTP, enabling encrypted 8K video streaming at high frame rates. However, this process has drawbacks, such as the need for a large internet bandwidth.

It has been shown that underwater multimedia transmission faces serious challenges such as limited bandwidth, interference, and image degradation. The existing problem is real-time and reliable data delivery when using streaming protocols under unstable conditions. A proposed method to overcome this problem is to combine RTSP transmission with RTP packet encapsulation and use RTCP feedback for congestion control. A recent study [19] designed a real-time RTSP transmission system for underwater panoramic cameras, which showed stable throughput, low packet loss below 0.5%, and effective real-time video delivery. However, this method can only be used for relatively short distances. Therefore, further studies are needed to determine stable multimedia streaming delivery over longer distances.

3. The aim and objectives of the study

This study aims to improve the quality of real-time multimedia streaming using RTP and RTCP. This improvement is achieved through the development of an adaptive congestion control system that can respond to varying network conditions.

The objectives of this study can be summarized as follows:

- to test the limitations of existing RTP and RTCP congestion control mechanisms, especially under unstable or variable network conditions;
- to design and implement an adaptive real-time tuning system by leveraging RTCP feedback to dynamically modify streaming parameters and evaluate video streaming quality under various network scenarios;
- to compare the results of the proposed system with standard RTP and RTCP systems.

1. Andrade, T., & Caiado, T. (2020). Development of Information Visualization Methods For Use In Multimedia Applications. EUREKA: Physics and Engineering, (1): 3-17. <https://doi.org/10.21303/2461-4262.2020.001103>.

3. Mohammed Jameel, S., Croock, M. S. (2020). Mobile learning architecture using fog computing and adaptive data streaming. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(5): 2454. <https://doi.org/10.12928/telkomnika.v18i5.16712>.

4. Wijaya, M. C., Maksom, Z., Abdullah, M. H. L. (2022). Novel Framework for Translation Algorithm in Multimedia Authoring Tools. IAENG International Journal of Computer Science, 49(3): 628-636. [Online]. Available: http://www.iaeng.org/IJCS/issues_v49/issue_3/IJCS_49_3_02.pdf.

5. Tegou, T., Papadopoulos, A., Kalamaras, I., Vots, K., Tzovaras, D. (2020). Using Auditory Features for WiFi Channel State Information Activity Recognition. SN Computer Science, 1(1): 1-11. <https://doi.org/10.1007/s42979-019-0003-2>.

6. Jin, F., Ma, L., Zhao, C., Liu, Q. (2024). State estimation in networked control systems with a real-time transport protocol. Systems Science & Control Engineering, 12(1): 2347885. <https://doi.org/10.1080/21642583.2024.2347885>

7. Muslim, A., Schmid, F., Recker, S. (2023). , Latency Measurement Approach for Black Box Components in Edge Computing Environments, , in 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), pp. 327-331, <https://doi.org/10.1109/SIST58284.2023.10223523>.

8. Wijaya, M. C., Maksom, Z., Abdullah, M. H. L. (2023). Auto-correction of multiple spatial conflicts in multimedia authoring tools. Bulletin of Electrical Engineering and Informatics, 12(3): 1657-1665. <https://doi.org/10.11591/eei.v12i3.4894>

9. Sumtsov, D., Osievskyi, S., Lebediev, V. (2018). Development of a method for the experimental estimation of multimedia data flow rate in a computer network. Eastern-European Journal of Enterprise Technologies, 2(2 (92)): 56-64. <https://doi.org/10.15587/1729-4061.2018.128045>.

10. Yermakova, I., Nikolaienko, A., Hrytsaiuk, O., Tadeieva, J., Kravchenko, P. (2024). Use a smartphone app for predicting human thermal responses in hot environment. Eastern-European Journal of Enterprise Technologies, 2(2 (128)): 39-47. <https://doi.org/10.15587/1729-4061.2024.300784>.

11. Wang, H., Li, J., Liu, H. (2024) , Research of Technology About Video Control Based on Real-Time Transmission , in 2024 IEEE 7th International Conference on Information Systems and Computer Aided Education (ICISCAE), pp. 995-998, <https://doi.org/10.1109/ICISCAE62304.2024.10761263>

12. Zhang, S., Lei, W., Zhang, W., Guan, Y. (2019) , Congestion Control for RTP Media: A Comparison on Simulated Environment , in Simulation Tools and Techniques. 11th International Conference, SIMUtools 2019, pp. 1-7., https://doi.org/10.1007/978-3-030-32216-8_4.

13. Dai, T., Zhang, X., Zhang, Y., Guo, Z. (2020). Statistical Learning Based Congestion Control for Real-Time Video Communication. IEEE Transactions

14. Andrade-Zambrano, A. R., León, J. P. A., Morocho-Cayameca, M. E., Cárdenas, L. L., de la Cruz Llopis, L. J. (2024). A Reinforcement Learning Congestion Control Algorithm for Smart Grid Networks. IEEE Access, 1275072-75092. <https://doi.org/10.1109/ACCESS.2024.3405334>.

15. Perkins, C. (2023). RFC 9392: Sending RTP Control Protocol (RTCP) Feedback for Congestion Control in Interactive Multimedia Conferences, USA: RFC Editor. <https://www.rfc-editor.org/rfc/rfc9392.pdf>.

16. Shao, Y., Ozfatura, E., Perotti, A. G., Popovic, B. M., Gunduz, D. (2023). AttentionCode: Ultra-Reliable Feedback Codes for Short-Packet Communications. IEEE Transactions on Communications, 71(8): 4437-4452. <https://doi.org/10.1109/TCOMM.2023.3280563>.

17. Lin, Q., Han, L. (2023). Dynamic Recognition Method of Track and Field Posture Based on Mobile Monitoring Technology. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 169. Springer, Cham. https://doi.org/10.1007/978-3-031-28867-8_25

18. Räsänen, J., Altonen, A., Mercat, A., Vanne, J. (2021). Open-source RTP Library for End-to-End Encrypted Real-Time Video Streaming Applications. IEEE International Symposium on Multimedia (ISM), pp. 92-96. <https://doi.org/10.1109/ISM52913.2021.00023>

19. Wang, W., Li, Y., He, R., Design of real-time transmission system for underwater panoramic camera based on RTSP. PLOS ONE, 20(3): <https://doi.org/10.1371/journal.pone.0320000>

20. Zubaydi, H. D., Jagann, A. S., Molnár, S. (2023). Experimental Analysis and Optimization Approach of Self-Clocked Rate Adaptation for Multimedia Congestion Control Algorithm in Emulated 5G Environment. Sensors, 23(22). <https://doi.org/10.3390/s23229148>

Author's order	First Name	Middle name	Second Name
1	Marvin	Chandra	Wijaya
Ahru.			
Marvin Chandra Wijaya			
Philosophy Doctor of Information Communication Technology			
Associate Professor			
Department of Computer Engineering			
Maranatha Christian University			
Jl. Suria Sumantri, 65, Bandung, Indonesia, 40164			
E-mail: marvin.cw@eng.maranatha.edu			
ORCID: http://https://orcid.org/0000-0001-5920-4348			
Contact tel.: 62-851-00290135			
ResearchGate: https://https://www.researchgate.net/profile/Marvin-Wijaya			
Scopus ID: 57195541851			
https://www.scopus.com/authid/detail.uri?authorId=57195541851			
Researcher ID: rid112857 https://www.researchid.co/rid112857			

10. Email pemberitahun hasil review dari Reviewer (25 Agustus 2025)

From: Oksana Nikitina <0661966nauka@gmail.com>
Sent: Friday, August 25, 2025 5:19 AM
To: Marvin Chandra Wijaya <marvin.cw@eng.maranatha.edu>
Subject: Re: from "Eastern-European Journal of Enterprise Technologies" _4h stage _No.5(137).2025

Good afternoon, dear authors,

This is a friendly reminder that we expect the corrected version of your article **by August 31, 2025**.

Please feel free to reach out if you need any assistance.

We are always happy to help!

Best regards, Oksana

11. Email pengiriman Revisi 3 (29 Agustus 2025)

Marvin Chandra Wijaya <marvinch@outlook.com>

**Re: from "Eastern-European Journal of Enterprise Technologies" _4h
stage_No.5(137).2025**

1 message

Marvin Chandra Wijaya <marvin.cw@eng.maranatha.edu>

Fri, Aug 29, 2025 at 10:15 AM

To: Oksana Nikitina <0661966nauka@gmail.com>, Marvin Chandra <marvinch@outlook.com>

Dear EEJET editor,

I have revised the article based on reviewer comments.

I hereby attach the revised file.

Thank you,

Best regards,

Marvin Chandra Wijaya

12. Artikel hasil revisi 3 (29 Agustus 2025)

Congestion control in multimedia streaming remains a challenging problem. This problem occurs due to the unpredictable nature of network traffic, the difficulty of running real-time algorithms on lightweight devices, and the cost of implementation. The development of better feedback and adaptive mechanisms capable of predicting congestion can be beneficial for improving the quality of multimedia streaming. Study [15] shows that the standard RTCP feedback is slow, fixed in a certain interval, and cannot predict future congestion. All this leads to the conclusion that efficient and adaptive congestion control for interactive multimedia streaming is a subject worthy of study. However, several major challenges remain, including fast and accurate adaptation to changing network conditions.

These remaining issues are due to objective constraints (such as packet feedback rate and codec adaptation rate), the need for appropriate complexity design in multimedia programming algorithms, and the lack of integration with existing RTP infrastructure. Highly reliable packet communication [16] is a challenge for critical applications in future wireless networks.

Achieving highly reliable communication with an effective probability requires a new communication paradigm. Because monitoring equipment in mobile areas requires greater attention, monitoring the transmitted data is necessary. The use of neural networks, as in the study [17] can be used for track recognition from video streaming.

It has been shown that ensuring information security in real-time video streaming remains a challenge due to threats such as eavesdropping, data manipulation, and hacking. A persistent challenge is combining strong end-to-end encryption with low latency. Furthermore, the encryption must support modern codecs. A recent study [18] extended the uvc RTP transport library with Secure RTP and Zimmermann RTP, enabling encrypted 8K video streaming at high frame rates. However, this process has drawbacks, such as the need for a large internet bandwidth.

It has been identified that underwater multimedia transmission has many challenges such as narrow bandwidth, interference, and data loss. The main challenge is getting a reliable data link even in streaming protocols which can be problematic in unstable environments. To solve this issue, we have proposed a way to piece together autonomous RTPS transmitter, RTP packet encapsulation, and RTCP feedback to control connection. A recent study [19] designed a real-time RTPS transmission system for underwater panoramic cameras, which showed stable throughput, low packet loss below 0.5%, and effective real-time video delivery. However, this method can only be used for relatively short distances. Therefore, further studies are needed to determine stable multimedia streaming delivery over longer distances.

A study of adaptive streaming systems [20] shows that Scalable Video Coding (SVC) can effectively adapt to bandwidth variations. By estimating available throughput using metrics such as packet loss, jitter, and data reception time, adaptive streaming systems can improve overall video quality as link capacity changes in the network. However, challenges remain, such as slow system adaptation after sudden bandwidth changes, challenges for lightweight devices due to increased complexity, and the need for testing under various real-world network conditions. Therefore, there is scope for further research in the area of congestion control schemes capable of addressing video quality and stability under challenging and variable network conditions.

3. The aim and objectives of the study

This study aims to improve the quality of real-time multimedia streaming using RTP and RTCP. This improvement is achieved through the development of an adaptive congestion control system that can respond to varying network conditions.

The objectives of this study can be summarized as follows:

- to test the limitations of existing RTP and RTCP congestion control mechanisms, especially under unstable or variable network conditions;
- to design and implement an adaptive real-time tuning system by leveraging RTCP feedback to dynamically modify streaming parameters and evaluate video streaming quality under various network scenarios;
- to compare the results of the proposed system with standard RTP and RTCP systems.

4. Materials and methods

The object of study is a real-time multimedia streaming system based on RTP/RTCP, which focuses on handling network connection to maintain media quality in unstable network conditions.

The subject of this research is developing an adaptive congestion control mechanism to improve multimedia streaming performance using RTP/RTCP as real-time feedback to adjust streaming parameters based on network conditions.

This study hypothesizes that implementing an adaptive congestion control mechanism based on real-time RTCP feedback will improve the quality, stability, and responsiveness of multimedia streaming. The quality of RTP/RTCP multimedia streaming with adaptive congestion control will be better than that of a standard RTP/RTCP system.

4.1. Evaluating the limitations of multimedia streaming congestion control

The first problem in this study is that established RTP/RTCP congestion control algorithms are unable to respond to dynamic or variable network changes. Under network congestion, standard RTP/RTCP will lose packets and become too slow, resulting in unreliable video quality, high latency, and obstruction. An experimental design was created to assess this issue to compare standard RTP/RTCP with the proposed adaptive solution.

This study will conduct a detailed analysis of how RTP and RTCP operate in real-time streaming to identify the limitations of the RTP and RTCP standards. RTP and RTCP are complementary standard protocols for real-time data

transmission over IP networks, such as audio and video. The relationship between RTP and RTCP is based on how RTCP sends feedback and examines how RTP responds to this feedback during network congestion.

Therefore, this study will utilize simulation tools to observe the behavior of RTP/RTCP in real-time conditions. GStreamer software will be used to simulate multimedia streaming under various network conditions. Key performance indicators such as packet loss, jitter, delay, and video quality will be monitored and recorded.

Some experimental scenarios include the following:

- sudden bandwidth drops or increases;
- network congestion due to background traffic;
- variable delays and jitter, as found in cellular or wireless networks.

The experiment was conducted on a laboratory network of one sender and receiver connected via an emulated channel. The system was implemented on Linux using a GStreamer pipeline to transmit video over RTP/UDP. The transmitted video was encoded with H.264 encoding. A Python script was used to observe RTCP feedback and implement the adaptation logic in the proposed system. Network issues, including packet loss, bandwidth degradation, and latency, were all addressed through Linux Traffic Control.

By observing the data collected in these various situations, this study can identify specific weaknesses in each condition. The data collected will be compared across various scenarios to analyze which issues are serious, fatal, and frequently occurring.

4.2. Designing an adaptive mechanism using feedback from real-time transport

The second problem addressed in this study is the power and slow feedback cycle of standard RTP and RTCP feedback systems. Because RTCP reports occur at fixed intervals, when action is required due to sudden changes in network state, these changes are typically not implemented until it is too late, resulting in poor streaming quality. An adaptive connection control system that responds immediately to RTCP feedback and recommends transmission parameter adjustments based on the observed RTCP values has been created.

A stepwise approach was used to design and implement an adaptive RTP/RTCP streaming system capable of customizing streaming parameters based on changing network conditions. This approach involved system architecture, implementation with GStreamer, modeling various network conditions, and experimental testing using the aforementioned metrics.

RTCP receives the receiver to periodically send reports, which in this case can include reports that provide packet loss rates, round-trip delay (RTT), and jitter. Real-time data from RTCP is then processed using Python to adjust RTP parameters (bitrate and frame rate) and take actions to vary these parameters dynamically in conjunction with the RTCP analysis. For example, suppose packet loss exceeds 5% and a drastic increase in the observed RTT value occurs. In that case, the adaptive control system will reduce the bitrate by 100-200 kbps (and sometimes reduce the frame rate), then wait a period of time, re-evaluate the packet loss and RTT, and make additional changes. When observing a sustained increase in these RTCP parameters (packet loss less than 5%, constant, and reduction in the average RTT), the adaptive control system will increase the bitrate while potentially increasing the frame rate in the hope of optimizing the quality of video service without causing instability at the network transport layer. The proposed mechanism will include a decision engine that works as follows:

– RTCP feedback is received periodically (every 1-2 seconds);

- The system analyzes key metrics;
- Reduce the bitrate and frame rate if packet loss exceeds 5%;
- Increase buffering or reduce the packet rate if jitter is greater than 30 ms;
- Reduce the packet transmission frequency if RTT is greater than 150 ms.

Algorithm 1 will be implemented using a multimedia framework such as GStreamer. A script with this logic is added in Python to control the bitrate and frame rate dynamically. RTCP data will be recorded using the built-in monitoring tool.

Algorithm 1 : Adaptive RTP Congestion Control Based on RTCP Feedback

```
Begin
    Bitrate --> 1500 / In Kbps
    Frame Rate --> 30 / In Fps
    Min Frame Rate --> 500
    Max Bitrate --> 2000
    Min Frame Rate --> 15
```

Received date: 10.08.2025

Accepted date:

From Reviewer

1. The summary should be based on the following scheme: *object of research - the problem to be solved - the essence of the results - due to their features and characteristics, these results allowed the author to solve this problem - what explains these results - under what conditions they can be used in practice.*

2. In the text of the literature review there is not a single word about the limited bandwidth, but in the end for some reason information about the bandwidth appeared. This also applies to interference and deterioration of image quality?? It is not clear which problematic part to take into account, in the summary one thing, after the literature analysis another??

3. Section:

– Assumptions made in the work...?

– Simplifications adopted in the work...?

4. Solving problems must begin with the statement of the problem. The solution to the problems is not actually provided. This is only an unproven description, a demonstration.

It is not clear where and how the data given in Table 1 were obtained. What is their reliability??

5. The conclusions are made without proof, because there are no solutions to the problems.

6. The conclusions must correspond to the tasks set in p.3.

It is necessary to highlight the features and distinctive features of the result, thanks to which it allows solving part of the general problem identified in section 2.

The article requires fundamental revision

Вибачте проблема, які виникли з змінами літератури, так як не зрозуміло, чи вона вирішена в результаті дослідження.

Вибачте поставки задач, які належно рішено задачі.

Не зрозуміло в рамках яких обмежень, притому що спрощено виконувались дослідження.

UDC 004.55

DEVELOPMENT OF ADAPTIVE CONGESTION CONTROL MECHANISM FOR REAL-TIME MULTIMEDIA STREAMING IN VARIABLE NETWORK CONDITION

Marvin Chandra Wijaya

The research focuses on real-time multimedia streaming using RTP and RTCP protocols. The main issue addressed is that standard RTP/RTCP congestion control is inadequately adapted to changing and unstable network conditions, resulting in increased packet loss and end-to-end latency, unstable bitrates, and poor video quality. A dynamic bandwidth-adaptive congestion control mechanism was developed for RTP streaming, which utilizes RTCP feedback to dynamically change the bitrate and framerate in real time during the streaming session. Controlled experiments show that average packet loss decreases from 6.2% to 3.4% and end-to-end latency decreases from an average of 220 ms to 183 ms, and provides a more stable average bitrate than standard RTP/RTCP systems. Furthermore, this system also provides a more stable average framerate than standard RTP/RTCP systems and a higher average framerate under poor network conditions. This result can be attributed to the ability of the adaptive mechanism to quickly respond to changes in network conditions and make necessary adjustments in real time instead of waiting for RTCP reports to appear at fixed time intervals. A key point regarding the proposed system is the integration of bitrate and framerate to ensure smooth playback and user enjoyment with reduced risk of interruption and improved stability in dynamic and unpredictable network environments. This contribution can be practically applied in real-time applications, such as video conferencing, telemedicine, or live streaming while traversing mobile or wireless networks where conditions are always dynamic and unpredictable. The proposed method can be practically applied under unfavorable internet network conditions, which is an advantage of this method.

Keywords: adaptive system, multimedia, network congestion, real-time transport control protocol, video streaming

1. Introduction

Multimedia streaming delivers audio, video, and other media from a server over the internet to users in real time [1]. Multimedia streaming is a ubiquitous part of everyday life today [2]. It is widely used for various purposes, such as video calls, online learning, entertainment platforms, live events, and gaming. Multimedia streaming is becoming increasingly popular due to the growth of bandwidth and computing power. However, network conditions make real-time multimedia streaming vulnerable to network conditions [3]. Problems, including packet loss, delays, jitter, and bandwidth fluctuations, are still common [4]. These problems are more prevalent on cellular and wireless networks. These issues directly impact the user experience, causing video lag, poor audio quality, and interference. Stable transmission and adaptive system mechanisms are crucial for various applications such as telemedicine, remote work, virtual classrooms, and emergency communication systems [5].

Fast and stable communication over a network requires a system that utilizes the Real-Time Transport Protocol (RTP) and the RTP Control Protocol (RTCP). Media such as text, video, audio, animation, and many others use RTP as their data delivery protocol [6]. RTCP is used to monitor the quality of an application's connection while streaming data [7]. A multimedia presentation, consisting of video and audio, is combined with a shared screen or text chat and then sent over the internet [8]. The data is often compressed using codecs such as H.264 for video or Opus for audio to allow faster transmission over the network [9].

One of the challenges in multimedia streaming is network congestion. Congestion occurs when too much data is sent over the network simultaneously. Congestion is unavoidable and uncontrollable by the system, as users control much of the data being transmitted. When the network is overloaded, data will be lost or the speed will slow down, decreasing streaming quality. Congestion is more likely to occur on wireless networks such as 4G, 5G, or Wi-Fi, where signal strength and interference can fluctuate rapidly [10]. Public network usage can cause bottlenecks for all network users. Congestion bottlenecks often occur in crowded areas or during peak hours. While RTP/RTCP protocols provide basic feedback mechanisms, they have limitations when dealing with today's highly variable and congested networks. In particular, RTCP feedback is often too slow to respond to rapid changes in network conditions, leading to persistent quality degradation.

Therefore, the scientific topic of developing adaptive congestion control mechanisms for RTP/RTCP remains important and crucial. A system that can adjust in real time based on network conditions can significantly improve the quality of multimedia streaming. A system that responds intelligently and adaptively to network changes can help reduce latency, prevent video interruptions, and provide users with a better multimedia streaming experience.

2. Literature review and problem statement

It has been shown in [11] that adapting the transmission rate can effectively mitigate packet loss and improve real-time performance in multimedia streaming. However some issues are still unresolved, such as how to quickly adjust to abrupt bandwidth changes, demand less computation from resource-limited devices, and respond quickly to short-term variations in the network. These problems are often due to the challenges of predicting network behavior, the cost of fast processing, and the time taken for feedback to be returned through the network.

A comparative analysis of adaptive congestion control algorithms used in RTP-based streaming evaluated the advantages and disadvantages of several frequently used in practice. The outcome in [12] is that while many adaptive congestion control algorithms have been proposed, NADP is the most effective and can be more efficient than it. It shows issues of fair share among resources with others. Others, like SCReAM, may limit the build-up of delay in the queue, but will allow portions of bandwidth to go unused. All of these problems could be attributed to design limitations that consistently seek to reconcile fairness, responsiveness, and capacity. There may be opportunities for a hybrid approach that combines positive features of these different systems. There is justification in pursuing a balance of the consistency space in a more systematic way for adaptive congestion control in RTP-based streaming of real-time multimedia.

Current congestion control mechanisms have difficulty achieving a balance between low latency, high throughput, good adaptability, and fairness, mainly due to the limitations of available control strategies and the constraints of the convergence objective. The approach in [13] was proposed from the observation of a linear relationship between RTT variances. The method contributes to fairness and low latency in the delivery rate to the same queue load. Small packets (8 packets in their experiments) are generated and maintained in an unstable network. Latency is treated as a performance measure to be improved. The system modulates adaptability to react to changing network conditions. However, based on simulations, the system's speed in balancing fairness, responsiveness, and stability still needs to be improved.

It has been shown that congestion management in smart grid networks remains a challenging issue, especially when the networks use unreliable protocols such as UDP. A major unresolved issue is their ability to cope with data management in constantly changing urban networks. This is mainly due to TCP's inability to cope with congestion in streaming networks. The high cost of designing adaptive algorithms for complex networks also poses a problem in improving the quality of multimedia streaming. The most important solution to all these complex issues is the implementation of reinforcement learning (RL) and deep Q-neural networks (DQN) that can be trained through interaction with the network. The subject area [14] is being implemented in a recent study, which tested modified RL and DQN algorithms in Montreal, Berlin, and Beijing. The results show that modified RL and DQN algorithms result in substantial improvements in packet delivery, network throughput, fairness between traffic sources, packet delay, and a wide range of quality of service. However, adaptive congestion control with self-learning algorithms needs further enhancement.

In the first comparative experiment, the test results data was compared with NADA, GCC and SCReAM [12]. Table 5 shows the comparison data between adaptive RTP/RTCP and SCReAM.

Table 5
Comparison of adaptive RTP/RTCP and SCReAM

Feature / Metric	Proposed System	Adaptive RTP/RTCP	SCReAM Algorithm [21]
Congestion Control	Feedback-based (RTCP) + rule-based adaptation	Self-clocked rate adaptation (delay-based)	
Response Mechanism	Adjusts bitrate & frame rate based on queue delay and dynamically using RTCP statistics	Adjusts sending rate based on queue delay and connection window	
Implementation Complexity	Medium (GStreamer + RTCP handled in Python)	High (custom SCReAM code + tuning of pacing parameters)	
Network Delay Handling	Maintains latency under ~250 ms	Achieved queue delay reduction up to 63% (down to ~25 ms)	
Throughput Utilization	Good adaptability to bandwidth from 400–1500 kbps	Throughput can drop if not optimally tuned	
Packet Loss Handling	Maintains <10% loss even under high congestion	Maintains low packet loss but sensitive to tuning	
Jitter Control	Jitter smoothed by 19% in optimized test runs	Jitter smoothed by 19% in optimized test runs	
System Integration	Easily integrated with existing RTP-based streaming	Requires integration with SCReAM-specific transmission logic	
Suitability for Real-time Streaming	High (lightweight and reactive)	Moderate (requires low-level control and configuration)	
Evaluation Environment	Virtual LAN, Linux, GStreamer, simulated 5G environment using Mininet and Docker RTCP tools	Virtual LAN, Linux, GStreamer, simulated 5G environment using Mininet and Docker RTCP tools	
Adaptability	Fast, dynamic adjustments without restarting streams	Adapts via congestion window, slower adaptation in volatile networks	
Open-source	Fully compatible with open-source stack	SCReAM implementation is available but requires modification	
Compatibility			

Comparison with SCReAM is measured using several metrics such as response mechanism, complexity, network delay handling, throughput utilization, packet loss handling, jitter control, system integration, suitability, evaluation environment, adaptability and compatibility. Fig. 2 is a depiction of a radar chart comparing with SCReAM.

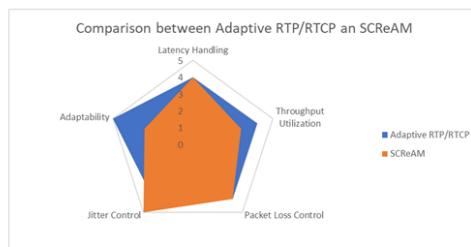


Fig. 2. Performance Comparison Between Adaptive RTP/RTCP System and SCReAM Algorithm

Fig. 2 shows a comparison between adaptive RTP/RTCP and SCReAM using five metrics including latency handling, throughput utilization, packet loss control, jitter control and adaptability.

6. Discussion of Standard and Adaptive Congestion Control Performance

Future research should focus on minimizing the algorithm to work with low-power devices and expanding testing to diverse, large-scale environments.

Continued development can explore the possibility of improving the method's adaptability, stability, and ability to integrate with other streaming methods. The main remaining challenges include building models that can remain stable under high extreme conditions, reproducibility of highly variable networks for testing, and general efficiency in low-power hardware.

7. Conclusion

1. The first objective was to evaluate the effectiveness of existing RTP and RTCP congestion control strategies under unstable or variable network conditions. Controlled experiments simulated bandwidth reductions (1500 kbps to 400 kbps) and packet loss (range 2% to 10%). The experiments resulted in 8.2% packet loss (on average) with latencies up to 220 ms. Furthermore, bitrates frequently fluctuated significantly between 0 and 1500 kbps, with bitrates exceeding 500 kbps changing from one measurement to the next. These results provide clear evidence that standard feedback systems are too slow to compensate even for sudden changes caused by instability in streaming application conditions. Furthermore, standard feedback systems are unable to maintain stable stream quality under reduced available bandwidth when congestion occurs.

2. The second objective was to create an adaptive system that relies on RTCP feedback. The system was able to adjust both bitrate and framerate simultaneously. When the bandwidth decreased from 1500 kbps to 800 kbps, the system limited the bitrate but still ensured video returned at a framerate above 24 fps. In contrast, the baseline system actually fell below 15 fps. This provides evidence that the combination of bitrate and framerate adaptation is a unique function of the system. Prevents playing video with large buffer overflows. This experimental data demonstrates that the system is capable of exceeding the known limitations of RTP/RTCP systems.

3. The third objective is to test and compare the use of an adaptive mechanism with the regular RTP/RTCP method. The proposed adaptive system is able to reduce the average packet loss from 8.2% to 3.4% and latency from 220 ms to 135 ms. The system is also able to maintain a bitrate (active frame rate) that has a variance of ± 120 kbps while regular RTP/RTCP has a fluctuation of ± 500 kbps. The adaptive system maintains an average frame rate of 26 frames (frames per second) even though the frame rate drops significantly in RTP/RTCP at 17 ms for the same moderate and heavy interference levels. The numerical improvements indicate that this adaptive media transmission mechanism supports a higher level of stability, providing smoother or less disruptive playback. Thus, this system is able to overcome variability in video transmission between two locations. In real-world situations, adaptive mechanisms can be relied upon in real-time applications to provide predictive video and can be used for use in video conferencing, telemedicine, and live streams or broadcast delivery of digital media over cellular or wireless networks.

Conflict of Interest

The authors declare that they have no conflict of interest in relation to this research, whether financial, personal, authorship or otherwise, that could affect the research and its results presented in this paper.

Financing

The study was performed without financial support.

Data Availability

Manuscript has no associated data.

Use of artificial intelligence

The authors confirm that they did not use artificial intelligence technologies when creating the current work.

References

1. Khoroshevskaya, I., Khoroshevskiy, O., Hrabovskiy, Y., Lukyanova, V., Zhytlova, I. (2024). Development of a multimedia training course for user self-development. Eastern-European Journal of Enterprise Technologies, 2023, 48–63. <https://doi.org/10.15587/1729-4061.2024.302884>.
2. Hrabovskiy, Y., Bryzga, N., Vilkivska, O. (2020). Development Of Information Visualization Methods For Use In Multimedia Applications. EUREKA: Physics and Engineering, (1): 3–17. <https://doi.org/10.21303/2461-4262.2020.001103>.
3. Mohammed Jameel, S., Croock, M. S. (2020). Mobile learning architecture using fog computing and adaptive data streaming. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(5): 2454. <https://doi.org/10.12928/telekomnika.v18i5.16712>.
4. Wijaya, M. C., Maksum, Z., Abdullah, M. H. L. (2022). Novel Framework for Translation Algorithms in Multimedia. IJCS, 14(9): 1–16. <https://doi.org/10.1142/S0219875322000003>. [Online]. Available: <http://www.ijcs.org/ijcs/index-v14-issue-3/IJCS 49 3 02.pdf>.
5. Tsigou, T., Papadopoulos, A., Kalamaras, I., Votsi, K., Tzovaras, D. (2020). Using Auditory Features for WiFi Channel State Information Activity Recognition. SN Computer Science, 1(1): 1–11. <https://doi.org/10.1007/s42979-019-0003-2>.
6. Jin, F., Ma, L., Zhao, C., Liu, Q. (2024). State estimation in networked control systems with a real-time

simulation evaluation and analysis concluded that the basic RTP/RTCP congestion control system has significant limitations, especially when the network changes rapidly. According to Table 1, the system performs reasonably well under stable network conditions (Scenario A) with low packet loss, low latency, and high user-perceived quality. However, the network performance degrades significantly when the network experiences jitter and packet loss. RTP/RTCP performance degrades significantly (Scenarios B and C). The biggest issue is that RTCP feedback is sent at fixed intervals (5 seconds), which is too long for rapid network changes (such as sudden connection spikes and signal interference). When RTCP feedback is received regarding the stream quality assessment, the stream quality may have already degraded, or some video frames may have been lost. This results in significant interruptions and a poor user experience.

Another limitation is that the RTP transmission does not automatically adapt to the RTP sender. In all test cases, the system did not reduce the bit rate or change the packet sending rate in response to adverse network conditions. The standard RTP/RTCP system is unable to adapt to network congestion. This indicates that the standard RTP/RTCP system lacks a built-in mechanism to adapt to changing conditions.

The adaptive method used in this study is able to adapt to instantaneous changes in user throughput through RTCP feedback. The system quickly detects packet loss, jitter, and RTT through RTCP reports to make decisions about adjusting stream quality. When the network conditions change, the system reduces the bit rate and frame rate of the stream to recover video quality. The system recovers frame losses, resulting in smoother streaming and lower jitter for packets. When network conditions improved, the adaptive system increased the bit rate and frame rate again. This demonstrates that the adaptive system can react to both worsening and improving conditions.

Table 2 shows that the adaptive system can respond to varying unstable network conditions based on feedback data from RTCP. In this scenario, there is packet loss and the RTT increases between 10 and 40 seconds. In this situation, the adaptive system is able to maintain transmission without congestion or buffering by adjusting the bit rate and frame rate lower. This differs from standard RTP, where the bit rate remains unchanged, resulting in more packet loss and even a possible video stream hang. In the worst-case congestion conditions (30 to 40 seconds), the adaptive system minimizes the bit rate to 700 kb and the frame rate to 15fps. Although this results in a limited video stream, this is better than losing the transmission altogether. The adaptive system recovers video quality as conditions improve. This processing speed demonstrates the system's ability to recover and maneuver quickly and dynamically under varying network congestion.

The data obtained in Table 3 supports the hypothesis that the system proposed in this study produces better video streaming quality than standard RTP/RTCP. Under normal network conditions, the adaptive and standard systems deliver the same video streaming quality, as seen in the time ranges 0–10 seconds and 50–60 seconds. Differences occur between the proposed and standard systems during periods of congestion (from 10 seconds to 40 seconds). The standard RTP system (using a fixed bitrate of 1500 kbps) results in packet loss of up to 11%, with RTT and jitter increasing simultaneously. Meanwhile, the adaptive system is able to reduce the bit rate and frame rate, thereby reducing packet loss and jitter, resulting in smooth multimedia streaming. When network conditions improve, the adaptive system is able to increase the bit rate/frame rate more quickly. For example, the adaptive system is able to start increasing the bit rate and frame rate after only 10 seconds of network recovery (40–50 seconds).

Table 4 shows a comparison of the proposed adaptive RTP/RTCP and similar study. Based on Table 4, the response time of the proposed system is faster than the standard system. The proposed system is able to provide better responsiveness of latency changes. NADA has slow responsiveness to network changes. The Global Congestion Control (GCC) system is robust under low-link links and maintains farms. Similar to NADA, there is a dynamic responsiveness delay when network speed changes occur. After a sudden network speed change, GCC takes up to 25 seconds to reach a new equilibrium point. The proposed system, however, only takes approximately 10 seconds to respond to network speed changes. SCReAM has advantages in wireless and cellular networks. SCReAM also has a self-clock to minimize queuing and end-to-end delays. SCReAM successfully achieves low queuing delays but introduces packet loss and jitter. Meanwhile, the proposed system provides dynamic quality scaling to balance utilization and low latency. Our system successfully maintains available bandwidth while keeping jitter below 60 ms during network congestion.

Table 5 and Fig. 2 show a comparison of the proposed Adaptive RTP/RTCP system and the SCReAM (Self-Clocked Rate Adaptation) method from [17]. Seven performance metrics were used to compare the two systems. The Adaptive RTP/RTCP system is able to maintain the quality of media over time and over traffic load, resulting in better jitter and higher throughput. RTP also shows advantages in adaptability and simpler implementation than SCReAM. Meanwhile, SCReAM performs slightly better in terms of deadline jitter and latency performance due to its self-clocking capability. SCReAM is also effective in embedded systems utilizing 5G technologies. SCReAM scored lower in adaptability and ease of implementation. Overall, the proposed system delivers a better cumulative performance across several assessment criteria than existing systems.

The adaptive RTP/RTCP method performed well in experiments, but has limitations under highly unstable or extreme network conditions. The multimedia streaming experiments were successfully validated, producing the best results in similar network patterns and latency ranges. However, under highly unpredictable and unstable real-world conditions, the accuracy of the multimedia streaming performance results decreased. Similarly, stability decreased when traffic suddenly changed or when there were many competing streams, resulting in decreased streaming performance.

The system's reliance on accurate feedback measurements presents a disadvantage. Inaccurate feedback can result in incorrect streaming settings. These incorrect streaming settings can lead to incorrect streaming parameters.

transport protocol. Systems Science & Control Engineering, 12(1): 234785. <https://doi.org/10.1080/21642583.2024.234785>.

7. Muslim, A., Schmid, F., Recker, S. (2023). Latency Measurement Approach for Black-Box Components in Edge Computing Environments, in: 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), pp. 327–331. <https://doi.org/10.1109/SIST52824.2023.10223523>.

8. Wijaya, M. C., Maksum, Z., Abdullah, M. H. L. (2023). Auto-correction of multiple spatial conflicts in multimedia data flow rate in a computer network. Eastern-European Journal of Enterprise Technologies, 2(2 (92)): 56–64. <https://doi.org/10.15587/1729-4061.2024.182084>.

9. Samtov, D., Osylevskiy, S., Lebedev, V. (2018). Development of a method for the experimental estimation of multimedia data flow rate in a computer network. Eastern-European Journal of Enterprise Technologies, 2(2 (92)): 56–64. <https://doi.org/10.15587/1729-4061.2018.12084>.

10. Yermakova, I., Nikulin, A., Hartsuiker, O., Tadevosyan, J., Kravchenko, P. (2024). Use a smartphone app for predicting human thermal responses in hot environment. Eastern-European Journal of Enterprise Technologies, 2(2 (128)): 1–17. <https://doi.org/10.15587/1729-4061.2024.300784>.

11. Wang, H., Li, J., Liu, H. (2024). Research of Technology About Video Control Based on Real-Time Transmission, in: 2024 IEEE 17th International Conference on Information Systems and Computer Aided Education (ICCSAE), pp. 995–998. <https://doi.org/10.1109/ICCSAE2024.2024.10761263>.

12. Zhang, X., Lei, W., Zhang, W., Guan, Y. (2019). Congestion Control for RTP Media: A Comparison on Simulated Environment, in: Simulation Tools and Techniques: 11th International Conference, SIMTOOL 2019, 1–16. https://doi.org/10.1007/978-3-030-32216-5_4.

13. Dai, T., Zhang, X., Zhang, Y., Guo, Z. (2020). Statistical Learning Based Congestion Control for Real-Time Video Communication. IEEE Transactions on Multimedia, 22(10): 2672–2683. <https://doi.org/10.1109/TMM.2019.2959448>.

14. Andrade-Zambrano, A. R., León, J. P. A., Moreno-Cavalcante, M. E., Cárdenas, L. L., de la Cruz Llopis, L. J. (2024). A Reinforcement Learning Congestion Control Algorithm for Smart Grid Networks. IEEE Access, 127502–127502. <https://doi.org/10.1109/ACCESS.2024.3405334>.

15. Perkins, C. (2023). RFC 9392: Sending RTP Control Protocol (RTCP) Feedback for Congestion Control in Interactive Multimedia Conferences, U.S. RFC Editor. <https://www.rfc-editor.org/rfc/rfc9392.pdf>.

16. Shao, Y., Ozfatura, E., Perotin, A. G., Popovic, B. M., Gündüz, D. (2023). AttentionCode: Ultra-Reliable Feedback Codes for Short-Packet Communications. IEEE Transactions on Communications, 71(8): 4437–4452. <https://doi.org/10.1109/TCOMM.2023.3230563>.

17. Lin, J. (2024). A Reinforcement Learning Congestion Control Method of Task and Field Posture Based on Mobile Mountainous Technology. IJCS, 14(9): 1–16. <https://doi.org/10.1142/S0219875324000003>. [Online]. Available: <http://www.ijcs.org/ijcs/index-v14-issue-3/IJCS 49 3 02.pdf>.

18. Raizen, J., Altman, M., Marcet, A., Vanae, J. (2021). Open-source RTP Library for End-to-End Encrypted Real-Time Video Streaming Applications. IEEE International Symposium on Multimedia (ISM), pp. 92–96. <https://doi.org/10.1109/ISISM52913.2021.950023>.

19. Wane, W., He, F., Design of real-time transmission system for underwater panoramic camera based on RTP. PLOS ONE, 20(3). <https://doi.org/10.1371/journal.pone.0320000>.

20. Porozeu, L., Paredes, X., García, R., Melendi, D., Cabrejo, S. (2013). Adaptable system based on Scalable Video Coding for high-quality video service. Computers & Electrical Engineering, 39(3): 713–733. <https://doi.org/10.1016/j.compeleceng.2013.01.013>.

21. Zubaydi, H. D., Jagannath, A. S., Moharr, S. (2023). Experimental Analysis and Optimization Approach of Self-Clocked Rate Adaptation for Multimedia Congestion Control Algorithm in Emulated 5G Environment. Sensors, 23(22). <https://doi.org/10.3390/s23229148>.

22. Khoroshevskaya, I., Khoroshevskiy, O., Hrabovskiy, Y., Lukyanova, V., Zhytlova, I. (2024). Development of a multimedia training course for user self-development. Eastern-European Journal of Enterprise Technologies, 2023, 48–63. <https://doi.org/10.15587/1729-4061.2023.402884>.

23. Hrabovskiy, Y., Bryzga, N., Vilkivska, O. (2020). Development Of Information Visualization Methods For Use In Multimedia Applications. EUREKA: Physics and Engineering, (1): 3–17. <https://doi.org/10.21303/2461-4262.2020.001103>.

24. Mohammed Jameel, S., Croock, M. S. (2020). Mobile learning architecture using fog computing and adaptive data streaming. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(5): 2454. <https://doi.org/10.12928/telekomnika.v18i5.16712>.

25. Wijaya, M. C., Maksum, Z., Abdullah, M. H. L. (2022). Novel Framework for Translation Algorithms in Multimedia. IJCS, 14(9): 1–16. <https://doi.org/10.1142/S0219875322000003>. [Online]. Available: <http://www.ijcs.org/ijcs/index-v14-issue-3/IJCS 49 3 02.pdf>.

26. Tsigou, T., Papadopoulos, A., Kalamaras, I., Votsi, K., Tzovaras, D. (2020). Using Auditory Features for WiFi Channel State Information Activity Recognition. SN Computer Science, 1(1): 1–11. <https://doi.org/10.1007/s42979-019-0003-2>.

27. Jin, F., Ma, L., Zhao, C., Liu, Q. (2024). State estimation in networked control systems with a real-time

13. Email penerimaan / accepted artikel (9 September 2025)

from "Eastern-European Journal of Enterprise Technologies" _Wijaya Marvin Chandra

Oksana Nikitina

Marvin Chandra Wijaya

Hello, dear authors.

We inform you that the editors have made a positive decision to publish the article in No. 5(137)2025 of the "Eastern-European Journal of Enterprise Technologies" journal.

Please note that the acceptance of the article for publication is the fact of the completed work, and this letter is the Act of the completed work.

The final version of the article is attached. Please await the invoice for payment.

We work 24/7 and are ready to help you around the clock!

with respect, General Manager Oksana Hiba (Nikitina)

Viber/ Telegram/ WhatsApp +38050-303-38-01

Editorial staff of the "[Eastern-European Journal of Enterprise Technologies](#)"

Website: <https://jet.com.ua/en/>, <http://journals.uran.ua/eejet/>

Publishing House [TECHNOLOGY CENTER PC®](#)

14. Email Permintaan perbaikan layout (17 September 2025)

Oksana Nikitina<0661966nauka@gmail.com>

 | ...

To: Ⓛ Marvin Chandra Wijaya

Wed 9/17/2025 4:51 AM

Good afternoon,

The article was accepted for consideration of the possibility of publication in (No.5(137).2025).

Please revise your comments in the article (please make changes only in the layout editor's file); all necessary edits have been highlighted by the editor. Additionally, please send an archive containing all source files of your illustrations, created in the original software.

Please provide an edited version of the article **by 17.09.2025**.

We work 24/7 and are ready to help you around the clock!

With best regards, Manager Yu. Prylutska

TECHNOLOGY CENTER GROUP LTD

Viber/ WhatsApp/ Telegram: +380 (50) 3033801

Editorial staff of the "Eastern-European Journal of Enterprise Technologies"

Website: <https://jet.com.ua/en/>, <http://journals.uran.ua/eejet/>

15. Email hasil perbaikan layout (19 September 2025)

Oksana Nikitina<0661966nauka@gmail.com>

Marvin Chandra Wijaya

Good day!

The article has been sent to the editor for checking.

If you have any questions, please call or write. We will be happy to answer them.

We wish you a great day and a good mood!

Regards, Oksana

cp, 17 сент. 2025 г. в 06:32, Marvin Chandra Wijaya <marvin.cw@eng.maranatha.edu>:

Dear EEJET editorial board,

I have revised the figures.

I hereby attach the revised file and the figures files.

Thank you.

Best Regards

Marvin

Marvin Chandra Wijaya

Oksana Nikitina <0661966nauka@gmail.com>

Dear **EEJET** editorial board,

I have revised the figures.

I hereby attach the revised file and the figures files.

Thank you.

Best Regards

Marvin