Security Analysis of SQL
Injection Attacks on Multimedia
and Journal-Services Sites Using

Concatenated Input Validation
and Parsing Method (CIVP)

by Turnitin Turnitin

Submission date: 27-Mar-2025 06:02PM (UTC+0700)
Submission ID: 2563115555

File name: isi_29.05_23.pdf (1.22M)

Word count: 7350

Character count: 40791

Q; HET A tmigmationn) formation und

Engineering Technology Assoclation

Ingénierie des Systéemes d’Information
Vol. 29, No. 5, October, 2024, pp. 1915-1924

Joumal s hitp:/iieta

Security Analysis of SQL Injection Attacks on Multimedia and Journal-Services Sites Using)

Concatenated Input Validation and

Marvin Chandra Wijaya'

Parsing Method (CIVP)

Department of Computer Engineering, Maranatha Christian University, Bandung 40164, Indonesia

Corresponding Author Email: marvin.cw @eng.maranatha.edu

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http:/fcreativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290523

ABSTRACT

Received: 24 January 2024
Revised: 4 September 2024
Accepted: 10 September 2024
Available online: 24 October 2024

Keywords:
SQL injection, input validation, parsing
methed, concatenated

Web umculions and databases continue to face grave danger from SQL injection attacks,
which can result in unauthorized access, data modification, and system compromise. This
report discusses the methods attackers use to exploit SQL injection vulnerabilities and
emphasizes the dangers of successful attacks, such as data leaks and system compromise .
This research proposes a compy system for d SQL inj attacks using
concatenated Input Validation and Parsing Method (CIVP). The site used as experimental
material is the Multimedia and Journal Services Site. Based on the results of forensic
analysis on the Journal Services Site, there were several attacks in cyberspace, including
using S AP and Python. The system created has successfgdly detected SQL injection
attacks. Based on the test results, it was found that the use of the method proposed in this
srudycceeded in making processing time 15.2% more efficient. Experiments carried out
with the method proposed in this study succeeded in increasing the attack detection

accuracy from 96-97% to 99 5% with a p-value of 0.008446.

1. INTRODUCTION

The official site is an identity of an institution which is the
identity or a mirror of the image of the institution. The official
website contains the institution's identity, institution profiles,
activities, internal news, and external news. Therefore, an
official site must be guarded in such a way against attacks in
cyberspace. The official site may be located and managed by
a third party that provides website hosting services. In addition,
an institution can manage its own official website. With self-
management, there will be a lot of freedom and facilities that
can be provided in the system. However, with self-
management, the challenge of maintaining the site and
information system becomes ntial.

Apart from the official website, other websites are also very
important to protect, such as e-commerce websites. Systems
on e-commerce sites are also often attacked by irresponsible
people [1]. Even though e-commerce is now widely used
throughout the world, many are still vulnerable to attacks.
Many e-commerce websites in various countries are down due
to Qrinus attacks.

‘ebsites, web applications, and web users have all been
subject to severe and ongoing rigs from web assaults,
including SQL injection attack Li), XSS, Operating
?tem Command injection (CMDi), and Path traversal [2].

ecause of the widespread usage of websites and online
applications and the accessibility of web attack tools @@ the
internet, these kinds of attacks are frequent [3]. The SQLi,
XSS, CMDi, DDoS, and Path traversal (Path) web attack
family is referred to as the "common web attacks" [4]. It is
seen that now attacks via the “common web attacks™ are

becoming more and more frequent nowadays [5]. Web attacks
are becoming more massive day by day, requiring fast
countermeasures [6]. To be able to deal with attacks quickly
on websites, it is necessary to detect attacks properly and
quickly.

There are various ways to attack a website, one of the most
popular ways 1s SQL Injection Attack (SQLi). Website
defacement is one of the biggest dangers for business,
corporate, and government websites and web services.

Defacement will have negative implications for website
owners, including disruption of various kinds and things that
website developers will experience [7]. After the first attack
step, the next step is to compromise the resources on the web
server that has been attacked [8]. Therefore, the database in a
w rver needs strict security and resistance to attack [9].

ne of the most nt security risks to cloud-deployed
web-b: services 1s SQL injection attacks as shown in Table
1 [10]. More than 40% of attacks on the web are in the form
of SQL injection, while the second largest attack is username
or password disclosure only at 7%. That means the web
protection against attacks is good to focus on pecriun
against SQL Injection. SQL injection attackers can run
dangerous and bad code on target databases to obtain or
corrupt sensitive data by taking advantage of online software
flaws.

SQL injection attacks are common online application
vulnerabilities that can have serious security repercussions.
SQL injection attacks can be especially harmful in the context
of journal-services sites, where databases are used to store and
retrieve information. By inserting malicious code into user-
supplied input, an attacker can alter a SQL query, resulting in

unwanted and potentially destructive database activities.

Table 1. Most frequent attacks

Vulnerability Types # Vuln #WS Percentage
SOQL Injection 502 922 84.9%
Possible Username or
Password Disclosure 4 3 1.1%
Xpath Injection 20 2 3.1%
Possible Path Disclosure 17 5 3.1%
Possible Parameter Base
Buffer Overflow 4 3 1%
Code Execution 2 2 0.6%
Total 593 107 100%

SQL Injection Attack (SQLi)

1. Hacker 2. Malicious SQL
vulnerable, SQL- p ‘ query is validated &
driven website &] command is

injects malicious SQL I executed by

query via input data. database.

Mv WEBSITE
INPUT FIELDS

3. Hacker is granted access

to view and alter records or

potentially act as database
administrator.

HACKER g DATABASE

Figure 1. lllustration mQL injection attacks

Figure 1 illustrates an SQL injection attack, in which a
hacker identifies weaknesses in a website and injects SQL
queries with input data. The server will execute malicious SQL
queries to mject databases and hackers will gain access to the
website.

In Indonesia, SQL injection attacks have targeted various
sectors, including government websites, which are vulnerable
to exploitation of sensitive data; e-commerce platforms, where
attackers seek to expose customer information such as
personal and financial details; and financial institutions, where
banks and financial services face risks of data breaches.
Several notable SQL injection incidents in Indonesia include
the 2021 breach of government websites, where attackers
defaced sites and leaked sensitive citizen data. E-commerce
platforms have also been frequent targets, with hackers
exploiting poorly secured payment systems to steal customer
information, such as emails, passwords, and financial details.
In the education sector, SQL injection has been used to
compromise university databases, exposing student records
and academic information. While specific cases are not always
publicly detailed, these trends highlight the vulnerability of
various sectors to such attacks.

Current research on SQL injection (SQL1) is focused on
enhancing detection techniques, particularly through advanced
methods like deep neural networks. One effective approach is
the use of models such as recurrent neural networks (RNNs)
and autoencoders, which can accurately detect SQLi by
identifying patterns in database queries. These models
leverage large datasets to learn the structure of both legitimate
and malicious queries, significantly improving detection

accuracy compared to traditional methods. This evolving
research demonstrates the growing importance of machine
learning in combating SQL injection attacks.

2. LITERATURE REVIEW

QL injection attacks can be classified based on intent:
extracting data, adding data, modifying data, and others
?cks. SQL injection attacks have several types: tautologies,
illegal, logically incorrect queries, piggyback queries, stored
procedures, and alternate encodings.

The system network has several security weaknesses
because of the computer network's size and volume of
information. In or to create an efficient and useful
simulation model of computer network security evaluation, a
system for network security evaluation must be built. Using
the simulaﬂ model, network security impact can be
increased. ¢ simulation of globa mputer security
evaluation is a novel topic in our nation simce the reform and
opening up. It has the ability to research network security
thorou@Ely. Also, it can be used to construct a system for
global security evaluation and study network security directly.
Ihay assess, investigate, develop, and plan different phases
m the computer network simulation system in order to play a
significant role [11]. In this study, a new algorithm was
implemented after analyzing the artificial network system
model and addressing the neural network's weakness
convergence and search. Based on this analysis, a simulation
model for computer network security was developed, and its
performance was validated through appropriate testing. The
results of the simulation highlight the model's exceptional
performance and significant improvement potential.

Numerous websites access the World Wide E¥Bb using one
of the many web servers that exist in the world. These websites
are vulnerable to attacks, usually input validation-related ones.
These attacks make website hacking simple and let
anonymous users expose sensitive data. The open market is
currently in a very dangerous state. The analysis carried out as
previously said and on top of the computerized environr
prompts us to conduct a study on SQL injection attacks ang
dangerous invasion approaches, that use runtime validation for
detecting such ults and tracking their event [12]. A
technique for identifying and containing SQLIA issues is
presented in this paper. The method involves a one-time
offline process that employs stagnant application code analysis
to extract an application's planned SQL query behaviour,
which will take the form of a predetermined series of toke

In an effort to gain access to sensitive data, attackers are
considering web apps as a prime target. A company may be
vulnerable to different attacks if it does not implement
efficient data protection mechanisms. To ensure effective data
protection, government institutions in particular need to look
outside the box when it comes to security measures. Therefore,
it is crucial to do security testing HI?ISUI‘E that the system is
secure before an attack occurs. One of the oldest, most
common, and most dangerous online application
wvulnerabilities is the SQL Injection flaw because it may harm
any website or web application that uses a SQL-based database.
Utilizing various security systems is necessary to solve the
SQL injection issues [13].

The main goal of conventional wireless application
firewalls is to stop erroneous SQL requests. Few of them can
s the severity of an attack and precisely determine

s in

whether it is truly detrimental. to make the renters more
conscious of how severe a SQL injection attack 1| 019, Gu
ct al. and associates presented DIAVA, a novel traffic-based
SQL injection attack detection and vulnerability analysis
platform that may proactively and immediately alert tenants.
DIAVA can precisely identify successful SQL injection
attacks tm every SQL query input from bidirectional
network traffic of SQL operations using the suggested
multilayer regular ex pression model. DIAVA, meanwhile, can
swifffassess the seriousness of such SQL injection attacks
and the vulnerabilities of the associated spilled data using its
GPU-based dictionary attack analysis engine. According to
experimental findings, DIAVA not only exceeds cutting-edge
wireless application firewalls in terms of precision and recall
when it comes to identifying SQL attacks, but it also offers
real-time vulnerability evaluation of data leaks brought on by
SQL injection [14]. SQL injection attacks (SIA) have recently
grown to be a serious hazard to Web applications. Attackers
can expose or control a Web application's back-end database
through properly prepared user input.

Alkhathami and Alzahrani [15] in 2022 detect SQL
injection attacks using machine learning. L injection
requests are divided into two groups by the model: attack and
valid. Four machine learning algorithms are being used to train
the model. After conducting data preprocessing and feature
extraction. Authors used various classification methods to
classify every SQL query. Figure 2 shows the steps of the
model used in Jamilah's system.

In 2019, Tashenova et al. [16] conducted a study to look at
various ways of SQL injection attacks. Different strategies for
implementing SQL injection and techniques to prevent it were
taken into consideration and experimentally used in the
research effort. The author also comprehended the traits of
SQL injections and how they connect to their fundamental
structure. On the basis of this, it was experimentally put into
practice, launching an assault on two web apps that had a
similar interface but a different core structure. In other words,
the second web application was secure, whereas the first web
application was open to assault. g

Volkova et al. [17] in 2019 studied the use of machine
learning in advanced SQL B:tiﬂn attacks. The main goal of
the research is to apply machine learning techniques for
identifying injection features in the HTTP query string.
Authors use various machine learning techniques. Deep
Sequential Models and a Neural Network with Dropout layers

¢ also used. The results demonstrated the benefits of using
a machine-learning approach to identify harmful patterns in
HTTP query strings. Figure 3 shows the steps of the SQL
injection attack detection research scheme researched by

Volkova et al.

Evaluation

Figure 2. Jamilah’s system model [15]

HTTP
request

Parsing
Cleaning

Data
Preprocessing

String Parameter
TF-IDF :

Feature Extraction Word Embedding

Veclor | e eeeeeeanas
Support Vector Machine

L Multilayer Perceptron :
Classification Recurrent Neural Network |

Prediction | ool
Total Accuracy
False Positive Rate
Prediction Time

Quality Estimation :

Decision

Figure 3. Marina Volkova's research scheme [17]

Bandhakavi et al. [18] studies to prevent SQL injection
attacks using a technique called CANDID (candidate
evaluations). The method proposed in study for detecting
SQL injection attacks focuses on comparing the q
structure the programmer intended for any input with the
structure of the actual query that gets executed. Th thors
introduce a simple and innovative approach to extract mtended
queries by continuously evaluating muns using well-formed
candidate inputs. This theoretically robust technique operates
by interpreting the symbolic query generated during program
execution to infer the intended queries.

Research on SQL injection (SQL1) attacks on multimedia
websites highlights significant vulnerabilities in systems
handling media content, especially due to the plex nature
of multimedia data and dynamic content delivery. Many of
these sites rely heavily on databases to manage large volumes
of user-generated content, video, and other media files, which
makes them a prime target for Fi attacks. Attackers can
exploit weaknesses in these sites by injecting malicious SQL
code through input fields, leading to unauthorized access, data
breaches, or defacement ufl@ia content [19].

Recent studies emphasize the use of machine learning (ML)
and hybrid techniques for detecting and preventing SQLi
attacks. Approaches such as pattern-matching algorithms and
the integration of deep learning methods like recurrent neural
networks (RNNs) have shown promise in identifying
malicious queries and preventing attacks in real-time.
Additionally, encryption techniques (such as AES-128) and
token-based authentication have been suggested to mitigate
SQLi risks by securing database access and input validation.
These methods aim to enhance detection accuracy while
minimizing false positives, crucial for sites with heavy traffic
and multimedia usage [20].

3. METHODOLOGY

A sccurity analysis of SQL injection threats on websites
using journal services is provided below.

e Impact on Data Confidentiality

SQL injection attacks may threaten the confidentiality of
private data kept in the database. Attackers can create
malicious SQL queries to retrieve data that they are not
allowed to access. This situation could include user personal
information from journal-services websites, such as names,
email addresses, or research data.

e Impact on Data Integrity

Attacks using SQL njection can also change or manipulate
database data. Attackers have the ability to alter the database's
structure, add harmful data, or modify or delete records. This
could result in the unlawful change or deletion of published
papers, research data, or user accounts on sites that provide
journal services.

e Impact on Availability

By establishing the database or the entire application
unusable or crashing, SQL injection attacks can lead to denial-
of-service scenarios. Attackers may take advantage of SQL
query flaws to exhaust system resources or carry out laborious
tasks, disrupting service for authorized users.

e Privilege Escalation

Attackers may be able to increase their privileges within the
program through SQL injection attacks. Attackers can get
around access controls and obtain administrator or superuser
rights by inserting specially crafted SQL queries. As a result,
the application and underlying database may be entirely under
the control.

The procedures and steps proposed to mitigate SQL
injection attacks in this study are shown in Figure 4. These
procedures will be experimented on the Multimedia and
journal service site. This procedure is designed to ensure the
security of the application on the targeted website.

Before utilizing it in SQL queries, every user-supplied in@

should be checked for accuracy and cleaned up. In order

make sure that user input is regarded as data rather than
executable code, prepared statements or parameteriz cries
should be utilized. By doing this, attackers are unable to mject
malicious SQL code. The application's database user accounts
should have the bare minimum of permissions. Avoid using
privileged accounts or giving apy d

lication users 1 thorized
access.

Principle of Least Privilege

Secure Coding Practices

Regular Patching and Updates

Security Testing

‘Web Application Firewalls

Figure 4. Proposed procedures to mitigate SQL injection
attacks

1918

Developers should adhere m;ecure coding standards and
refrain from concatenating user input into SQL queries.
Instead, they ought to make use of the appropriate query-
creation techniques offered by the employed programming
language or framework. Update the application with the most
recent security patches, upgrades, and the underlying database
management system. This situation aids in defending against
weaknesses that attackers might use. Install a web application
firewall (WAF) to recognize and stop SQL injection threats. A
WAF can offer an extra layer of security by scrutinizing
incoming requests and denying those that display suspected
SQL injection patterns. Conduct regular security audits, such
as penetration tests, to find and fix the application's
weaknesses. Potential SQL injection vulnerabilities can be
found using automated tools and manual testing methods.

The theoretical analysis of SQL injection threats on
websites, particularly those providing multimedia and journal
services, highlights several critical impacts and mitigation
strategies. SQL injection attacks can severely compromise
data confidentiality by enabling unauthorized access to
sensitive information, such as personal user details and
research data. These attacks also pose a risk to data integrity,
as they can alter, add. or delete database records, potentially
tampering with published papers and user accounts.
Furthermore, SQL injection can impact availability by
disrupting the service through database crashes or resource
exhaustion, leading to denial-of-service scenarios. Attackers
might also exploit SQL injection to escalate privileges,
bypassing access controls and gaining administrative rights,
thereby gaining complete control over the application and
database.

To counter these threfgEthe proposed procedures include
validating and sanitizing all user-supplied input to ensure it is
treated as data rath an executable code, employing
prepared statements or parameterized queries to prevent code
injection, and limiting database user permissions to the
minimum required. Adherem@} secure coding practices,
regular updates, and the use of a web application firewall
(WAF) are recommended to detect and block SQL injection
attempts. Additionally, conducting r?m security audits,
including penetration tests, helps identify and address
potential vulnerabilities in the application.

3.1 Input validation

An attack known as SQL injection takes advantage of
websites' carelessness in allowing users to enter specific data
without filtering out dangerous characters. Typically, users
submit information into the search box or other areas of the
website that communicate with the site's SQL database. The
command that the attacker enters is typically a piece of
information containing a sj#fjfic link that takes the victim to
a particular website that the attacker uses to retrieve the
victim's personal information.

Developers can use programs like NoScript, an add-on for
the Firefox web browser, to prevent dangerous links from
websites subjected to SQL injection attacks. With SQL
Injection, an attacker can access the database by sending
commands to the server via URIs or form fields. As an
example of a vulnerability in accessing a username:

statement="SELECT*FROM

name=""+userName+';"

WHERE

users

The "userName" variable can be abused by careless users,
even if the SQL code is intended to get the user's table records
with a specific username. Setting the "userName" variable and
executing the altering SQL statement with:

| SELECT*FROM users WHEREname="0OR 'l'='l";

Input validation’s implementation for the Multimedia and
Journal Services site is as follows:

e Sanitize and Validate User Input:

Allowing only specific characters, formats, or values, also
known as whitelisting input, helps ensure that the input
adheres to the expected format, such as restricting an email
field to valid email formats. It's also crucial to perform type
checking to confirm that the input matches the required data
type, such as integers or dates.

e Use Prepared Statements and Parameterized Queries:
Ttis advisable to use prepared statements instead of inserting
raw user input into SQL queries, as th proach ensures that

the input is treated as data rather than part of the query itself.

query="SELECT * FROM users WHERE
username=%s AND password="%s"

cursor.execute(query, (usemame, password))

e Escape Special Characters
If parameterized queries are not possible, escape special

characters in user input before including them in SQL queries.

Susername=mysqli_real escape_string (Sconnection,
Susername);

e Enforce Strong Input Validation Rules:

For numeric inputs, it is important to ensure that the input is
validated as numeric using appropriate language-specific
methods, such as is_numeric() in PHP. String inputs should
have any potentially harmful characters removed or encoded
to prevent misinterpretation by the database engine, including
characters like “ ;™ ,“ -7, %" and “" . Additionally, date
inputs should align with the required format, which can be
verified using regular expressions or built-in date parsing
libraries.

e Use ORM or Framework-Level Protections:

The risk of SQL injection is mitigated when frameworks
abstract query construction, as this approach reduces direct
interaction with raw SQL.

1; filter_var($email,

FILTER_VALIDATE EMAIL) &&
pre@ymatch("/*[a-zA-Z0-9]*$/", $username)) {
$stmt = Sconn->prepare("SELECT * FROM
users WHERE email = ? AND username = ?");
$stmt->bind_param("ss", Semail, $username);
$stmt->execute();
}else {
echo "Invalid input.";

H

1919

3.2 Principleg least privilege

The Principle of Least Privilege (PoLP), a fundamental
concept in computer security, suggests that individuals,
processes, or systems should be granted only the minimum
level of access or permissions necessary to perform their
specific tasks or functions. Key elements of the least privilege
principle include:

Access Control

Privilege Separation

Regular Review

Principle of Fail-Safe Default
Segmentation and Isolation
Least Privilege

3.3 Secure coding practices

The technique of developing software gﬂ in a way that
minimizes vulnerabilities and lowers the risk of security
threats and attacks is known as secure coding. To create
applications that are resistant to common security concerns,
security considerations must be incorporated into the
development process. Several fundamental ideas and
recommended methods for secure coding:

. @put Validation

Parameterized Queries

Secure Authentication

Avoid Hardcoding Sensitive Information
Secure Error Handling

Protect Against Cross-Siste Scripting
Secure File Handling

Regularly Update

Secure Coding Frameworks

Security Testing and Code Reviews

3.4 Regular patching and updates

Patching and updating often is essential for preserving the
security and reliability of software systems. Consider the
following best practices for managing patches and updates:

s Implement a Patch Management Process
e Prioritize Critical Update
e Automate Patch Deployment
e Maintain System Documentation
3.5 Multimedia and web ions and firewalls

@sﬂcuritytool called a Web Application Firewall (WAF) is
made to shield web applications against different kinds of
assaults. Between the web application and the internet, it
serves as a firewall, examining incoming and outgoing traffic
to spot and stop dangerous or suspicious activity. Key
characteristics and advantages of web application firewalls
include:

Application Layer Protection
Attack Detection and Prevention

* Web Application Hardening
« DDoS Mitigation
e Loggmng and Auditing

3.0 Security testing

A crucial phase in % software development life cycle is
security testing, which aims to identify weaknesses,
vulnerabilities, and security issues within a sy@m or
application. An initial test often nvolves mserting a single
quote or semicolon infthe field or parameter being examined.
The single quote acts as a string terminator in SQL, and if not
properly filtered by the application, can lead to a faulty query.
Similarly, the semiclﬂ(ﬂ is used to terminate an SQL statement,
and if not filtered, is likely to trigger an erf@r. The output from
a vulnerable ficld may appear as follows on a Microsoft SQL
Server:

Microsoft OLE DB Provider for ODBC Drivers error
'80040e04'

{Microsoft} {ODBC SQL Server Driver][SQL Server}
Unclosed quotation mark before the

character string '_".

/folder/file.php, line 254

To try to alter the query, use comment delimiters (/* */, --,
or others) as well as additional SQL keywords such as AND
and OR. A ERaightforward yet sometimes effective technique
is to input a string where a number is expected, which can
result in the following error:

Microsoft OLE DB Provider for ODBC Drivers error
'80040e08'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax
error converting the

wvarchar value 'book’ to a column of data type float.
/folder/folder.asp, line 254

Monitor all web server responses and review the JavaScript
or HTML source code, as issues may be present but not visible
to the user. Detailed error messages, like those in the examples,
can provide attackers with valuable information to execute a
successful injection attack. However, apfications often reveal
minimal information, such as a generic 500 Server Error' or a
custom error page, which may require the use of blind
injection techniques. Regardless, it is essential to test each
field individually, ensuring that only one variable is altered at
a time, to accurately identify which parameters are more
vulnerable than others.

3.7 Parsing PCAP implementations
Parsing PCAP (Packet Capture) files can be implemented
using various programming languages and libraries designed

to read and analyze network traffic data.

e Parse PCAP Files with Scapy

from scapy.all import rdpcap
packets = rd peap('file.pcap’)
for packet in packets:
print(packet.summary())

e Parse PCAP Files with PyShark

cap = pyshark.FileCapture('example.pcap')
Iterate through packets and display information
for packet 1n cap:

print(packet)

* Additional Steps

Effective handling of PCAP files involves filtering packets
with BPF (Berkeley Packet Filter) to focus on specific traffic
types, extracting and analyzing protocols such as TCP, UDP,
and HTTP along with their metadata, and using tools like
Wireshark for visual inspection of the traffic, or alternatively,
developing a custom tool for detailed analysis.

4. RESULTS

The experiment for this study was carried out on a
multimedia and journal service website. Firstly, need to know
the original query is always required to achieve union-based
injection. The object of this research is a multimedia website
and service journal that has been verified for accuracy [21].
The content of the multimedia and journal services site is as
follows:

e Research Papers and Articles
e Abstracts and Summaries

s Author Profiles

* Citations References

e Downloaded Content

e Video/Audio Content

e Images and Graphics

« Content Descriptions

e Metadata

Table 2 shows the steps to retrieve the original query using
the default DBMS tables.

Extracting and analyzing network traffic data that has been
recorded in the PCAP format is what is involved in parsing file
log PCAP (Packet Capture). Pcap files preserve captured
packets, payloads, and headers, enabling offline analysis or
post-event research. The developer can adhere to the general
methods listed below to parse a PACAP file:

e Select a tool for PCAP parsing.

e Open up the PCAP File.

e Extract Information from Packets.

e Analyze and Filter Packets.

e Examine the headers and payloads of packets.
e Conducta protocol analysis.

e Extract Relevant Information.

e Produce reports or visuals.

Table 2. Default DBMS table

DBMS Table
My SQL information_schema. processlist

Postgres SQL pg. stat activity
Microsoft SQL Server sys.dm exec cached plans
Oracle V8§ SQL

import pyshark
Load the PCAP file

Reading log files is implemented on a network forensics

server. The log file is examined, which helps observe the flow
of packet headers that move around the network.

My _data@my_data:~$perl parsing_pcap.pl

Time: 03-12 17:40:11.152692

IP Address Source: aaa.aaa.aaa.aaa Mac Address Source:
03134601983 Port Numbers: 45602

IP Address Destination: aaa.aaa.aaa.aaa Mac Address
Destination: 003462758dda Port Numbers: 80

Time: 03-11 19:16:31.123545
IP Address Source: aaa.
00124a41f375 Port Numb 123704

IP Address Destination: .aaaaaa.aaa Mac Address
Destination: 0009dfd4343 Port Numbers: 80

aa Mac Address Source:

A tool to determine which ports are open or closed on a
server or host is a port scanning appl#Blion. The developer can
use it by entering p| rtscan.pl, Tollowed by the required
port number and the IP address of the server or host they wish
to analyze.

data:/folder/my_data# perl port_scan.pl
a.aaa 2)-26

root{m
aa

The Results are .
Target aaa.aaa.aa

: Port_20 is closed

Target aaa.aaa.aaa.aaa: Port_21 is open

Target aaa.aaa.aaa.aaa: Port_22 is closed
Target aaa.aaa.aaa.aaa: Port_23 is closed
Target aaa.aaa.aaa.aaa: Port_24 is closed
Target aaa.aaa.aaa.aaa: Port_25 is closed

Target aaa.aaa.aaa.aaa: Port_26 is closed

In order to get the answers to forensic queries like what TP
address attacked a server, what port did the attacker use to
access a system, and other things, log files that have been
retrieved from IDS are analyzed using parsing logs and port
scans. In the third script, the log files are analyzed using
SQLite. They were calling the pkts2db.p] script, opening the
logfileall.pcap file, specifying the name of the new database
log file, and then typing-d (to create a database) completes the
process of converting a log file into a database.

My _data@my_data:~$ perl_log_kedb.pl-r data_log.pcap-d
data_log.db

sqlite>select s addr, d addr, count(*) as count
__>fromip
__=group by s addr, d addr
__~»order by count desc; sdr d addr count
- 232.200.832.282 A3d.288.23d.238

256

aaa.aaa.aan.ada aaa.aaa.aaa.aaa 20
aa3.a3a.233.23a aaa.aaa.aaa 19
aa 13

a.a38.23a a; aa 18
aaa.ana.ana.aaa ana.aaa.ana.asa 14

Only a small number of IP addresses will be examined by
the attacker's analysis tool. An attacker believed to be located
in Asia Pacific is identified by the IP address 125.201.71.aaa.
The website for Multimedia and Journal Services was attacked
using sqlmap.

My_data@my_data:~$ perl_logkedb pl-r data_log.pcap-d
data_log.db

sqlite>select s addr, d addr, count(*) as count

_ >fromip

__=group by s addr, d addr

__=order by count desc; s addr d addr count

Time s addr d addr

2022-08-10 11:18 80.255.47 aaa aaa.aaa.aaa
2022-08-10 11:18 80.255.47.aaa aaa
2022-08-10 11:18 80.255.47.aaa aaa.

80.255.47.aaa 10.13.254.42 Python_urllib/2.8
80.255.47.aaa 10.13.254.42 Python_urllib/2.8

An attacker who is known to be in Europe is identified by
the IP address 80.255.47.aaax. Python is used by the attacker
to target the Journal Services Site.

My_data@my_data:~$ perl_logkedb pl-r data_log.pcap-d
data_log.db

sqlite>select s addr, d addr, count(*) as count

_ >fromip

__=group by s addr, d addr

__>order by count desc; s addr d addr count

Time s addr d addr

2022-08-09 10:13 125.201.71.aaa a;
2022-08-09 10:13 125.201.71.aaa a
2022-08-09 10:14 125.201.71.aaa aaa.naa.aaa

125.201.71.aaa aaa.aaa.aaa.aaa sqlmap/1.0_dev (rNone)
(http://www.sqlmap.org)

The process of identifying SQL injection attacks using input
validation and parsing methods requires quite a long
processing time. Figure 5 is the result of measuring the time
required for the input validation process. It can be seen that in
the input validation process, the processing time starts to look
st@ at around 2250 users.

1gure 6 shows the results of measuring the time required
for the parsing method process. As with input validation, it can
be seen that in the parsing method the processing time starts to
look stable at a number of users around 500 users.

The concatenated method process proposed in this study

1921

succeeded in making the processing time more efficient, as
shown in Table 3. The concatenated method processing time
succeeded in reducing the processing time to be 15.2% more
efficient than the sum of the processing times of the two
methods separately.

Input Validation's Processing ﬁe
1200

1000 M

Time (ms)
@
8

0 500 1000 1500 2000 2500

Number of users

Figure 5. Input validation’s processing time graph

Parsing Method's Time Processing

1400
1200

1000

Time (ms)
N B O ®
S S o 9
8 8 8 8

o

0 500 1000 1500 2000 2500

Number of users

Figure 6. Parsing method s processing time graph

Table 3. Processing time comparison

Users Time (ms) Efficiency
Input Parsing
validation method Concatenated
10 6 10 14 12.50%
20 16 21 32 1351%
30 32 41 63 13.70%
40 42 53 81 14.73%
50 55 64 101 15.12%
2230 986 1084 1749 1551%
2240 997 1103 1772 15.62%
2250 999 1105 1775 15.64%

The next test is to measure the success rate of identification
if an attack occurs on the website. Testing will use a confusion
matrix. Testing is carried out by measuring the success of
attack identification using input validation, parsing methods
and concatenated methods. The formulas for the confusion
matrix are in Egs. (1)-(3) and Table 4.

Table 4. Confusion matrix

. Actual Class
Matrix ack Not Attack
(True FP (False
Prediction Attack Positive) Positive)
Class Not Attack FN (F.alse TN (Tme
Negative) Negative)

Table 5. Confusion matrix for input validation

i Actual Class
Matrix Attack Not Attack
Prediction Altack TP=04 FP=0
Class __ Not Attack FN=6 TN=100

Table 6. Confusion matrix for parsing method

. Actual Class
Matrix Attack Not Attack
Prediction Attack TP=92 FP=0
Class _ Not Attack FN=8§ TN=100

Table 7. Confusion matrix for concatenated method

. Actual Class
Matrix Attack Not Attack
Prediction Attack TP=99 FP=0
Class Not Attack FN=1 TN=100

Precisi —TP X 100% (1

recision = - b

TP
P 2
Recall T & 100% (2)
TP +TN

Accuracy = x 100% (3)

TP+TN+ FP+FN

Based on the data in Table 5, the results of the attack
detection experiment with input validation are as follows:

Precision=(94)/(94)x100%=100%
Recall=(94)/(100)x100%=94%
Accuracy=(94+100)/(200)=97%

Es@d on the data in Table 6, the results of the attack
detection experiment with the parsing method are as follows:

Precision=(92)/(92)x100%=100%
Recall=(92)/(100)x100%=92%
Accuracy=(92+100)/(200)=96%

sed on the data in Table 7, the results of the attack
detection experiment with concatenated method are as follows:

Precision=(99)/(99)x100%=100%
Recall=(99)/(100)x100%=99%

Accuracy=(99+100)/(200)=99.5%

Inorder to calculate the confidence interval of the efficiency
carried out, the formula used is

s

Cl=X+ 4
N)

Sample size (amount)}=2250

Sample mean (average)=15.2%

Standard deviation=1.5%

Confidence Level=95%

Cl=15.220.062

The statistical calculation of the Confidence Level of the
efficiency of using the concatenated method is 15.2+0.062.

The next statistic used is to calculate the p-value using an
analysis of variance (ANOVA).

Based on Table 8 and Table 9, The f-ratio value is 6.99968.
The p-value 1s 0.008446. The result is significant at p < 0.05.
Based on the ANOVA statistical results, it was found that the
proposed method significantly improved efficiency.

Table 8. Summary of ANOVA data

Treatment
1 2 Total
N 250 250 500
EX 377974 349241 727215
Mean 1718.06 1587 46 1652.76
X2 712734536 608464667 1321199203
Std. Dev. 537.85 496.83 52127
Table 9. Results
Source S8 DF MS
Between- 187633020 1 187633020
treatments
Within- 11741001775 448 26805940
treatments
Total 119286347.94 449

Table 10. Comparative study with other methods

Method Weaknesses Best Used For
Concatenated Parsing Systems where
Input complexity, inputs are
Validation and difficult error combined
Parsing isolation before
(CIVP) scenarios security risl validation
Granular Hard to
Regular control, maintain, Simple, well-
Expressions efficient limited logic, defined input
(RegEx) pattermn potential fields
matching security issues
High security, Restrictive, Systems with
‘Whitelisting simple and frequent updates strict input
effective required rules
. Blocking
. Insecure, o
Easy 0 complex to specific
Blacklisting implement for mpe known
. maintain for L.
basic cases . . malicious
evolving threats p .
inputs
Structured Slmn:lg daI:n Performance Structured
A integrity, wide) data formats,
Validation validation overhead, such as APIs
(JSON/XML) . complexity D
rules - and services

Table 10 is a comparison between the Concatenated Input

Validation and Parsing (CIVP) method and other methods.
Other methods used for comparison are Regular Expression
(RegEx), Whitelisting, Blacklisting, and Structured Validation
(JSON/XML).

Based on the results of statistical calculations, several
further analyses can be taken as follows:

. ? narrow range of the confidence interval (CI) suggests
that the sample mean is a good estimate of the population mean,
indicating high precision in the study's estimate of efficiency.

+ F-Ratio: The F-value of 6.99968 indicates that there is
variability between the treatment means that is larger than
what we would expect due to random chance. A higher F-value
indicates mmnuhstamial differences between group means.

» p-Value: The p-value is 0.008446, which is less than the
common significance level of 0.05. This indicates that the
differences between the two-treatment means are statistically
significant. In other words, there is strong evidence that
efficiency improvement is seen with the concatenated method.

* The Concatenated Input Validation and Parsing Method
offers efficiency in certain batch processing scenarios but may
introduce significant security ris and error-handling
challenges, particularly if parsing is not well-defined. Other
methods like RegEx, Whitelisting, and Structured Validation
provide more granular control, but each comes with trade-offs
in complexity, flexibility, and security. Whitelisting is usually
the most secure method, whereas Structured Validation excels
in complex data formats.

5. CONCLUSIONS

Network forensic investigations are carried out to trace the
traces of the attacker. The log files can be used to look for
evidence of unauthorized network activity. The information is
derived from IDS Snort, a network-based intruder detection
system. IDS Snort uses a number of rules (rules) to identify
network intruders, and enforcing these rules is crucial to
identifying attacks.

On the network forensic server, PERL scripts are used to
decipher log files according to the time of the attack, the IP
address, the Mac address, and the port. The script for log file
analysis using SQLite and the ports scanning script are then
used to discover open ports on a server. A port scan script aims
to determine which ports are open if an attacker successfully
breaches a system using SQL Injection or exploiting online
vulnerabilities with databases. Then the log file is examined
using the SQLite script. The three scripts and the employed
modules are uploaded to the forensic network server.

By having network forensic research available via the
Journal Services Site, people are believed to realize how
challenging it is to defend networks from intrusions. It is
possible to take steps to stop it from happening again or lessen
thgrm the attack will do.

ased on the test results, it was found that the use of the
method proposed in this study succeeded in making pl‘uces?
time 15.2% more efficient. Experiments carried out with
method proposed in this study succeeded in increasing the
attack detection accuracy from 96-97% to 99.5%.

SQL attack prevention is very limited by the form of data to
be protected. The method in this study has limitations because
it is specifically for data contained in the Multimedia and
Journal Services Site which consists of research article data

including multimedia files such as video and audio.

ACKNOWLEDGMENT

This research was supported and carried out in the computer
network laboratory at the Department of Computer Systems at
Maranatha Christian University.

REFERENCES

[1] Chala, O., Novikova, L., Chernyshova, L., Kalnitskaya,
A. (2020). Method for detecting shilling attacks based on
implicit feedback in recommender systems. EUREKA:
Physics and Engineering, 5: 21-30.
https://doi.org/10.21303/24614262.2020.001394

[2] Hoang, X.D., Nguyen, T.H. (2021). Detecting common
web attacks based on supervised machine learning using
web logs. Journal of Theoretical and Applied
Information Technology, 99(6): 1339-1350.

[3] Szczypiorski, K. (2020). Cyber (in) security.
International Journal of Electronics and
Telecommunications, 6(1): 243-248,

https://doi.org/10.24425/ijet.2020.131870

[4] Wisniewski, P., Sosnowski, M., Burakowski, W. (2022).
On implementation of efficient inline DDoS detector
based on AATAC algorithm. International Journal of
Electronics and Telecommunications, 68(4): 889-898.
https://doi.org/10.24425/ijet.2022.143899

[5] Kumar, H.T| R. (2021). Attack and anomaly detection in
IoT networks using supervised machine learning
approaches. Revue d'Intelligence Artificielle, 35(1): 11-
21. https://doi.org/10.18280/r1a. 350102

[6] Dasari, K.B., Devarakonda, N. (2022). TCP/UDP-Based
exploitation DDoS attacks detection using ai
classification algorithms with common uncorrelated
feature subset selected by pearson, spearman and kendall
correlation methods. Revue d’Intelligence Artificielle,
36(1): 61-71. https://dot.org/10.18280/r1a.360107

[7] Hoang, X.D., Nguyen, N.T. (2019). Detecting website
defacements based on machine learning techniques and
attack signatures. Computers, 8(2): 35.
https://doi.org/10.3390/computers8020035

[8] Challa, R., Rao, K.S. (2022). Resource based attacks
security using RPL protocol in internet of things.
Ingénierie des Systémes d’Information, 27(1): 165-170.
https://doi.org/10.18280/is1.270120

[9] Murty, M.S., Rao, N.N. (2020). Stalking the resources
for security in linked data applications using resource
description framework. Ingénierie des Systémes
d’Information, 25(6): 793-801.
https://doi.org/10.18280/isi.250609

[10] Antunes, N., Vieira, M. (2009). Detecting SQL injection
vulnerabilities in web services. In 2009 Fourth Latin-
American Symposium on Dependable Computing, Joo

Pessoa, Brazil, Pp- 17-24.
https://doi.org/10.1109/LADC.2009.21
[11] Nagabhoosl N., Ganapathy, N.B.S., Ravindra

1924

[13]

=

[17]

(8

[19

[20]

Murthy, C., Mohammed Saleh, A.A., CosioBorda, R.F.
(2023). Neural network based single index evaluation for
SQL injection attack detection in health care data.
Measurement: Sensors, 27 100779.
https://doi.org/10.1016/). measen.2023.100779

Dubey, A.M.S., Mehra, N. (2023). A review on SQL
injection, detection and preventions techniques. Journal
of Pharmaceutical Negative Results, 1: 1068-1073.
https://doi.org/10.47750/pnr.2023.14.S01.148

Maraj, A., Rogova, E., Jakupi, G., Grajgevci, X. (2017).
Testing techniques and analysis of SQL injection attacks.
In 2017 2nd International Conference on Knowledge
Engineering and Applications (ICKEA), London, UK,

Pp-
https://doi.org/10.1109/ICKEA.2017.8169902
Gu, H., Zhang, J., Liu, T., Hu, M., Zhou, J., Wei, T.,
Chen, M. (2019). DIAVA: A traffic-based framework for
detection of SQL injection attacks and vulnerability
analysis of leaked data. IEEE Transactions on Reliability,
188-202.
https://doi.org/10.1109/TR.2019.2925415

Alkhathami, J.M., Alzahrani, S.M. (2022). Detection of
SQL injection attacks using machine learning in cloud
computing platform. Journal of Theoretical and Applied
Information Technology, 100(15): 5446-5459.
Tashenova, Z. Nurlybaeva, E., Tulegulov, A,
Abdugulova, Z. (2021). SQL-Attack research and
protection. Journal of Theoretical and Applied
Information Technology, — 99(19): 4536-4545.
http://www.jatit.org/volumes/Vol99No 19/8 Vol99No19.
pdf

Volkova, M., Chmelar, P., Sobotka, L. (2019). Machine
learning blunts the needle of advanced SQL injections.
In MENDEL, 25(1): 23-30.
https://doi.org/10.13164/mendel.2019.1.023
Bandhakavi, S., Bisht, P., Madhusudan, P.,
Venkatakrishnan, V.N. (2007). CANDID: Preventing
SQL injection attacks wusing dynamic candidate
evaluations. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, New York,
United States, Pp- 12-24.
https://doi.org/10.1145/1315245.1315249

Johny, J.H.B., Nordin, W.A.F.B., Lahapi, N.M.B., Leau,
Y.B. (2021). SQL Injection prevention in web
application: A review. In Advances in Cyber Security:
Third International Conference, ACeS 2021, Penang,
Malaysia, Revised Selected Papers, Springer, Singapore,
3: 568-585. hitp oi.org/10.1007/978-981-16-8059-
535

Demilie, W.B., Deriba, F.G. (2022). Detection and
prevention of SQLI attacks and developing compressive
framework using machine learning and Thybrid
techniques. Journal of Big Data, 9(1): 124,
https://dot.org/10.1186/540537-022-00678-0

Wijaya, M.C., Maksom, Z., Abdullah, M.H.L. (2021).
Two verification phases in multimedia authoring
modeling. Journal of Information and Communication
Convergence Engineering, 19(1): 42-47.
doiorg/10.6109/jicce.2021.19.1.42

Security Analysis of SQL Injection Attacks on Multimedia and
Journal-Services Sites Using Concatenated Input Validation
and Parsing Method (CIVP)

ORIGINALITY REPORT

14, s, Sy 7

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

"Advances in Engineering Research and
Application”, Springer Science and Business
Media LLC, 2021

Publication

1w

]

Submitted to Webster University

Student Paper

%

2]

Submitted to University of Nottingham

Student Paper %
Submitted to Baltimore City Community /1 o
College °

Student Paper
Submitted to EC Council University 1 o
0

Student Paper

ga.siliconindia.com

Internet Source

%

2]

Hatice Vildan Dudukcu, Murat Taskiran, Nihan
Kahraman. "LSTM and WaveNet
Implementation for Predictive Maintenance of
Turbofan Engines", 2020 IEEE 20th
International Symposium on Computational
Intelligence and Informatics (CINTI), 2020

Publication

%

Submitted to Imperial College of Science,
Technology and Medicine

Student Paper

1w

Submitted to University of Denver
Student Paper

<1%

Abhijit Mohanrao Zende, Xin Ren, Qingfei <1 %
Gao. "Civil Engineering and Disaster
Prevention", CRC Press, 2023
Publication
SStL%EJHrtr;;’FcJE:ed to Colorado Technical University <'I %
Susan Young, Dave Aitel. "The Hacker's <1 %
Handbook - The Strategy behind Breaking
into and Defending Networks", CRC Press,
2003
Publication
Marvin Chandra Wijaya. "Machine Learning <'I %
Algorithms for Real-Time Analysis of
Multimedia Data from loT-Based Health
Instruments for Diabetes Management",
Instrumentation Mesure Métrologie, 2025
Publication
poonateem <To
N. Nagabhooshanam, N. Bala sundara <1 %
ganapathy, C. Ravindra Murthy, Al Ansari
Mohammed Saleh, Ricardo Fernando
CosioBorda. "Neural network based single
index evaluation for SQL injection attack
detection in health care data", Measurement:
Sensors, 2023
Publication
Submitted to University of Lancaster <14

Student Paper

RN
~

www.researchgate.net

Internet Source

%

-
0¢}

Aditi Saxena, Akarshi Arora, Saumya Saxena,
Ashwni Kumar. "Detection of web attacks
using machine learning based URL
classification techniques", 2022 2nd

<

%

International Conference on Intelligent
Technologies (CONIT), 2022

Publication

Submitted to National Institute of Business
| <lw
Management Sri Lanka
Student Paper
Submitted to Asia Pacific University College of <'I o
Technology and Innovation (UCTI) °
Student Paper
doaj.org <1,
Internet Source /0
www.iieta.org <1,
Internet Source /0
media.neliti.com 4
Internet Source < %
D.V. Nagarjuna Devi, Chinta Kishore Kumar, < o
Siriki Prasad. "A Feature Based Approach for °
Sentiment Analysis by Using Support Vector
Machine", 2016 IEEE 6th International
Conference on Advanced Computing (IACC),
2016
Publication
Cps-vo.or 1
IntErnet Sourceg < %
Submitted to Middle East College 1
Student Paper g < %
Prithvi Bisht, P. Madhusudan, V. N. <' o
Venkatakrishnan. "CANDID", ACM 0
Transactions on Information and System
Security, 2010
Publication
Submitted to RMIT Universit
Student Paper y <1 %
Thanakorn Khamvilai, Mehrdad Pakmehr. <1 %

"Zero Trust Avionics Systems (ZTAS)", 2023

|IEEE/AIAA 42nd Digital Avionics Systems
Conference (DASC), 2023

Publication

Submitted to University of Glasgow
Student Paper y g <1 %
Submltted to University of Wales Institute, <1 %
Cardiff
Student Paper
Submitted to University of Westminster '
Student Paper y < %
Submitted to University of East London 1
Student Paper y < %
Submitted to University of Sunderland ’
Student Paper y < %
kth.diva-portal.or 1
Internet Sourcep g < %
astebin.com ,
IEternet Source < %
Submitted to University of Central Lancashire <
Student Paper %
core.ac.uk ’
Internet Source < %
ebin.pub 1
Internet Eource < %
WWWw.appsecengineer.com 1
Internet Souecre) g < %
www.hillstonenet.com 1
Internet Source < %
Amith Pramod, Agneev Ghosh, Amal Mohan, < %

Mohit Shrivastava, Rajashree Shettar. "SQLI
detection system for a safer web application”,
2015 IEEE International Advance Computing
Conference (IACC), 2015

Publication

H L Gururaj, Francesco Flammini, V Ravi

. <l%
Kumar, N S Prema. "Recent Trends in
Healthcare Innovation", CRC Press, 2025

Publication

gust.edu.vn <

N
H

Internet Source %
e <Tu«
oo ghubo <Tw
nisprnger.com <Tw
e ayateom <Tu
e iepl <o
e apkeom <o
Jamuna S. Murthy, G. M. Siddesh, K. G. < %

Srinivasa. "Cloud Security - Concepts,
Applications and Practices", CRC Press, 2024

Publication

5> "Advances in Cyber Security", Springer <'| o
Science and Business Media LLC, 2021 °
Publication

"Intglligent System and Dfata Analys?s", <1 %
Springer Science and Business Media LLC,

2025
Publication
Mark S. Merkow, Lakshmikanth Raghavan. <’I %

"Secure and Resilient Software Development”,
Auerbach Publications, 2019

Publication

Xueqin LU, Chengzhi Xie, Xianghuan He, Siwei <1 y
Li, Yuzhe Xu, Songjie He, Jian Fang, Min Zhang, °
Xingwu Yang. "Automatic Recognition of
Multiple Weld Types Based on Structured
Light Vision Sensor Using Deep Transfer
Learning", IEEE Sensors Journal, 2023
Publication
dcm.uhcl.edu

Internet Source <1 %
Submitted to Sunway Education Grou

Student Paper y p <1 %

Exclude quotes On Exclude matches Off

Exclude bibliography On

