Security Analysis of SQL Injection Attacks on Journal-Services Sites Using
Concatenated Input Validation and Parsing Method

Jurnal : Ingénierie des Systémes d’Information

Vol. 29 No. 5
Korespondensi:
1. Email pertanyaan status pengiriman artikel dan jawabannya (25 Juni 2024)
2. Email permintaan Revisi (4 September 2024)
3. Komentar Reviewer
4. Email Jawaban Revisi (8 September 2024)
5. Response untuk Reviewer
6. Artikel hasil revisi
7. Email permintaan Galley of Proof (6 Oktober 2024)
8. Jawaban Email permintaan Galley of Proof (6 Oktober 2024)
9. Artikel hasil Galley of Proff

1. Email pertanyaan status pengiriman artikel dan jawabannya (25 Juni 2024)

M G ma || Marvin Chandra Wijaya <marvinchw@gmail.com>

Ask about submission status
2 messages

Marvin Chandra Wijaya <marvinchw@gmail.com> Tue, Jun 25, 2024 at 9:27 AM
To: editor.isi@iieta.org

Dear Ingénierie des Systémes d’Information Journal Editor,

In January 2024, | submitted an article entitled "Security Analysis of
SQL Injection Attacks on Journal-Services Sites Using Concatenated
Input Validation and Parsing Method". (Submission I1D: 26600)

I would like to ask about the status of the article that | have submitted?

I hope the article meets the requirements for publication in the
Journal "Ingénierie des Systémes d’Information".

Best regards,

Marvin Chandra Wijaya
Maranatha Christian University
Indonesia

editor.isi iieta.org <editor.isi@iieta.org> Tue, Jun 25, 2024 at 10:18 PM
To: Marvin Chandra Wijaya <marvinchw@gmail.com>

Dear author,

I trust this message finds you well.

We are delighted to inform you that your manuscript (ID: 26600), which you submitted to our ISI, has
successfully passed the preliminary review stage. As a result, your manuscript is now in the peer-review
process.

This process may take some time as it involves a thorough evaluation of your work by experts in the field.
We kindly ask for your patience during this process. Rest assured that our reviewers are working diligently to
provide comprehensive and valuable feedback on your manuscript.

We highly value your contribution and support for our journal. If you have any questions or need further
assistance at any stage of the publication process, please do not hesitate to contact us. We are here to help.
Thank you once again for choosing our journal for your work. We look forward to progressing with the
review process.

Best regards,

2. Email permintaan Revisi

Marvin Chandra Wijaya <marvinchw@gmail.com>

Revisions Required 1S 26600

3 messages

editor.isi iieta.org <editor.isi@iieta.org> Wed, Sep 4, 2024 at 3:31 PM
To: "marvinchw@gmail.com" <marvinchw@gmail.com>

Dear author,

We have reached a decision regarding your submission to ISI, "*Security Analysis of SQL
Injection Attacks on Journal-Services Sites Using Concatenated Input Validation and
Parsing Method"(1D: 26600)

Our decision is: Revision Required

In addition to revising your manuscript according to the review comments, we kindly ask you to complete
the following information thoroughly. This will not only expedite the acceptance of your paper but also
improve the efficiency of the pre-publication proofreading process. (Please note that your article will not
be accepted immediately if any of the following items are incomplete.)

[1] Revise the current paper according to reviewers' comments. Highlight any change or track
changes you make. Response to reviewers is also required.

[2] Typeset your final paper according to the attached template.

[3] Attach DOI to references as demonstrated in the template. Click
http://www.crossref.org/guestquery/ for a DOI query. And the DOI’s format should be website
address.

[4] Please provide ORCID information of every authors' if you don't have it, please register
(https://orcid.org/).

[5] Please provide all original figures from the text, so that we can edit it and revise the size and the
font, or you can use the figure with the word's size 10 points, Times New Roman. (The resolution of all
images included in your manuscript be high enough to ensure clarity and visibility)

[6] We kindly request that you provide the contact email addresses for all authors (preferably .edu
addresses). In order to enhance the transparency of authorship and ensure the originality of the research,
ISI requires the corresponding author's email to be a .edu address that can be verified via Google for
related author information, or an email address that can be associated with the author's previous
publications. (Providing an .edu email address or one that can be found via Google (associated
with your prior publications) is crucial for the expedited acceptance of your article.)

[7]1 The author's address includes the following elements: the department or similar secondary
institution, university or organization name, city and postal code, and country. All of these elements are
necessary, and none should be omitted. Please note that information such as the author's job title should
not be included..

[8] Please provide the full name of each author as per our journal requirement. In addition, it
would be helpful if you could clarify which part of your name is the surname (last name) and
which part is the given name (first name). This will assist us in correctly referencing your work in
citations and during the publication process.

http://www.crossref.org/guestquery/
https://orcid.org/

[91 We kindly ask that you ensure every Figure, Table, and Reference in your paper is
correctly cited within the text, and that these citations follow a sequential numbering from 1 to
100, rather than being out of order.

[10] The revised version of your paper must ensure that: 1. The number of references must be at
least 20 (with 20 to 50 references being the optimal range). 2. The length of the paper must be at
least 6 pages.

[11] To ensure your article adheres to our publication standards, we request that you diligently
work to minimize repetition within your manuscript. It is important to maintain an overall
repetition rate below 20%, with a strict maximum threshold of 20% (excluding the references
section). Additionally, we ask that you pay close attention to individual elements of your text,
ensuring that no single type of repetition exceeds 3%. Your cooperation in refining your article to
meet these criteria is essential and greatly appreciated.

[12] ISl stipulates that once an article is submitted, authors cannot be added or removed, nor can the
order of authors be changed. Please ensure that the authors remain unchanged in your revised
manuscript, as any alterations may affect the acceptance speed of your article.

Please return your revised manuscript (WORD version) and the response to reviewers to this e-mail
before 10 September 2024. Thanks for your cooperation.

**_anguage service: IIETA boasts experienced English-language editors with various academic
backgrounds such as mathematics, engineering and even social sciences. Our editing team specializes in
language polishing, including but not limited to carefully correct any errors in grammar, punctuation,

consi

stency, spelling, and word choice, etc. If any author has difficulties in improving the language quality

of his/her papers, just consult us and our language editors will help you polish your papers in an efficient

way

at a low cost (5000-6000 words, 300 USD; 4000-5000 words, 250 USD; 3000-4000 words, 200

usD).

If you have any questions, please do not hesitate to let us know.

Sincerely,

Editorial Board

Ingé

nierie des Systémes d’'Information

https://www.iieta.org/Journals/ISI

published by

International Information and Engineering Technology Association (IIETA)

http:

www.iieta.or

https://www.iieta.org/Journals/ISI
http://www.iieta.org/

3. Komentar dari Reviewer

Security Analysis of SQL Injection Attacks on Journal-Services Sites Using
Concatenated Input Validation and Parsing Method

The article mentions various types of network attacks in the introduction but only briefly discusses the
dangers and current state of research regarding SQL injection attacks. It is recommended that the authors
provide a more detailed exposition of the current research status and importance of SQL injection in the field
of cybersecurity, particularly including case studies in the Indonesian region, to enhance the relevance and
urgency of the research.

Some of the cited literature is outdated; the authors are advised to update these references, particularly
focusing on research from the past five years, to reflect the latest advancements in the field.

The article proposes a new method for detecting SQL injections that involves input validation and parsing
PCAP files. The authors are advised to further elaborate on the specific implementation steps of these
methods, including choices of algorithms, parameter settings, and other technical details, to allow readers to
better understand and replicate the research findings.

The theoretical analysis of the proposed method is not deep enough, lacking theoretical proof of its
advantages.

The scale of experimental data is relatively small; expanding the experimental scale would enhance the
reliability of conclusions.

The article mentions using "Journal Services Sites" as experimental material to test the efficiency of attack
detection. The authors should provide more details about the experimental design, such as the configuration
of the experimental environment, the specific types of web services tested, and their security settings.
Additionally, for data analysis, it is recommended to include more statistical validation, such as confidence
intervals and p-values, to strengthen the persuasiveness of the experimental results.

While the results section of the article provides detailed experimental data, the discussion does not
sufficiently compare the proposed method with other common methods for defending against SQL injection
attacks, such as parameterized queries and precompiled statements. The authors are encouraged to include a
comparative analysis of the advantages and disadvantages of various methods and their applicable scenarios
in the discussion section.

The analysis of experimental results could be more in-depth, such as analyzing the detection effects for
different types of attacks.

The conclusion section is concise, primarily summarizing the contributions of the study. The authors are
advised to further discuss the limitations of their research and future directions, such as the adaptability and
scalability of the method across different types of databases or network environments of varying scales.

Major revisions are needed.

4. Email jawaban tentang revisi

. Marvin Chandra Wijaya <marvinchw@gmail.com>
Gmail

Revisions Required IS 26600

Marvin Chandra Wijaya <marvinchw@gmail.com> Sun, Sep 8, 2024 at 8:53 PM
To: "editor.isi iieta.org" <editor.isi@iieta.org>

Dear Ingénierie des Systémes d’Information Editor,
In this email, | hereby attach:

- Article revision

- Response to reviewer

I hope this article can be published, Thank you,
Best regards,

Marvin Chandra Wijaya
Indonesia

5. Responds to Reviewers:

10.

11.

Security Analysis of SQL Injection Attacks on Journal-Services Sites Using
Concatenated Input Validation and Parsing Method

The article mentions various types of network attacks in the introduction but only briefly discusses the
dangers and current state of research regarding SQL injection attacks. It is recommended that the authors
provide a more detailed exposition of the current research status and importance of SQL injection in the field
of cybersecurity, particularly including case studies in the Indonesian region, to enhance the relevance and
urgency of the research.

The article has been added as follows:

In Indonesia, SQL injection attacks have targeted various sectors, including government
websites, which are vulnerable to exploitation of sensitive data; e-commerce platforms,
where attackers seek to expose customer information such as personal and financial
details; and financial institutions, where banks and financial services face risks of data
breaches. Several notable SQL injection incidents in Indonesia include the 2021 breach of
government websites, where attackers defaced sites and leaked sensitive citizen data. E-
commerce platforms have also been frequent targets, with hackers exploiting poorly
secured payment systems to steal customer information, such as emails, passwords, and
financial details. In the education sector, SQL injection has been used to compromise
university databases, exposing student records and academic information. While specific
cases are not always publicly detailed, these trends highlight the vulnerability of various
sectors to such attacks.

Current research on SQL injection (SQLi) is focused on enhancing detection techniques,
particularly through advanced methods like deep neural networks. One effective approach
is the use of models such as recurrent neural networks (RNNs) and autoencoders, which
can accurately detect SQLi by identifying patterns in database queries. These models
leverage large datasets to learn the structure of both legitimate and malicious queries,
significantly improving detection accuracy compared to traditional methods. This evolving
research demonstrates the growing importance of machine learning in combating SQL
injection attacks

Some of the cited literature is outdated; the authors are advised to update these references, particularly
focusing on research from the past five years, to reflect the latest advancements in the field.

e The outdated literature has been removed.
e Newer literature added as follows:

Research on SQL injection (SQLi) attacks on multimedia websites highlights significant
vulnerabilities in systems handling media content, especially due to the complex nature of
multimedia data and dynamic content delivery. Many of these sites rely heavily on
databases to manage large volumes of user-generated content, video, and other media
files, which makes them a prime target for SQLi attacks. Attackers can exploit weaknesses
in these sites by injecting malicious SQL code through input fields, leading to unauthorized
access, data breaches, or defacement of media content [19].

Recent studies emphasize the use of machine learning (ML) and hybrid techniques for
detecting and preventing SQLi attacks. Approaches such as pattern-matching algorithms
and the integration of deep learning methods like recurrent neural networks (RNNs) have
shown promise in identifying malicious queries and preventing attacks in real-time.
Additionally, encryption techniques (such as AES-128) and token-based authentication
have been suggested to mitigate SQLi risks by securing database access and input

validation. These methods aim to enhance detection accuracy while minimizing false
positives, crucial for sites with heavy traffic and multimedia usage [20].

12. The article proposes a new method for detecting SQL injections that involves input validation and parsing
PCAP files. The authors are advised to further elaborate on the specific implementation steps of these
methods, including choices of algorithms, parameter settings, and other technical details, to allow readers to
better understand and replicate the research findings.

The article has been added as follows:

Input validation’s implementation for the Multimedia and Journal Services site is as
follows:

e Sanitize and Validate User Input:

Allowing only specific characters, formats, or values, also known as whitelisting
input, helps ensure that the input adheres to the expected format, such as restricting an
email field to valid email formats. It's also crucial to perform type checking to confirm
that the input matches the required data type, such as integers or dates.

e Use Prepared Statements and Parameterized Queries:

It is advisable to use prepared statements instead of inserting raw user input into SQL
queries, as this approach ensures that the input is treated as data rather than part of the
query itself.
query = "SELECT * FROM users WHERE username = %s AND
password = %s"

cursor.execute (query, (username, password))

e Escape Special Characters

If parameterized queries are not possible, escape special characters in user input
before including them in SQL queries.

Susername = mysgli real escape string ($connection,
Susername) ;

e Enforce Strong Input Validation Rules:

For numeric inputs, it is important to ensure that the input is validated as numeric
using appropriate language-specific methods, such as is_numeric() in PHP. String inputs
should have any potentially harmful characters removed or encoded to prevent
misinterpretation by the database engine, including characters like; , --, ', and ".
Additionally, date inputs should align with the required format, which can be verified
using regular expressions or built-in date parsing libraries.

e Use ORM or Framework-Level Protections:

The risk of SQL injection is mitigated when frameworks abstract query construction,
as this approach reduces direct interaction with raw SQL.

if (filter_var($email, FILTER_VALIDATE_EMAIL) &&
preg match ("/"[a-zA-Z20-9]1*$/", Susername)) {
Sstmt = Sconn->prepare ("SELECT * FROM users WHERE
email = ? AND username = ?2");
Sstmt->bind param("ss", Semail, Susername);
Sstmt->execute () ;
} else {

13.

echo "Invalid input.";

1.2 Parsing PCAP Implementations

Parsing PCAP (Packet Capture) files can be implemented using various programming
languages and libraries designed to read and analyze network traffic data.
e Parse PCAP Files with Scapy

from scapy.all import rdpcap

Load the PCAP file

packets = rdpcap('example.pcap')

Iterate through the packets and print details

for packet in packets:

print (packet.summary()) # Print a summary of each packet

e Parse PCAP Files with PyShark

import pyshark
Load the PCAP file
cap = pyshark.FileCapture ('example.pcap')
Iterate through packets and display information
for packet in cap:
print (packet)

e Additional Steps
Effective handling of PCAP files involves filtering packets with BPF (Berkeley Packet
Filter) to focus on specific traffic types, extracting and analyzing protocols such as TCP, UDP,
and HTTP along with their metadata, and using tools like Wireshark for visual inspection of
the traffic, or alternatively, developing a custom tool for detailed analysis.

The theoretical analysis of the proposed method is not deep enough, lacking theoretical proof of its
advantages.

The article has been added as follows:

The theoretical analysis of SQL injection threats on websites, particularly those
providing multimedia and journal services, highlights several critical impacts and
mitigation strategies. SQL injection attacks can severely compromise data confidentiality
by enabling unauthorized access to sensitive information, such as personal user details and
research data. These attacks also pose a risk to data integrity, as they can alter, add, or
delete database records, potentially tampering with published papers and user accounts.
Furthermore, SQL injection can impact availability by disrupting the service through
database crashes or resource exhaustion, leading to denial-of-service scenarios. Attackers
might also exploit SQL injection to escalate privileges, bypassing access controls and
gaining administrative rights, thereby gaining complete control over the application and
database.

To counter these threats, the proposed procedures include validating and sanitizing all
user-supplied input to ensure it is treated as data rather than executable code, employing
prepared statements or parameterized queries to prevent code injection, and limiting
database user permissions to the minimum required. Adherence to secure coding practices,
regular updates, and the use of a web application firewall (WAF) are recommended to
detect and block SQL injection attempts. Additionally, conducting regular security audits,
including penetration tests, helps identify and address potential vulnerabilities in the
application.

14. The scale of experimental data is relatively small; expanding the experimental scale would enhance the
reliability of conclusions.

The experiments in this study has been added as follows:

Table 3. Processing time comparison
Users Time (ms) Efficiency
Input validation | Parsing method | Concatenated
10 6 10 14 12.50%
20 16 21 32 13.51%
30 32 41 63 13.70%
40 42 53 81 14.73%
50 55 64 101 15.12%
2230 986 1084 1749 15.51%
2240 997 1103 1772 15.62%
2250 999 1105 1775 15.64%

15. The article mentions using "Journal Services Sites" as experimental material to test the efficiency of attack
detection. The authors should provide more details about the experimental design, such as the configuration
of the experimental environment, the specific types of web services tested, and their security settings.
Additionally, for data analysis, it is recommended to include more statistical validation, such as confidence
intervals and p-values, to strengthen the persuasiveness of the experimental results.

The article has been added as follows:

The experiment for this study was carried out on a multimedia and journal service
website. Firstly, need to know the original query is always required to achieve union-based
injection. The content of the multimedia and journal services site is as follows:

e Research Papers and Articles
e Abstracts and Summaries

e Author Profiles

o C(itations References

e Downloaded Content

e Video/Audio Content

e Images and Graphics

e Content Descriptions

e Metadata

In order to calculate the confidence interval of the efficiency carried out, the formula
used is

=X+

:|"’

(4)

Sample size (amount) = 2250
Sample mean (average) = 15.2 %

16.

=15%
=95%

Standard deviation
Confidence Level

Cl=15.2 £0.062

The statistical calculation of the Confidence Level of the efficiency of using the
concatenated method is 15.2 + 0.062.

The next statistic used is to calculate the p-value using an analysis of variance (ANOVA).

Table 7. Summary of Data

Treatment
1 2 Total
N 250 250 500
X 377974 349241 727215
Mean 1718.06 1587.46 1652.76
X X? 712734536 608464667 1321199203
Std. Dewv. 537.85 496.83 521.27
Table 8. Results
Source SS df Ms
Between- 1876330.20 1 1876330.20
treatments
Within- 117410017.75 448 268059.40
treatments
Total 119286347.94 449

Based on Table 7 and Table 8, The f-ratio value is 6.99968. The p-value is 0.008446. The
result is significant at p < 0.05. Based on the ANOVA statistical results, it was found that
the proposed method significantly improved efficiency.

While the results section of the article provides detailed experimental data, the discussion does not
sufficiently compare the proposed method with other common methods for defending against SQL injection
attacks, such as parameterized queries and precompiled statements. The authors are encouraged to include a
comparative analysis of the advantages and disadvantages of various methods and their applicable scenarios
in the discussion section.

The article has been added as follows:

The experiment for this study was carried out on a multimedia and journal service
website. Firstly, need to know the original query is always required to achieve union-based
injection. The content of the multimedia and journal services site is as follows:

e Research Papers and Articles
e Abstracts and Summaries

e Author Profiles

o C(Citations References

e Downloaded Content

e Video/Audio Content

e Images and Graphics

e Content Descriptions
e Metadata
Table 9 is a comparison between the Concatenated Input Validation and Parsing (CIVP)
method and other methods. Other methods used for comparison are Regular Expression
(RegEx), Whitelisting, Blacklisting, and Structured Validation (JSON/XML).
Table 9. Comparative Study with Other Methods
Method Strengths Weaknesses Best Used For
Concatenated | Batch Parsing Systems where
Input processing, complexity, inputs are
Validation simplicity in difficult error combined
and Parsing certain isolation, before
(CIVP) scenarios security risks validation
Regular Granular Hard to Simple, well-
Expressions control, maintain, defined input
(RegEx) efficient limited logic, fields
pattern potential
matching security issues
Whitelisting High security, Restrictive, Systems with
simple and frequent updates | strict input
effective required rules
Blacklisting Easy to Insecure, Blocking
implement for | complex to specific known
basic cases maintain for malicious
evolving threats | inputs
Structured Strong data Performance Structured data
Validation integrity, wide | overhead, formats, such
(JSON/XML) | validation complexity as APIs and
rules services

17. The analysis of experimental results could be more in-depth, such as analyzing the detection effects for

different types of attacks.

The article has been added as follows:

Based on the results of statistical calculations, several further analyses can be taken as
follows:

e The narrow range of the confidence interval (CI) suggests that the sample mean is a good
estimate of the population mean, indicating high precision in the study's estimate of
efficiency.

e F-Ratio: The F-value of 6.99968 indicates that there is variability between the treatment
means that is larger than what we would expect due to random chance. A higher F-value
indicates more substantial differences between group means.

e p-Value: The p-value is 0.008446, which is less than the common significance level of 0.05.
This indicates that the differences between the two treatment means are statistically
significant. In other words, there is strong evidence that efficiency improvement is seen with
the concatenated method.

e The Concatenated Input Validation and Parsing Method offers efficiency in certain batch
processing scenarios but may introduce significant security risks and error-handling
challenges, particularly if parsing is not well-defined. Other methods like RegEx,
Whitelisting, and Structured Validation provide more granular control, but each comes with

trade-offs in complexity, flexibility, and security. Whitelisting is usually the most secure
method, whereas Structured Validation excels in complex data formats.

18. The conclusion section is concise, primarily summarizing the contributions of the study. The authors are
advised to further discuss the limitations of their research and future directions, such as the adaptability and
scalability of the method across different types of databases or network environments of varying scales.

The article has been added as follows:

SQL attack prevention is very limited by the form of data to be protected. The method in
this study has limitations because it is specifically for data contained in the Multimedia
and Journal Services Site which consists of research article data including multimedia files
such as video and audio.

THANK YOU

6. Artikel Hasil Revisi

\%IEI' A International Information and

Engineering Technology Association

Ingénierie des Systémes d’Information
Vol., No., Month, Year, pp. **-**

Journal homepage: http://iieta.org/journals/isi

Security Analysis of SQL Injection Attacks on Multimedia and Journal-Services Sites Using

Concatenated Input Validation and

Marvin Chandra Wijaya®*

Parsing Method (CIVP)

! Departement of Computer Engineering, Maranatha Christian University, Bandung 40164, Indonesia

Corresponding Author Email: marvin.cw@eng.maranatha.edu

Copyright: ©2024 The authors. This article is
(http://creativecommons.org/licenses/by/4.0/).

published by IIETA and is licensed under the CC BY 4.0 license

https://doi.org/10.18280/iSi.XXXXXX

ABSTRACT

Received:
Revised:
Accepted:
Available online:

Keywords:
SQL Injection, Input Validation, Parsing
Method, Concatenated

Web applications and databases continue to face grave danger from SQL injection attacks,
which can result in unauthorized access, data modification, and system compromise. This
report discusses the methods attackers use to exploit SQL injection vulnerabilities and
emphasizes the dangers of successful attacks, such as data leaks and system compromise.
This research proposes a comprehensive system for detecting SQL injection attacks using
concatenated Input Validation and Parsing Method(CIVP). The site used as experimental
material is the Multimedia and Journal Services Site. Based on the results of forensic
analysis on the Journal Services Site, there were several attacks in cyberspace, including
using SQLMAP and Python. The system created has successfully detected SQL injection
attacks. Based on the test results, it was found that the use of the method proposed in this
study succeeded in making processing time 15.2% more efficient. Experiments carried out
with the method proposed in this study succeeded in increasing the attack detection

accuracy from 96-97% to 99.5% with a p-value of 0.008446.

1. INTRODUCTION

The official site is an identity of an institution which is the
identity or a mirror of the image of the institution. The official
website contains the institution's identity, institution profiles,
activities, internal news, and external news. Therefore, an
official site must be guarded in such a way against attacks in
cyberspace. The official site may be located and managed by
a third party that provides website hosting services. In addition,
an institution can manage its own official website. With self-
management, there will be a lot of freedom and facilities that
can be provided in the system. However, with self-
management, the challenge of maintaining the site and
information system becomes essential.

Apart from the official website, other websites are also very
important to protect, such as e-commerce websites. Systems
on e-commerce sites are also often attacked by irresponsible
people. [1]. Even though e-commerce is now widely used
throughout the world, many are still vulnerable to attacks.
Many e-commerce websites in various countries are down due
to various attacks.

Websites, web applications, and web users have all been
subject to severe and ongoing risks from web assaults,
including SQL injection attack (SQLi), XSS, Operating
System Command injection (CMDi), and Path traversal [2].
Because of the widespread usage of websites and online
applications and the accessibility of web attack tools on the
internet, these kinds of attacks are frequent [3]. The SQLi,
XSS, CMDi, DDoS, and Path traversal (Path) web attack
family is referred to as the "common web attacks" [4]. It is
seen that now attacks via the “common web attacks” are

becoming more and more frequent nowadays [5]. Web attacks
are becoming more massive day by day, requiring fast
countermeasures. [6]. To be able to deal with attacks quickly
on websites, it is necessary to detect attacks properly and
quickly.

There are various ways to attack a website, one of the most
popular ways is SQL Injection Attack (SQLi). Website
defacement is one of the biggest dangers for business,
corporate, and government websites and web services.

Defacement will have negative implications for website
owners, including disruption of various kinds and things that
website developers will experience. [7]. After the first attack
step, the next step is to compromise the resources on the web
server that has been attacked [8]. Therefore the database in a
web server needs strict security and resistance to attack [9].

Table 1. Most frequent attacks

Vulnerability Types #Vuln #WS Percentage
SQL Injection 502 92 84.9%
Possible Use_rname or 47 3 71%
Password Disclosure
Xpath Injection 20 2 3.1%
Pos_S|bIe Path 17 5 3.1%
Disclosure
Possible Parameter 0
Base Buffer Overflow 4 3 1%
Code Execution 2 2 0.6%
Total 593 107 100%

https://orcid.org/0000-0001-5920-4348

One of the most frequent security risks to cloud-deployed
web-based services is SQL injection attacks as shown in Table
1 [10]. More than 40% of attacks on the web are in the form
of SQL injection, while the second largest attack is username
or password disclosure only at 7%. That means the web
protection against attacks is good to focus on protection
against SQL Injection. SQL injection attackers can run
dangerous and bad code on target databases to obtain or
corrupt sensitive data by taking advantage of online software
flaws.

SQL injection attacks are common online application
vulnerabilities that can have serious security repercussions.
SQL injection attacks can be especially harmful in the context
of journal-services sites, where databases are used to store and
retrieve information. By inserting malicious code into user-
supplied input, an attacker can alter a SQL query, resulting in
unwanted and potentially destructive database activities.

Figure 1 illustrates an SQL injection attack, in which a
hacker identifies weaknesses in a website and injects SQL
queries with input data. The server will execute malicious SQL
queries to inject databases and hackers will gain access to the
website.

SQL Injection Attack (SQL.i)

1. Hacker identifies
vulnerable, SQL-
driven website &

injects malicious SQL executed by
query via input data. database.

@/' WEBSITE ©\
INPUT FIELDS

3. Hacker is granted access
to view and alter records or
potentially act as database

administrator.
@ DATABASE

Figure 1. llustration of SQL injection attacks

2. Malicious SQL
query is validated &
command is

Username

Password

HACKER

In Indonesia, SQL injection attacks have targeted various
sectors, including government websites, which are vulnerable
to exploitation of sensitive data; e-commerce platforms, where
attackers seek to expose customer information such as
personal and financial details; and financial institutions, where
banks and financial services face risks of data breaches.
Several notable SQL injection incidents in Indonesia include
the 2021 breach of government websites, where attackers
defaced sites and leaked sensitive citizen data. E-commerce
platforms have also been frequent targets, with hackers
exploiting poorly secured payment systems to steal customer
information, such as emails, passwords, and financial details.
In the education sector, SQL injection has been used to
compromise university databases, exposing student records
and academic information. While specific cases are not always
publicly detailed, these trends highlight the vulnerability of
various sectors to such attacks.

Current research on SQL injection (SQLi) is focused on
enhancing detection techniques, particularly through advanced
methods like deep neural networks. One effective approach is

the use of models such as recurrent neural networks (RNNs)
and autoencoders, which can accurately detect SQLi by
identifying patterns in database queries. These models
leverage large datasets to learn the structure of both legitimate
and malicious queries, significantly improving detection
accuracy compared to traditional methods. This evolving
research demonstrates the growing importance of machine
learning in combating SQL injection attacks

2. LITERATURE REVIEW

SQL injection attacks can be classified based on intent:
extracting data, adding data, modifying data, and others
attacks. SQL injection attacks have several types: tautologies,
illegal, logically incorrect queries, piggyback queries, stored
procedures, and alternate encodings.

The system network has several security weaknesses
because of the computer network's size and volume of
information. In order to create an efficient and useful
simulation model of computer network security evaluation, a
system for network security evaluation must be built. Using
the simulation model, network security impact can be
increased. The simulation of global computer security
evaluation is a novel topic in our nation since the reform and
opening up. It has the ability to research network security
thoroughly. Also, it can be used to construct a system for
global security evaluation and study network security directly.
It may assess, investigate, develop, and plan different phases
in the computer network simulation system in order to play a
significant role [11]. In this study, a new algorithm was
implemented after analyzing the artificial network system
model and addressing the neural network's weaknesses in
convergence and search. Based on this analysis, a simulation
model for computer network security was developed, and its
performance was validated through appropriate testing. The
results of the simulation highlight the model's exceptional
performance and significant improvement potential.

Numerous websites access the World Wide Web using one
of the many web servers that exist in the world. These websites
are vulnerable to attacks, usually input validation-related ones.
These attacks make website hacking simple and let
anonymous users expose sensitive data. The open market is
currently in a very dangerous state. The analysis carried out as
previously said and on top of the computerized environment
prompts us to conduct a study on SQL injection attacks and
dangerous invasion approaches, that use runtime validation for
detecting such assaults and tracking their event [12]. A
technique for identifying and containing SQLIA issues is
presented in this paper. The method involves a one-time
offline process that employs stagnant application code
analysis to extract an application's planned SQL query
behaviour, which will take the form of a predetermined series
of tokens.

In an effort to gain access to sensitive data, attackers are
considering web apps as a prime target. A company may be
vulnerable to different attacks if it does not implement
efficient data protection mechanisms. To ensure effective data
protection, government institutions in particular need to look
outside the box when it comes to security measures. Therefore,
it is crucial to do security testing and ensure that the system is
secure before an attack occurs. One of the oldest, most
common, and most dangerous online application
vulnerabilities is the SQL Injection flaw because it may harm
any website or web application that uses a SQL-based database.

Utilizing various security systems is necessary to solve the
SQL injection issues [13].

The main goal of conventional wireless application
firewalls is to stop erroneous SQL requests. Few of them can
rapidly assess the severity of an attack and precisely determine
whether it is truly detrimental. to make the renters more
conscious of how severe a SQL injection attack is. In 2019, Gu
Haifeng and associates presented DIAVA, a novel traffic-
based SQL injection attack detection and vulnerability
analysis platform that may proactively and immediately alert
tenants. DIAVA can precisely identify successful SQL
injection attacks from every SQL query input from
bidirectional network traffic of SQL operations using the
suggested multilayer regular expression model. DIAVA,
meanwhile, can swiftly assess the seriousness of such SQL
injection attacks and the vulnerabilities of the associated
spilled data using its GPU-based dictionary attack analysis
engine. According to experimental findings, DIAVA not only
exceeds cutting-edge wireless application firewalls in terms of
precision and recall when it comes to identifying SQL attacks,
but it also offers real-time vulnerability evaluation of data
leaks brought on by SQL injection [14]. SQL injection attacks
(SIA) have recently grown to be a serious hazard to Web
applications. Attackers can expose or control a Web
application's back-end database through properly prepared
user input.

Jamilah M Alkhathami and Sabah M Alzahrani in 2022 will
detect SQL injection attacks using machine learning. SQL
injection requests are divided into two groups by the model:
attack and valid. Four machine learning algorithms are being
used to train the model. After conducting data preprocessing
and feature extraction. Authors used various classification
methods to classify every SQL query [15]. Figure 2 shows the
steps of the model used in Jamilah’s system.

Dataset

Data Processing

Training Algorithm

Trained Model

Evaluation

Figure 2. Jamilah’s system model [15]

In 2019, Zhuldyz Tashenova conducted a study to look at
various ways of SQL injection attacks. Different strategies for
implementing SQL injection and techniques to prevent it were
taken into consideration and experimentally used in the
research effort. The author also comprehended the traits of
SQL injections and how they connect to their fundamental
structure. On the basis of this, it was experimentally put into
practice, launching an assault on two web apps that had a
similar interface but a different core structure. In other words,
the second web application was secure, whereas the first web
application was open to assault [16].

Marina Volkova and colleagues in 2019 studied the use of
machine learning in advanced SQL injection attacks. The main

goal of the research is to apply machine learning techniques
for identifying injection features in the HTTP query string.
Authors use various machine learning techniques. Deep
Sequential Models and a Neural Network with Dropout layers
were also used. The results demonstrated the benefits of using
a machine-learning approach to identify harmful patterns in
HTTP query strings [17]. Figure 3 shows the steps of the SQL
injection attack detection research scheme researched by
Marina Volkova.

HTTP
request | eccecimemniciecnieceeeieeiiiae. .
() Parsing !
Data) Cleaning
Preprocessmg __________________________ !
A vy
Query fme e .
- : N String Parameter
. TF-IDF :
Feature Extraction Word Embedding .'
A)
R (=Tt (o] S
- : ~ Support Vector Machine

Multilayer Perceptron
Recurrent Neural Network

-

Classification

Prediction | s
- ~ Total Accuracy

False Positive Rate
Prediction Time

Quality Estimation

A wy

Decision l

Figure 3. Marina Volkova's research scheme [17]

Shruti Bandhavi studies to prevent SQL injection attacks
using a technique called CANDID (candidate evaluations).
The method proposed in this study for detecting SQL injection
attacks focuses on comparing the query structure the
programmer intended for any input with the structure of the
actual query that gets executed. The authors introduce a simple
and innovative approach to extract intended queries by
continuously evaluating runs using well-formed candidate
inputs. This theoretically robust technique operates by
interpreting the symbolic query generated during program
execution to infer the intended queries. [18].

Research on SQL injection (SQLi) attacks on multimedia
websites highlights significant vulnerabilities in systems
handling media content, especially due to the complex nature
of multimedia data and dynamic content delivery. Many of
these sites rely heavily on databases to manage large volumes
of user-generated content, video, and other media files, which
makes them a prime target for SQLi attacks. Attackers can
exploit weaknesses in these sites by injecting malicious SQL
code through input fields, leading to unauthorized access, data
breaches, or defacement of media content [19].

Recent studies emphasize the use of machine learning (ML)
and hybrid techniques for detecting and preventing SQLi
attacks. Approaches such as pattern-matching algorithms and
the integration of deep learning methods like recurrent neural
networks (RNNs) have shown promise in identifying
malicious queries and preventing attacks in real-time.

Additionally, encryption techniques (such as AES-128) and
token-based authentication have been suggested to mitigate
SQLi risks by securing database access and input validation.
These methods aim to enhance detection accuracy while
minimizing false positives, crucial for sites with heavy traffic
and multimedia usage [20].

3. METHODOLOGY

A security analysis of SQL injection threats on websites

using journal services is provided below.

e Impact on Data Confidentiality
SQL injection attacks may threaten the confidentiality of
private data kept in the database. Attackers can create
malicious SQL queries to retrieve data that they are not
allowed to access. This situation could include user
personal information from journal-services websites, such
as names, email addresses, or research data.

o Impact on Data Integrity
Attacks using SQL injection can also change or manipulate
database data. Attackers have the ability to alter the
database's structure, add harmful data, or modify or delete
records. This could result in the unlawful change or
deletion of published papers, research data, or user
accounts on sites that provide journal services.
¢ Impact on Availability

By establishing the database or the entire application
unusable or crashing, SQL injection attacks can lead to
denial-of-service scenarios. Attackers may take advantage
of SQL query flaws to exhaust system resources or carry
out laborious tasks, disrupting service for authorized users.

e Privilege Escalation
Attackers may be able to increase their privileges within
the program through SQL injection attacks. Attackers can
get around access controls and obtain administrator or
superuser rights by inserting specially crafted SQL queries.
As aresult, the application and underlying database may be
entirely under the control.

Queries

Security Testing

Figure 4. Proposed procedures to mitigate SQL injection
attacks

The procedures and steps proposed to mitigate SQL
injection attacks in this study are shown in Figure 4. These
procedures will be experimented on the Multimedia and
journal service site. This procedure is designed to ensure the
security of the application on the targeted website.

Before utilizing it in SQL queries, every user-supplied input
should be checked for accuracy and cleaned up. In order to
make sure that user input is regarded as data rather than
executable code, prepared statements or parameterized queries
should be utilized. By doing this, attackers are unable to inject
malicious SQL code. The application's database user accounts
should have the bare minimum of permissions. Avoid using
privileged accounts or giving application users unauthorized
access.

Developers should adhere to secure coding standards and
refrain from concatenating user input into SQL queries.
Instead, they ought to make use of the appropriate query-
creation techniques offered by the employed programming
language or framework. Update the application with the most
recent security patches, upgrades, and the underlying database
management system. This situation aids in defending against
weaknesses that attackers might use. Install a web application
firewall (WAF) to recognize and stop SQL injection threats. A
WAF can offer an extra layer of security by scrutinizing
incoming requests and denying those that display suspected
SQL injection patterns. Conduct regular security audits, such
as penetration tests, to find and fix the application's
weaknesses. Potential SQL injection vulnerabilities can be
found using automated tools and manual testing methods.

The theoretical analysis of SQL injection threats on
websites, particularly those providing multimedia and journal
services, highlights several critical impacts and mitigation
strategies. SQL injection attacks can severely compromise
data confidentiality by enabling unauthorized access to
sensitive information, such as personal user details and
research data. These attacks also pose a risk to data integrity,
as they can alter, add, or delete database records, potentially
tampering with published papers and user accounts.
Furthermore, SQL injection can impact availability by
disrupting the service through database crashes or resource
exhaustion, leading to denial-of-service scenarios. Attackers
might also exploit SQL injection to escalate privileges,
bypassing access controls and gaining administrative rights,
thereby gaining complete control over the application and
database.

To counter these threats, the proposed procedures include
validating and sanitizing all user-supplied input to ensure it is
treated as data rather than executable code, employing
prepared statements or parameterized queries to prevent code
injection, and limiting database user permissions to the
minimum required. Adherence to secure coding practices,
regular updates, and the use of a web application firewall
(WAF) are recommended to detect and block SQL injection
attempts. Additionally, conducting regular security audits,
including penetration tests, helps identify and address
potential vulnerabilities in the application.

3.1 Input Validation

An attack known as SQL injection takes advantage of
websites' carelessness in allowing users to enter specific data
without filtering out dangerous characters. Typically, users
submit information into the search box or other areas of the

website that communicate with the site's SQL database. The
command that the attacker enters is typically a piece of
information containing a specific link that takes the victim to
a particular website that the attacker uses to retrieve the
victim's personal information.

Developers can use programs like NoScript, an add-on for
the Firefox web browser, to prevent dangerous links from
websites subjected to SQL injection attacks. With SQL
Injection, an attacker can access the database by sending
commands to the server via URIs or form fields. As an
example of a vulnerability in accessing a username:

statement = "SELECT * FROMusers
WHERE name = '" + userName + ';"

The "UserName" variable can be abused by careless users,
even if the SQL code is intended to get the user's table records
with a specific username. Setting the "userName" variable and
executing the altering SQL statement with:

SELECT * FROM users WHERE name =
T OR lllzlll;

Input validation’s implementation for the Multimedia and
Journal Services site is as follows:

e Sanitize and Validate User Input:

Allowing only specific characters, formats, or values,
also known as whitelisting input, helps ensure that the input
adheres to the expected format, such as restricting an email
field to valid email formats. It's also crucial to perform type
checking to confirm that the input matches the required
data type, such as integers or dates.

e Use Prepared Statements and Parameterized Queries:

It is advisable to use prepared statements instead of
inserting raw user input into SQL queries, as this approach
ensures that the input is treated as data rather than part of
the query itself.

query = "SELECT * FROM users
WHERE username = %s AND password
= %s"

cursor.execute (query,
password))

(username,

e Escape Special Characters

If parameterized queries are not possible, escape special
characters in user input before including them in SQL
queries.

Susername =
mysqgli real escape string
(Sconnection, Susername) ;

e Enforce Strong Input Validation Rules:

For numeric inputs, it is important to ensure that the
input is validated as numeric using appropriate language-
specific methods, such as is_numeric() in PHP. String inputs
should have any potentially harmful characters removed or

encoded to prevent misinterpretation by the database engine,
including characters like; , --, ', and ". Additionally, date
inputs should align with the required format, which can be
verified using regular expressions or built-in date parsing
libraries.

e Use ORM or Framework-Level Protections:

The risk of SQL injection is mitigated when
frameworks abstract query construction, as this approach
reduces direct interaction with raw SQL.

if (filter var(Semail,
FILTER_VALIDATE_EMAIL) &&
preg match ("/"[a-zA-Z0-9]1*S/",
Susername)) {

Sstmt Sconn-—
>prepare ("SELECT * FROM users
WHERE email = ? AND username =

21
Sstmt->bind param("ss",
Semail, Susername) ;
Sstmt->execute () ;
} else {
echo "Invalid input.";

}

3.2 Principle of Least Privilege

The Principle of Least Privilege (PoLP), a fundamental
concept in computer security, suggests that individuals,
processes, or systems should be granted only the minimum
level of access or permissions necessary to perform their
specific tasks or functions. Key elements of the least privilege
principle include:

Access Control

Privilege Separation

Regular Review

Principle of Fail-Safe Default
Segmentation and Isolation
Least Privilege

3.3 Secure Coding Practices

The technique of developing software code in a way that
minimizes vulnerabilities and lowers the risk of security
threats and attacks is known as secure coding. To create
applications that are resistant to common security concerns,
security considerations must be incorporated into the
development process. Several fundamental ideas and
recommended methods for secure coding:

Input Validation

Parameterized Queries

Secure Authentication

Avoid Hardcoding Sensitive Information
Secure Error Handling

Protect Against Cross-Siste Scripting
Secure File Handling

Regularly Update

Secure Coding Frameworks

Security Testing and Code Reviews

3.4 Regular Patching and Updates

Patching and updating often is essential for preserving the
security and reliability of software systems. Consider the
following best practices for managing patches and updates:

e Implement a Patch Management Process
e Prioritize Critical Update

e Automate Patch Deployment

e Maintain System Documentation

3.5 Multimedia and Web Applications and Firewalls

A security tool called a Web Application Firewall (WAF) is
made to shield web applications against different kinds of
assaults. Between the web application and the internet, it
serves as a firewall, examining incoming and outgoing traffic
to spot and stop dangerous or suspicious activity. Key
characteristics and advantages of web application firewalls
include:

o Application Layer Protection

e Attack Detection and Prevention
Web Application Hardening
DDoS Mitigation

Logging and Auditing

3.6 Security Testing

A crucial phase in the software development life cycle is
security testing, which aims to identify weaknesses,
vulnerabilities, and security issues within a system or
application. An initial test often involves inserting a single
quote or semicolon into the field or parameter being examined.
The single quote acts as a string terminator in SQL, and if not
properly filtered by the application, can lead to a faulty query.
Similarly, the semicolon is used to terminate an SQL
statement, and if not filtered, is likely to trigger an error. The
output from a vulnerable field may appear as follows on a
Microsoft SQL Server:

Microsoft OLE DB Provider for ODBC Drivers
error '80040e04'

{Microsoft} {ODBC SQL Server Driver][SQL
Server} Unclosed quotation mark before the
character string ' '.

/folder/file.php, line 254

To try to alter the query, use comment delimiters (/* */, --,
or others) as well as additional SQL keywords such as AND
and OR. A straightforward yet sometimes effective technique
is to input a string where a number is expected, which can
result in the following error:

Microsoft OLE DB Provider for ODBC Drivers
error '80040e08'

[Microsoft] [ODBC SQL Server Driver] [SQL
Server]Syntax error converting the
varchar wvalue 'book' to a column of data
type float.

/folder/folder.asp, line 254

Monitor all web server responses and review the JavaScript
or HTML source code, as issues may be present but not visible
to the user. Detailed error messages, like those in the

examples, can provide attackers with valuable information to
execute a successful injection attack. However, applications
often reveal minimal information, such as a generic '500
Server Error' or a custom error page, which may require the
use of blind injection techniques. Regardless, it is essential to
test each field individually, ensuring that only one variable is
altered at a time, to accurately identify which parameters are
more vulnerable than others.

3.7 Parsing PCAP Implementations
Parsing PCAP (Packet Capture) files can be implemented
using various programming languages and libraries designed

to read and analyze network traffic data.

e Parse PCAP Files with Scapy

from scapy.all import rdpcap
packets = rd pcap('file.pcap')
for packet in packets:

print (packet.summary ())

o Parse PCAP Files with PyShark

import pyshark
Load the PCAP file
cap =
pyshark.FileCapture ('example.pcap')
Iterate through packets and
display information
for packet in cap:
print (packet)

e Additional Steps
Effective handling of PCAP files involves filtering
packets with BPF (Berkeley Packet Filter) to focus on
specific traffic types, extracting and analyzing protocols
such as TCP, UDP, and HTTP along with their metadata,
and using tools like Wireshark for visual inspection of the
traffic, or alternatively, developing a custom tool for

detailed analysis.

4. RESULTS

The experiment for this study was carried out on a
multimedia and journal service website. Firstly, need to know
the original query is always required to achieve union-based
injection. The object of this research is a multimedia website
and service journal that has been verified for accuracy [21].
The content of the multimedia and journal services site is as
follows:

e Research Papers and Articles
e Abstracts and Summaries

e Author Profiles

o Citations References

e Downloaded Content

e Video/Audio Content

e Images and Graphics

e Content Descriptions

e Metadata

Table 2 shows the steps to retrieve the original query using
the default DBMS tables.

Table 2. Default DBMS table

DBMS Table
information_schema.
My SQL processlist
Postgre SQL pg stat activity
Mlcrgsoft SQL sys.dm exec cached plans
erver
Oracle V$ SQL

Extracting and analyzing network traffic data that has been
recorded in the PCAP format is what is involved in parsing file
log PCAP (Packet Capture). Pcap files preserve captured
packets, payloads, and headers, enabling offline analysis or
post-event research. The developer can adhere to the general
methods listed below to parse a PACAP file:

e Select a tool for PCAP parsing.
Open up the PCAP File.
Extract Information from Packets.
Analyze and Filter Packets.
Examine the headers and payloads of packets.
Conduct a protocol analysis.
Extract Relevant Information.
e Produce reports or visuals.

Reading log files is implemented on a network forensics
server. The log file is examined, which helps observe the flow
of packet headers that move around the network.

My data@my data:~Sperl
parsing pcap.pl

Time: 03-12 17:40:11.152692

1P Address Source:
aaa.aaa.aaa.aaa Mac Address
Source: 03134£f601983 Port
Numbers: 45602

P Address Destination:
aaa.aaa.aaa.aaa Mac Address
Destination: 003462758dda Port

Numbers: 80

Time: 03-11 19:16:31.123545

P Address Source:
aaa.aaa.aaa.aaa Mac Address
Source: 00124a41£375 Port
Numbers: 123704

IP Address Destination:
aaa.aaa.aaa.aaa Mac Address
Destination: 0009dfd4343 Port

Numbers: 80

A tool to determine which ports are open or closed on a
server or host is a port scanning application. The developer can
use it by entering perl portscan.pl, they are followed by the
required port number and the IP address of the server or host
to know about.

root@my data:/folder/my data#
perl port scan.pl aaa.aaa.aaa.aaa
2)-26

The Results are

Target aaa.aaa.aaa.aaa: Port 20
is closed

Target aaa.aaa.aaa.aaa: Port 21
is open

Target aaa.aaa.aaa.aaa: Port 22
is closed

Target aaa.aaa.aaa.aaa: Port 23
is closed

Target aaa.aaa.aaa.aaa: Port 24
is closed

Target aaa.aaa.aaa.aaa: Port 25
is closed

Target aaa.aaa.aaa.aaa: Port 26
is closed

In order to get the answers to forensic queries like what IP
address attacked a server, what port did the attacker use to
access a system, and other things, log files that have been
retrieved from IDS are analyzed using parsing logs and port
scans. In the third script, the log files are analyzed using
SQLite. They were calling the pkts2db.pl script, opening the
logfileall.pcap file, specifying the name of the new database
log file, and then typing - d (to create a database) completes
the process of converting a log file into a database.

My data@my data:~$ perl log kedb.pl-
r data log.pcap-d data log.db
sglite> select s addr, d addr,
count (*) as count
> from ip
> group by s addr, d addr
> order by count desc; s addr
d addr count
- aaa.aaa.aaa.aaa
aaa.aaa.aaa.aaa 256
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 41
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 35
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 20
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 19
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 13
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 18
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 14

Only a small number of IP addresses will be examined by
the attacker's analysis tool. An attacker believed to be located
in Asia Pacific is identified by the IP address 125.201.71.aaa.
The website for Multimedia and Journal Services was attacked
using sqlmap.

My data@my data:~$
perl logkedb.pl-r data log.pcap-d
data log.db

sqgqlite> select s addr, d addr,

count (*) as count

> from ip

__> group by s addr, d addr

> order by count desc; s addr
d addr count

Time s addr d
addr

2022-08-10 11:18 80.255.47.aaa
aaa.aaa.aaa

2022-08-10 11:18 80.255.47 .aaa
aaa.aaa.aaa

2022-08-10 11:18 80.255.47.aaa

aaa.aaa.aaa

80.255.47.aaa
Python urllib/2.8
80.255.47.aaa
Python urllib/2.8

10.13.254.42

10.13.254.42

An attacker who is known to be in Europe is identified by
the IP address 80.255.47.aaax. Python is used by the attacker
to target the Journal Services Site.

My data@my data:~S$
perl logkedb.pl-r data log.pcap-d
data log.db

sqgqlite> select s addr, d addr,

count (*) as count

> from ip

> group by s addr, d addr

> order by count desc; s addr
d addr count

Time s addr d
addr

2022-08-09 10:13 125.201.71.aaa
aaa.aaa.aaa

2022-08-09 10:13 125.201.71.aaa
aaa.aaa.aaa

2022-08-09 10:14 125.201.71.aaa

aaa.aaa.aaa

125.201.71.aaa aaa.aaa.aaa.aaa
sqlmap/1.0 dev (rNone)
(http://www.sglmap.org)

The process of identifying SQL injection attacks using input
validation and parsing methods requires quite a long
processing time. Figure 5 is the result of measuring the time
required for the input validation process. It can be seen that in
the input validation process, the processing time starts to look
stable at around 2250 users.

Input Validation's Processing Time

1200

1000 A

800

600

Time (ms)

400

200

0 500 1000 1500 2000 2500

Number of users

Figure 5. Input validation’s processing time graph

Figure 6 shows the results of measuring the time required
for the parsing method process. As with input validation, it can
be seen that in the parsing method the processing time starts to
look stable at a number of users around 500 users.

Parsing Method's Time Processing

1400
1200

1000
800
600

Time (ms)

400
200

0 500 1000 1500 2000 2500

Number of users
Figure 6. Parsing method’s processing time graph

Table 3. Processing time comparison

Users Time (ms) Efficiency
valigation | methog | Concatenated
10 6 10 14 12.50%
20 16 21 32 13.51%
30 32 41 63 13.70%
40 42 53 81 14.73%
50 55 64 101 15.12%
2230 986 1084 1749 15.51%
2240 997 1103 1772 15.62%
2250 999 1105 1775 15.64%

The concatenated method process proposed in this study
succeeded in making the processing time more efficient, as
shown in Table 3. The concatenated method processing time

succeeded in reducing the processing time to be 15.2% more
efficient than the sum of the processing times of the two
methods separately.

The next test is to measure the success rate of identification
if an attack occurs on the website. Testing will use a confusion
matrix. Testing is carried out by measuring the success of
attack identification using input validation, parsing methods
and concatenated methods. The formulas for the confusion
matrix are in Eq. (1), Eq. (2), Eq. (3) and Table 4.

T
isi = —— X 9 1
Precision TP T FP 100% (1
= —— X 0, 2
Recall BTN 100% (2)
TP +TN
Accuracy = X 100% 3)

TP+TN +FP+FN

Table 4. Confusion matrix

Matrix Actual Class
Attack Not Attack
TP (True | FP (False
Prediction Attack Positive) Positif)
Class Not FN (False | TN (True
Attack Negative) Negatif)

Table 5. Confusion matrix for input validation

Matrix Actual Class
Attack Not Attack
Prediction ﬁttack TP =94 FP=0
Class ot _ _
Attack FN=6 TN =100

Based on the data in Table 5, the results of the attack
detection experiment with input validation are as follows:

Precision = (94)/(94) x 100% = 100%
Recall = (94)/(100) x 100% = 94%

Accuracy = (94+100) / (200) = 97%

Table 6. Confusion matrix for parsing method

Matrix Actual Class
Attack Not Attack
Prediction ﬁttack TP =92 FP=0
Class ot = =
Attack FN=8 TN =100

Based on the data in Table 6, the results of the attack
detection experiment with the parsing method are as follows:

Precision = (92)/(92) x 100% = 100%
Recall = (92)/(100) x 100% = 92%

Accuracy = (92+100) / (200) = 96%

Table 7. Confusion matrix for concatenated method

Matrix Actual Class
Attack Not Attack
Prediction ﬁttack TP =99 FP=0
Class ot _ _
Attack FN=1 TN =100

Based on the data in Table 7, the results of the attack
detection experiment with concatenated method are as
follows:

Precision = (99)/(99) x 100% = 100%
Recall = (99)/(100) x 100% = 99%
Accuracy = (99+100) / (200) = 99.5%

In order to calculate the confidence interval of the efficiency
carried out, the formula used is

N

Cl=Xt—= (4)

Sample size (amount) = 2250
Sample mean (average) = 15.2 %
Standard deviation =1.5%
Confidence Level =95%

CI=15.2+0.062

The statistical calculation of the Confidence Level of the
efficiency of using the concatenated method is 15.2 £+ 0.062.

The next statistic used is to calculate the p-value using an
analysis of variance (ANOVA).

Table 7. Summary of ANOVA Data

Treatment
1 2 Total
N 250 250 500
X 377974 349241 727215
Mean 1718.06 1587.46 1652.76
T X2 712734536 608464667 1321199203
Std. Dev. 537.85 496.83 521.27
Table 8. Results
Source SS df MS
Between- 1876330.20 1 1876330.20
treatments
Within- 117410017.75 448 268059.40
treatments
Total 119286347.94 449

Based on Table 7 and Table 8, The f-ratio value is 6.99968.
The p-value is 0.008446. The result is significant at p < 0.05.
Based on the ANOVA statistical results, it was found that the
proposed method significantly improved efficiency.

Table 9 is a comparison between the Concatenated Input
Validation and Parsing (CIVP) method and other methods.
Other methods used for comparison are Regular Expression
(RegEx), Whitelisting, Blacklisting, and Structured Validation

(JSON/XML).

Table 9. Comparative Study with Other Methods

Method Strengths Weaknesses Best Used
For
Concatenated | Batch Parsing Systems
Input processing, complexity, where inputs
Validation simplicity in | difficult error | are
and Parsing | certain isolation, combined
(CIVP) scenarios security risks before
validation
Regular Granular Hard to | Simple,
Expressions control, maintain, well-defined
(RegEX) efficient limited logic, | input fields
pattern potential
matching security issues
Whitelisting High Restrictive, Systems with
security, frequent strict input
simple and | updates rules
effective required
Blacklisting Easy to | Insecure, Blocking
implement complex to | specific
for basic | maintain for | known
cases evolving malicious
threats inputs
Structured Strong data | Performance Structured
Validation integrity, overhead, data formats,
(JSON/XML) | wide complexity such as APIs
validation and services
rules

Based on the results of statistical calculations, several
further analyses can be taken as follows:

e The narrow range of the confidence interval (Cl) suggests
that the sample mean is a good estimate of the population
mean, indicating high precision in the study's estimate of
efficiency.

e F-Ratio: The F-value of 6.99968 indicates that there is
variability between the treatment means that is larger than
what we would expect due to random chance. A higher F-
value indicates more substantial differences between
group means.

e p-Value: The p-value is 0.008446, which is less than the
common significance level of 0.05. This indicates that the
differences between the two treatment means are
statistically significant. In other words, there is strong
evidence that efficiency improvement is seen with the
concatenated method.

e The Concatenated Input Validation and Parsing Method
offers efficiency in certain batch processing scenarios but
may introduce significant security risks and error-
handling challenges, particularly if parsing is not well-
defined. Other methods like RegEx, Whitelisting, and
Structured Validation provide more granular control, but
each comes with trade-offs in complexity, flexibility, and
security. Whitelisting is usually the most secure method,
whereas Structured Validation excels in complex data
formats.

5. CONCLUSIONS

Network forensic investigations are carried out to trace the
traces of the attacker. The log files can be used to look for
evidence of unauthorized network activity. The information is
derived from IDS Snort, a network-based intruder detection
system. IDS Snort uses a number of rules (rules) to identify
network intruders, and enforcing these rules is crucial to
identifying attacks.

On the network forensic server, PERL scripts are used to
decipher log files according to the time of the attack, the IP
address, the Mac address, and the port. The script for log file
analysis using SQLite and the ports scanning script are then
used to discover open ports on a server. A port scan script aims
to determine which ports are open if an attacker successfully
breaches a system using SQL Injection or exploiting online
vulnerabilities with databases. Then the log file is examined
using the SQLite script. The three scripts and the employed
modules are uploaded to the forensic network server.

By having network forensic research available via the
Journal Services Site, people are believed to realize how
challenging it is to defend networks from intrusions. It is
possible to take steps to stop it from happening again or lessen
the harm the attack will do.

Based on the test results, it was found that the use of the
method proposed in this study succeeded in making processing
time 15.2% more efficient. Experiments carried out with the
method proposed in this study succeeded in increasing the
attack detection accuracy from 96-97% to 99.5%.

SQL attack prevention is very limited by the form of data to
be protected. The method in this study has limitations because
it is specifically for data contained in the Multimedia and
Journal Services Site which consists of research article data
including multimedia files such as video and audio.

ACKNOWLEDGMENT

This research was supported and carried out in the computer
network laboratory at the Department of Computer Systems
at Maranatha Christian University.

REFERENCES

[1] Chala, O., Novikova, L., Chernyshova, L.,
Kalnitskaya, A. (2020). Method For Detecting
Shilling Attacks Based On Implicit Feedback In
Recommender Systems. EUREKA: Physics and
Engineering, (5 SE-Computer Science): 21-30.
https://doi.org/10.21303/2461-4262.2020.001394.

[2] Hoang, X. D., Nguyen, T. H. (2021). Detecting
Common Web Attacks Based On Supervised Machine
Learning Using Web Logs. Journal of Theoretical and
Applied Information Technology, 99(6): 1339-1350. .

[3] Szczypiorski, K. (2020). Cyber(in)security.
International ~ Journal ~ Of Electronics and
Telecommunications, 6(1): 243-248.

https://doi.org/10.24425/ijet.2020.131870.

[4] Wiséniewski, P., Sosnowski, M., Burakowski, W.
(2022). On implementation of efficient inline DDoS
detector based on AATAC algorithm. International
Journal Of Electronics and Telecommunications,

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

68(4): 889-898.
https://doi.org/10.24425/ijet.2022.143899.

Kumar, H. T. | R. (2021). Attack and Anomaly
Detection in 10T Networks Using Supervised Machine
Learning Approaches. Revue d’Intelligence
Artificielle, 35(1): 11-21.
https://doi.org/10.18280/ria.350102.

Dasari, K. B., Devarakonda, N. (2022). TCP/UDP-
Based Exploitation DDoS Attacks Detection Using Al
Classification Algorithms with Common Uncorrelated
Feature Subset Selected by Pearson, Spearman and
Kendall Correlation Methods. Revue d’Intelligence
Artificielle, 36(1): 61-71.
https://doi.org/10.18280/ria.36010.

Hoang, X. D., Nguyen, N. T. (2019). , Detecting
Website Defacements Based on Machine Learning
Techniques and Attack Signatures. , Computers, vol.
8, no. 2. https://doi.org/10.3390/computers8020035.
Challa, R., Rao, K. S. (2022). Resource Based Attacks
Security Using RPL Protocol in Internet of Things.
Ingénierie des Systémes d’Information, 27(1): 165—
170. https://doi.org/10.18280/isi.270120.

Murty, M. S., Rao, N. N. (2020). Stalking the
Resources for Security in Linked Data Applications
Using Resource Description Framework. Ingénierie
des Systémes d’Information, 25(6): 793-801.
https://doi.org/10.18280/isi.25060.

Antunes, N., Vieira, M. Detecting SQL Injection
Vulnerabilities in Web Services. , (2019). .
Nagabhooshanam, N., Ganapathy, N. B. sundara,
Ravindra Murthy, C., Mohammed Saleh, A. A,
CosioBorda, R. F. (2023). Neural network based
single index evaluation for SQL injection attack
detection in health care data. Measurement: Sensors,
271068-1073.
https://doi.org/https://doi.org/10.1016/j.measen.2023.
100779.

Dubey, A. M. S., Mehra, N. (2023). A REVIEW ON
SQL INJECTION, DETECTION AND
PREVENTIONS TECHNIQUES. Journal of
Pharmaceutical Negative Results, (Special Issue 01):
1068-1073.
https://doi.org/10.47750/pnr.2023.14.501.148.
Maraj, A., Rogova, E., Jakupi, G., Grajgevci, X. (
2017). , Testing techniques and analysis of SQL

[14]

(18]

[16]

[17]

(18]

[19]

[20]

[21]

injection attacks. , in 2017 2nd International
Conference on Knowledge Engineering and
Applications (ICKEA), pp. 55-59.,
https://doi.org/10.1109/ICKEA.2017.8169902.

Gu, H. et al. (2020). DIAVA: A Traffic-Based
Framework for Detection of SQL Injection Attacks
and Vulnerability Analysis of Leaked Data. IEEE
Transactions on Reliability, 69(1): 188-202.
https://doi.org/10.1109/TR.2019.2925415.

Jamilah M Alkhathami, Alzahrani, S. M. (2022).
Detection of SQL Injection Attacks Using Machine
Learning in Cloud Computing Platform. Journal of
Theoretical and Applied Information Technology,
100(15): 5446-5459. .

Tashenova, Z., Nurlybaeva, E., Tulegulov, A,
Abdugulova, Z. (2021). SQL-Attack Research And
Protection. Journal of Theoretical and Applied
Information Technology, 99(19): 4536-4545. .
Volkova, M., Chmelar, P., Sobotka, L. (2019).
Machine Learning Blunts the Needle of Advanced
SQL Injections. MENDEL, 25(1 SE-Research
articles):
https://doi.org/10.13164/mendel.2019.1.023.
Bandhakavi, S., Bisht, P., Madhusudan, P.,
Venkatakrishnan, V. N. (2007). , CANDID:
Preventing Sqgl Injection Attacks Using Dynamic
Candidate Evaluations. , in Proceedings of the 14th
ACM Conference on Computer and Communications
Security, pp. 12-24.,
https://doi.org/10.1145/1315245.1315249.

Johny, J. H. B., Nordin, W. A. F. B., Lahapi, N. M. B.,
Leau, Y.-B. (2021). , SQL Injection Prevention in
Web Application: A Review BT - Advances in Cyber
Security. , in Advanced in Cyber Security, pp. 568—
585.

Demilie, W. B., Deriba, F. G. (2022). Detection and
prevention of SQLI attacks and developing
compressive framework using machine learning and
hybrid techniques. Journal of Big Data, 9(1): 124.
https://doi.org/10.1186/s40537-022-00678-0.
Wijaya, M. C., Maksom, Z., Abdullah, M. H. L.
(2021). Two Verification Phases in Multimedia
Authoring Modeling. Journal of information and
communication convergence engineering, 19(1): 42—
47. https://doi.org/10.6109/jicce.2021.19.1.42.

7. Email permintaan Galley of Proof (6 Oktober 2024)

M G ma || Marvin Chandra Wijaya <marvinchw@gmail.com>

Galley proof of ISI 26600

editor.isi iieta.org <editor.isi@iieta.org> Sun, Oct 6, 2024 at 12:13 AM
To: "marvinchw@gmail.com™ <marvinchw@gmail.com>

Dear author,
Please check the galley proof of your manuscript and follow the requirements:

1. Revise your paper according to the annotation comments in the Galley proof. Please highlight any
changes you make in the Galley proof.

2. You can also highlight the uncorrected errors, and attach notes on how to correct them directly.

3. Please meticulously verify the names, affiliations, email addresses, and symbols used throughout
the text, with a particular emphasis on the accuracy of author information.

Please return the revised version to this e-mail before October 7, 2024. Thus, we have enough time to
process your manuscript in the next step.

For further questions, please do not hesitate to contact us via this e-mail.
Best regards,

Editorial Board

Ingénierie des Systémes d'Information
https://www.iieta.org/Journals/ISI

published by

International Information and Engineering Technology Association (IIETA)

http://www.iieta.or

https://www.iieta.org/Journals/ISI
http://www.iieta.org/

8. Jawaban Email permintaan Galley of Proof (6 Oktober 2024)

M| Gmail

Galley proof of ISI 26600

Marvin Chandra Wijaya <marvinchw@gmail.com>
To: "editor.isi iieta.org" <editor.isi@iieta.org>

Dear ISI IIETA Editorial Team,

| hereby attach the final version of the article.
The changes are highlighted in yellow.

Thank you,
Best regards,

Marvin Chandra Wijaya

Marvin Chandra Wijaya <marvinchw@gmail.com>

Sun, Oct 6, 2024 at 6:21 PM

| 9. Artikel Hasil Revisi Galley of Proof |

X
“IET.

International Information and
Engineering Technology Association

Ingénierie des Systémes d’Information

Vol., No., Month, Year, pp. **-**

Journal homepage: http://iieta.org/journals/isi

Security Analysis of SQL Injection Attacks on Multimedia and Journal-Services Sites Using
Concatenated Input Validation and Parsing Method (CIVP)

Marvin Chandra Wijaya

Department of Computer Engineering, Maranatha Christian University, Bandung 40164, Indonesia.

Corresponding Author Email: marvin.cw@eng.maranatha.edu

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi. XXXXXX ABSTRACT

Received: 24 January 2024
Revised: 4 September 2024
Accepted: 10 September 2024
Available online:

Keywords:
SQL injection, input validation, parsing
method, concatenated

Web applications and databases continue to face grave danger from SQL injection attacks,
which can result in unauthorized access, data modification, and system compromise. This
report discusses the methods attackers use to exploit SQL injection vulnerabilities and
emphasizes the dangers of successful attacks, such as data leaks and system compromise.
This research proposes a comprehensive system for detecting SQL injection attacks using
concatenated Input Validation and Parsing Method(CIVP). The site used as experimental
material is the Multimedia and Journal Services Site. Based on the results of forensic
analysis on the Journal Services Site, there were several attacks in cyberspace, including
using SQLMAP and Python. The system created has successfully detected SQL injection

attacks. Based on the test results, it was found that the use of the method proposed in this
study succeeded in making processing time 15.2% more efficient. Experiments carried out
with the method proposed in this study succeeded in increasing the attack detection
accuracy from 96-97% to 99.5% with a p-value of 0.008446.

1. INTRODUCTION

The official site is an identity of an institution which is the
identity or a mirror of the image of the institution. The official
website contains the institution's identity, institution profiles,
activities, internal news, and external news. Therefore, an
official site must be guarded in such a way against attacks in
cyberspace. The official site may be located and managed by
a third party that provides website hosting services. In addition,
an institution can manage its own official website. With self-
management, there will be a lot of freedom and facilities that
can be provided in the system. However, with self-
management, the challenge of maintaining the site and
information system becomes essential.

Apart from the official website, other websites are also very
important to protect, such as e-commerce websites. Systems
on e-commerce sites are also often attacked by irresponsible
people [1]. Even though e-commerce is now widely used
throughout the world, many are still vulnerable to attacks.
Many e-commerce websites in various countries are down due
to various attacks.

Websites, web applications, and web users have all been
subject to severe and ongoing risks from web assaults,
including SQL injection attack (SQLi), XSS, Operating
System Command injection (CMDi), and Path traversal [2].
Because of the widespread usage of websites and online
applications and the accessibility of web attack tools on the
internet, these kinds of attacks are frequent [3]. The SQLI,
XSS, CMDi, DDoS, and Path traversal (Path) web attack
family is referred to as the "common web attacks" [4]. It is
seen that now attacks via the “common web attacks” are

becoming more and more frequent nowadays [5]. Web attacks
are becoming more massive day by day, requiring fast
countermeasures [6]. To be able to deal with attacks quickly
on websites, it is necessary to detect attacks properly and
quickly.

There are various ways to attack a website, one of the most
popular ways is SQL Injection Attack (SQLi). Website
defacement is one of the biggest dangers for business,
corporate, and government websites and web services.

Defacement will have negative implications for website
owners, including disruption of various kinds and things that
website developers will experience [7]. After the first attack
step, the next step is to compromise the resources on the web
server that has been attacked [8]. Therefore, the database in a
web server needs strict security and resistance to attack [9].

One of the most frequent security risks to cloud-deployed
web-based services is SQL injection attacks as shown in Table
1 [10]. More than 40% of attacks on the web are in the form
of SQL injection, while the second largest attack is username
or password disclosure only at 7%. That means the web
protection against attacks is good to focus on protection
against SQL Injection. SQL injection attackers can run
dangerous and bad code on target databases to obtain or
corrupt sensitive data by taking advantage of online software
flaws.

SQL injection attacks are common online application
vulnerabilities that can have serious security repercussions.
SQL injection attacks can be especially harmful in the context
of journal-services sites, where databases are used to store and
retrieve information. By inserting malicious code into user-
supplied input, an attacker can alter a SQL query, resulting in

https://orcid.org/0000-0001-5920-4348

unwanted and potentially destructive database activities.

Table 1. Most frequent attacks

Vulnerability Types # Vuln #WS Percentage
SQL Injection 502 92 84.9%
Possible Username or

0,
Password Disclosure 47 3 7.1%
Xpath Injection 20 2 3.1%
Possible Path Disclosure 17 5 3.1%
Possible Parameter Base
Buffer Overflow 4 3 1%
Code Execution 2 2 0.6%
Total 593 107 100%
' ™

SQL Injection Attack (SQLi)

1. Hacker identifies
vulnerable, SQL- eE e
driven website &

injects malicious SQL executed by
query via input data. database.

©/v WEBSITE
INPUT FIELDS

3. Hacker is granted access

to view and alter records or

potentially act as database
administrator.

HACKER : DATABASE

Figure 1. Illustration of SQL injection attacks

2. Malicious SQL
query is validated &

o] command is

Figure 1 illustrates an SQL injection attack, in which a
hacker identifies weaknesses in a website and injects SQL
queries with input data. The server will execute malicious SQL
queries to inject databases and hackers will gain access to the
website.

In Indonesia, SQL injection attacks have targeted various
sectors, including government websites, which are vulnerable
to exploitation of sensitive data; e-commerce platforms, where
attackers seek to expose customer information such as
personal and financial details; and financial institutions, where
banks and financial services face risks of data breaches.
Several notable SQL injection incidents in Indonesia include
the 2021 breach of government websites, where attackers
defaced sites and leaked sensitive citizen data. E-commerce
platforms have also been frequent targets, with hackers
exploiting poorly secured payment systems to steal customer
information, such as emails, passwords, and financial details.
In the education sector, SQL injection has been used to
compromise university databases, exposing student records
and academic information. While specific cases are not always
publicly detailed, these trends highlight the vulnerability of
various sectors to such attacks.

Current research on SQL injection (SQLi) is focused on
enhancing detection techniques, particularly through advanced
methods like deep neural networks. One effective approach is
the use of models such as recurrent neural networks (RNNs)
and autoencoders, which can accurately detect SQLi by
identifying patterns in database queries. These models
leverage large datasets to learn the structure of both legitimate
and malicious queries, significantly improving detection

accuracy compared to traditional methods. This evolving
research demonstrates the growing importance of machine
learning in combating SQL injection attacks.

2. LITERATURE REVIEW

SQL injection attacks can be classified based on intent:
extracting data, adding data, modifying data, and others
attacks. SQL injection attacks have several types: tautologies,
illegal, logically incorrect queries, piggyback queries, stored
procedures, and alternate encodings.

The system network has several security weaknesses
because of the computer network's size and volume of
information. In order to create an efficient and useful
simulation model of computer network security evaluation, a
system for network security evaluation must be built. Using
the simulation model, network security impact can be
increased. The simulation of global computer security
evaluation is a novel topic in our nation since the reform and
opening up. It has the ability to research network security
thoroughly. Also, it can be used to construct a system for
global security evaluation and study network security directly.
It may assess, investigate, develop, and plan different phases
in the computer network simulation system in order to play a
significant role [11]. In this study, a new algorithm was
implemented after analyzing the artificial network system
model and addressing the neural network's weaknesses in
convergence and search. Based on this analysis, a simulation
model for computer network security was developed, and its
performance was validated through appropriate testing. The
results of the simulation highlight the model's exceptional
performance and significant improvement potential.

Numerous websites access the World Wide Web using one
of the many web servers that exist in the world. These websites
are vulnerable to attacks, usually input validation-related ones.
These attacks make website hacking simple and let
anonymous users expose sensitive data. The open market is
currently in a very dangerous state. The analysis carried out as
previously said and on top of the computerized environment
prompts us to conduct a study on SQL injection attacks and
dangerous invasion approaches, that use runtime validation for
detecting such assaults and tracking their event [12]. A
technique for identifying and containing SQLIA issues is
presented in this paper. The method involves a one-time
offline process that employs stagnant application code
analysis to extract an application's planned SQL query
behaviour, which will take the form of a predetermined series
of tokens.

In an effort to gain access to sensitive data, attackers are
considering web apps as a prime target. A company may be
vulnerable to different attacks if it does not implement
efficient data protection mechanisms. To ensure effective data
protection, government institutions in particular need to look
outside the box when it comes to security measures. Therefore,
it is crucial to do security testing and ensure that the system is
secure before an attack occurs. One of the oldest, most
common, and most dangerous online application
vulnerabilities is the SQL Injection flaw because it may harm
any website or web application that uses a SQL-based database.
Utilizing various security systems is necessary to solve the
SQL injection issues [13].

The main goal of conventional wireless application
firewalls is to stop erroneous SQL requests. Few of them can

rapidly assess the severity of an attack and precisely determine
whether it is truly detrimental. to make the renters more
conscious of how severe a SQL injection attack is. In 2019, Gu
et al. and associates presented DIAVA, a novel traffic-based
SQL injection attack detection and vulnerability analysis
platform that may proactively and immediately alert tenants.
DIAVA can precisely identify successful SQL injection
attacks from every SQL query input from bidirectional
network traffic of SQL operations using the suggested
multilayer regular expression model. DIAVA, meanwhile, can
swiftly assess the seriousness of such SQL injection attacks
and the vulnerabilities of the associated spilled data using its
GPU-based dictionary attack analysis engine. According to
experimental findings, DIAVA not only exceeds cutting-edge
wireless application firewalls in terms of precision and recall
when it comes to identifying SQL attacks, but it also offers
real-time vulnerability evaluation of data leaks brought on by
SQL injection [14]. SQL injection attacks (SIA) have recently
grown to be a serious hazard to Web applications. Attackers
can expose or control a Web application's back-end database
through properly prepared user input.

Jamilah M Alkhathami and Sabah M Alzahrani in 2022 will
detect SQL injection attacks using machine learning. SQL
injection requests are divided into two groups by the model:
attack and valid. Four machine learning algorithms are being
used to train the model. After conducting data preprocessing
and feature extraction. Authors used various classification
methods to classify every SQL query [15]. Figure 2 shows the
steps of the model used in Jamilah’s system.

In 2019, Tashenova et al. conducted a study to look at
various ways of SQL injection attacks. Different strategies for
implementing SQL injection and techniques to prevent it were
taken into consideration and experimentally used in the
research effort. The author also comprehended the traits of
SQL injections and how they connect to their fundamental
structure. On the basis of this, it was experimentally put into
practice, launching an assault on two web apps that had a
similar interface but a different core structure. In other words,
the second web application was secure, whereas the first web
application was open to assault [16].

Volkova et al. and colleagues in 2019 studied the use of
machine learning in advanced SQL injection attacks. The main
goal of the research is to apply machine learning techniques
for identifying injection features in the HTTP query string.
Authors use various machine learning techniques. Deep
Sequential Models and a Neural Network with Dropout layers
were also used. The results demonstrated the benefits of using
a machine-learning approach to identify harmful patterns in
HTTP query strings [17]. Figure 3 shows the steps of the SQL
injection attack detection research scheme researched by

Volkova et al.

Evaluation

Figure 2. Jamilah’s system model [15]

HTTP
request NSRS . N
Parsing
Data . Cleaning |
Preprocessing | C .. _.___ .
R .

String Parameter
TF-IDF
Word Embedding

Support Vector Machine
Multilayer Perceptron
Recurrent Neural Network |

Classification
. -/

Prediction l e e emm e
: Total Accuracy

False Positive Rate

Prediction Time

Quiality Estimation

. J

Decision l

Figure 3. Marina Volkova's research scheme [17]

Shruti Bandhavi studies to prevent SQL injection attacks
using a technique called CANDID (candidate evaluations).
The method proposed in this study for detecting SQL injection
attacks focuses on comparing the query structure the
programmer intended for any input with the structure of the
actual query that gets executed. The authors introduce a simple
and innovative approach to extract intended queries by
continuously evaluating runs using well-formed candidate
inputs. This theoretically robust technique operates by
interpreting the symbolic query generated during program
execution to infer the intended queries [18].

Research on SQL injection (SQLi) attacks on multimedia
websites highlights significant vulnerabilities in systems
handling media content, especially due to the complex nature
of multimedia data and dynamic content delivery. Many of
these sites rely heavily on databases to manage large volumes
of user-generated content, video, and other media files, which
makes them a prime target for SQLi attacks. Attackers can
exploit weaknesses in these sites by injecting malicious SQL
code through input fields, leading to unauthorized access, data
breaches, or defacement of media content [19].

Recent studies emphasize the use of machine learning (ML)
and hybrid techniques for detecting and preventing SQLi
attacks. Approaches such as pattern-matching algorithms and
the integration of deep learning methods like recurrent neural
networks (RNNs) have shown promise in identifying
malicious queries and preventing attacks in real-time.
Additionally, encryption techniques (such as AES-128) and
token-based authentication have been suggested to mitigate
SQLi risks by securing database access and input validation.
These methods aim to enhance detection accuracy while
minimizing false positives, crucial for sites with heavy traffic
and multimedia usage [20].

3. METHODOLOGY

A security analysis of SQL injection threats on websites
using journal services is provided below.
e Impact on Data Confidentiality
SQL injection attacks may threaten the confidentiality of
private data kept in the database. Attackers can create
malicious SQL queries to retrieve data that they are not
allowed to access. This situation could include user personal
information from journal-services websites, such as names,
email addresses, or research data.
e Impact on Data Integrity
Attacks using SQL injection can also change or manipulate
database data. Attackers have the ability to alter the database's
structure, add harmful data, or modify or delete records. This
could result in the unlawful change or deletion of published
papers, research data, or user accounts on sites that provide
journal services.
e Impact on Availability
By establishing the database or the entire application
unusable or crashing, SQL injection attacks can lead to denial-
of-service scenarios. Attackers may take advantage of SQL
query flaws to exhaust system resources or carry out laborious
tasks, disrupting service for authorized users.
e Privilege Escalation
Attackers may be able to increase their privileges within the
program through SQL injection attacks. Attackers can get
around access controls and obtain administrator or superuser
rights by inserting specially crafted SQL queries. As a result,
the application and underlying database may be entirely under
the control.

The procedures and steps proposed to mitigate SQL
injection attacks in this study are shown in Figure 4. These
procedures will be experimented on the Multimedia and
journal service site. This procedure is designed to ensure the
security of the application on the targeted website.

Before utilizing it in SQL queries, every user-supplied input
should be checked for accuracy and cleaned up. In order to
make sure that user input is regarded as data rather than
executable code, prepared statements or parameterized queries
should be utilized. By doing this, attackers are unable to inject
malicious SQL code. The application's database user accounts
should have the bare minimum of permissions. Avoid using
privileged accounts or giving application users unauthorized
access.

Input Validation and Parameterized
Queries

Principle of Least Privilege

Secure Coding Practices

Regular Patching and Updates

Web Application Firewalls

Security Testing

Figure 4. Proposed procedures to mitigate SQL injection

attacks

Developers should adhere to secure coding standards and
refrain from concatenating user input into SQL queries.
Instead, they ought to make use of the appropriate query-
creation techniques offered by the employed programming
language or framework. Update the application with the most
recent security patches, upgrades, and the underlying database
management system. This situation aids in defending against
weaknesses that attackers might use. Install a web application
firewall (WAF) to recognize and stop SQL injection threats. A
WAF can offer an extra layer of security by scrutinizing
incoming requests and denying those that display suspected
SQL injection patterns. Conduct regular security audits, such
as penetration tests, to find and fix the application's
weaknesses. Potential SQL injection vulnerabilities can be
found using automated tools and manual testing methods.

The theoretical analysis of SQL injection threats on
websites, particularly those providing multimedia and journal
services, highlights several critical impacts and mitigation
strategies. SQL injection attacks can severely compromise
data confidentiality by enabling unauthorized access to
sensitive information, such as personal user details and
research data. These attacks also pose a risk to data integrity,
as they can alter, add, or delete database records, potentially
tampering with published papers and wuser accounts.
Furthermore, SQL injection can impact availability by
disrupting the service through database crashes or resource
exhaustion, leading to denial-of-service scenarios. Attackers
might also exploit SQL injection to escalate privileges,
bypassing access controls and gaining administrative rights,
thereby gaining complete control over the application and
database.

To counter these threats, the proposed procedures include
validating and sanitizing all user-supplied input to ensure it is
treated as data rather than executable code, employing
prepared statements or parameterized queries to prevent code
injection, and limiting database user permissions to the
minimum required. Adherence to secure coding practices,
regular updates, and the use of a web application firewall
(WAF) are recommended to detect and block SQL injection
attempts. Additionally, conducting regular security audits,
including penetration tests, helps identify and address
potential vulnerabilities in the application.

3.1 Input validation

An attack known as SQL injection takes advantage of
websites' carelessness in allowing users to enter specific data
without filtering out dangerous characters. Typically, users
submit information into the search box or other areas of the
website that communicate with the site's SQL database. The
command that the attacker enters is typically a piece of
information containing a specific link that takes the victim to
a particular website that the attacker uses to retrieve the
victim's personal information.

Developers can use programs like NoScript, an add-on for
the Firefox web browser, to prevent dangerous links from
websites subjected to SQL injection attacks. With SQL
Injection, an attacker can access the database by sending
commands to the server via URIs or form fields. As an
example of a vulnerability in accessing a username:

statement="SELECT*FROM users
name=""+userName+";"

WHERE

The "UserName" variable can be abused by careless users,
even if the SQL code is intended to get the user's table records
with a specific username. Setting the "userName" variable and
executing the altering SQL statement with:

SELECT*FROM users WHERE name=" OR
=1,

Input validation’s implementation for the Multimedia and
Journal Services site is as follows:

e Sanitize and Validate User Input:

Allowing only specific characters, formats, or values, also
known as whitelisting input, helps ensure that the input
adheres to the expected format, such as restricting an email
field to valid email formats. It's also crucial to perform type
checking to confirm that the input matches the required data
type, such as integers or dates.

e Use Prepared Statements and Parameterized Queries:

It is advisable to use prepared statements instead of inserting

raw user input into SQL queries, as this approach ensures that
the input is treated as data rather than part of the query itself.

query="SELECT * FROM users WHERE
username=%s AND password=%s"

cursor.execute(query, (username, password))

e Escape Special Characters
If parameterized queries are not possible, escape special
characters in user input before including them in SQL queries.

Susername=mysqli_real_escape_string
($connection, $username);

¢ Enforce Strong Input Validation Rules:

For numeric inputs, it is important to ensure that the input is
validated as numeric using appropriate language-specific
methods, such as is_numeric() in PHP. String inputs should
have any potentially harmful characters removed or encoded
to prevent misinterpretation by the database engine, including
characters like « ;> , “ -7, «“"'”, [and “ " Additionally, date

$stmt->execute();
}else { echo "Invalid input.";
}

3.2 Principle of least privilege

The Principle of Least Privilege (PoLP), a fundamental
concept in computer security, suggests that individuals,
processes, or systems should be granted only the minimum
level of access or permissions necessary to perform their
specific tasks or functions. Key elements of the least privilege
principle include:

Access Control

Privilege Separation

Regular Review

Principle of Fail-Safe Default
Segmentation and Isolation
Least Privilege

3.3 Secure coding practices

The technique of developing software code in a way that
minimizes vulnerabilities and lowers the risk of security
threats and attacks is known as secure coding. To create
applications that are resistant to common security concerns,
security considerations must be incorporated into the
development process. Several fundamental ideas and
recommended methods for secure coding:

Input Validation

Parameterized Queries

Secure Authentication

Avoid Hardcoding Sensitive Information
Secure Error Handling

Protect Against Cross-Siste Scripting
Secure File Handling

Regularly Update

Secure Coding Frameworks

Security Testing and Code Reviews

3.4 Regular patching and updates

Patching and updating often is essential for preserving the
security and reliability of software systems. Consider the
following best practices for managing patches and updates:

e Implement a Patch Management Process
e Prioritize Critical Update

inputs should align with the required format, which can be
verified using regular expressions or built-in date parsing
libraries.

e Use ORM or Framework-Level Protections:
The risk of SQL injection is mitigated when frameworks
abstract query construction, as this approach reduces direct
interaction with raw SQL.

if (filter_var($email,

FILTER VALIDATE EMAIL) &&

preg_match("/"[a-zA-Z0-9]*$/", Susername)) {
$stmt = $conn->prepare("SELECT * FROM

users WHERE email = ? AND username = ?");
$stmt->bind_param("ss", $email, Susername);

e Automate Patch Deployment
e Maintain System Documentation

3.5 Multimedia and web applications and firewalls

A security tool called a Web Application Firewall (WAF) is
made to shield web applications against different kinds of
assaults. Between the web application and the internet, it
serves as a firewall, examining incoming and outgoing traffic
to spot and stop dangerous or suspicious activity. Key
characteristics and advantages of web application firewalls
include:

e Application Layer Protection
e Attack Detection and Prevention

{ Commented [wg1]: Please confirm.

{Commented [MCW2R1]: Corrected

e Web Application Hardening
e DDoS Mitigation
e Logging and Auditing

3.6 Security testing

A crucial phase in the software development life cycle is
security testing, which aims to identify weaknesses,
vulnerabilities, and security issues within a system or
application. An initial test often involves inserting a single
quote or semicolon into the field or parameter being examined.
The single quote acts as a string terminator in SQL, and if not
properly filtered by the application, can lead to a faulty query.
Similarly, the semicolon is used to terminate an SQL statement,
and if not filtered, is likely to trigger an error. The output from
a vulnerable field may appear as follows on a Microsoft SQL
Server:

Microsoft OLE DB Provider for ODBC Drivers error
'80040e04'

{Microsoft} {ODBC SQL Server Driver][SQL Server}
Unclosed quotation mark before the

character string ' .

/folder/file.php, line 254

To try to alter the query, use comment delimiters (/* */, --,
or others) as well as additional SQL keywords such as AND
and OR. A straightforward yet sometimes effective technique
is to input a string where a number is expected, which can
result in the following error:

Microsoft OLE DB Provider for ODBC Drivers error
'80040¢08'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax
error converting the

varchar value 'book’ to a column of data type float.
/folder/folder.asp, line 254

Monitor all web server responses and review the JavaScript
or HTML source code, as issues may be present but not visible
to the user. Detailed error messages, like those in the examples,
can provide attackers with valuable information to execute a
successful injection attack. However, applications often reveal
minimal information, such as a generic '500 Server Error' or a
custom error page, which may require the use of blind
injection techniques. Regardless, it is essential to test each
field individually, ensuring that only one variable is altered at
a time, to accurately identify which parameters are more
vulnerable than others.

3.7 Parsing PCAP implementations
Parsing PCAP (Packet Capture) files can be implemented
using various programming languages and libraries designed

to read and analyze network traffic data.

e Parse PCAP Files with Scapy

from scapy.all import rdpcap
packets = rd pcap(‘'file.pcap')
for packet in packets:
print(packet.summary())

e Parse PCAP Files with PyShark

import pyshark
Load the PCAP file
cap = pyshark.FileCapture('example.pcap')
Iterate through packets and display information
for packet in cap:
print(packet)

e Additional Steps

Effective handling of PCAP files involves filtering packets
with BPF (Berkeley Packet Filter) to focus on specific traffic
types, extracting and analyzing protocols such as TCP, UDP,
and HTTP along with their metadata, and using tools like
Wireshark for visual inspection of the traffic, or alternatively,
developing a custom tool for detailed analysis.

4. RESULTS

The experiment for this study was carried out on a
multimedia and journal service website. Firstly, need to know
the original query is always required to achieve union-based
injection. The object of this research is a multimedia website
and service journal that has been verified for accuracy [21].
The content of the multimedia and journal services site is as
follows:

Research Papers and Articles
Abstracts and Summaries
Author Profiles

Citations References
Downloaded Content
Video/Audio Content
Images and Graphics
Content Descriptions
Metadata

Table 2 shows the steps to retrieve the original query using
the default DBMS tables.

Extracting and analyzing network traffic data that has been
recorded in the PCAP format is what is involved in parsing file
log PCAP (Packet Capture). Pcap files preserve captured
packets, payloads, and headers, enabling offline analysis or
post-event research. The developer can adhere to the general
methods listed below to parse a PACAP file:

Select a tool for PCAP parsing.

Open up the PCAP File.

Extract Information from Packets.

Analyze and Filter Packets.

Examine the headers and payloads of packets.
Conduct a protocol analysis.

Extract Relevant Information.

Produce reports or visuals.

Table 2. Default DBMS table

DBMS Table
My SQL information_schema. processlist
Postgres SQL pg. stat activity
Microsoft SQL Server sys.dm exec cached plans

Oracle V$ SQL

Reading log files is implemented on a network forensics
server. The log file is examined, which helps observe the flow
of packet headers that move around the network.

My_data@my_data:~$perl parsing_pcap.pl

Time: 03-12 17:40:11.152692

IP Address Source: aaa.aaa.aaa.aaa Mac Address Source:
03134£601983 Port Numbers: 45602

IP Address Destination: aaa.aaa.aaa.aaa Mac Address
Destination: 003462758dda Port Numbers: 80

Time: 03-11 19:16:31.123545

IP Address Source: aaa.aaa.aaa.aaa Mac Address Source:
00124a41f375 Port Numbers: 123704

IP Address Destination: aaa.aaa.aaa.aaa Mac Address
Destination: 0009dfd4343 Port Numbers: 80

A tool to determine which ports are open or closed on a
server or host is a port scanning application. The developer can
use it by entering perl portscan.pl, followed by the required
port number and the IP address of the server or host they wish
to analyze.

root@my_data:/folder/my_data# perl
aaa.aaa.aaa.aaa 2)-26

port_scan.pl
The Results are

Target aaa.aaa.aaa.aaa: Port 20 is closed

Target aaa.aaa.aaa.aaa: Port 21 is open

Target aaa.aaa.aaa.aaa: Port_22 is closed

Target aaa.aaa.aaa.aaa: Port 23 is closed

Target aaa.aaa.aaa.aaa: Port 24 is closed

Target aaa.aaa.aaa.aaa: Port 25 is closed

Target aaa.aaa.aaa.aaa: Port 26 is closed

In order to get the answers to forensic queries like what TP
address attacked a server, what port did the attacker use to
access a system, and other things, log files that have been
retrieved from IDS are analyzed using parsing logs and port
scans. In the third script, the log files are analyzed using
SQLite. They were calling the pkts2db.pl script, opening the
logfileall.pcap file, specifying the name of the new database
log file, and then typing-d (to create a database) completes the
process of converting a log file into a database.

- 222.222.222.228 222.222.22a.23a
256

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 41

22a.222.222.22a 222.22a.2aa.aaa 35

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 20

2aa.aaa.aaa.aaa aaa.aaa.aaa.aaa 19

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 13

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 18

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 14

Only a small number of IP addresses will be examined by
the attacker's analysis tool. An attacker believed to be located
in Asia Pacific is identified by the IP address 125.201.71.aaa.
The website for Multimedia and Journal Services was attacked
using sqlmap.

My data@my data:~$ perl logkedb.pl-r data log.pcap-d
data_log.db

sqlite>select s addr, d addr, count(*) as count
_ >from ip

__>group by s addr, d addr
__>order by count desc; s addr d addr count

Time s addr d addr

2022-08-10 11:18 80.255.47.aaa aaa.aaa.aaa
2022-08-10 11:18 80.255.47.aaa aaa.aaa.aaa
2022-08-10 11:18 80.255.47.aaa aaa.aaa.aaa

80.255.47.aaa 10.13.254.42 Python_urllib/2.8
80.255.47.aaa 10.13.254.42 Python_urllib/2.8

An attacker who is known to be in Europe is identified by
the IP address 80.255.47.aaax. Python is used by the attacker
to target the Journal Services Site.

My_data@my_data:~$ perl_logkedb.pl-r data_log.pcap-d
data_log.db

sqlite>select s addr, d addr, count(*) as count
_ >from ip

__>group by s addr, d addr
__>order by count desc; s addr d addr count

Time s addr d addr

2022-08-09 10:13 125.201.71.aaa aaa.aaa.aaa
2022-08-09 10:13 125.201.71.aaa aaa.aaa.aaa
2022-08-09 10:14 125.201.71.aaa aaa.aaa.aaa

125.201.71.aaa aaa.aaa.aaa.aaa sqlmap/1.0_dev (rNone)
(http://www.sqlmap.org)

My data@my_data:~$ perl_log kedb.pl-r data_log.pcap-d
data_log.db

sqlite>select s addr, d addr, count(*) as count

_ >from ip

__>group by s addr, d addr
>order by count desc; s addr

d addr count

The process of identifying SQL injection attacks using input
validation and parsing methods requires quite a long
processing time. Figure 5 is the result of measuring the time
required for the input validation process. It can be seen that in
the input validation process, the processing time starts to look
stable at around 2250 users.

Figure 6 shows the results of measuring the time required
for the parsing method process. As with input validation, it can
be seen that in the parsing method the processing time starts to
look stable at a number of users around 500 users.

Input Validation's Processing Time

1200

1000 A

800

600

Time (ms)

400

200

0 500 1000 1500 2000 2500

Number of users

Figure 5. Input validation’s processing time graph

Parsing Method's Time Processing

1400
1200

1000
800

Time (ms)

600
400
200

0 500 1000 1500 2000 2500

Number of users

Figure 6. Parsing method’s processing time graph

Table 3. Processing time comparison

Users Time (ms) Efficiency
Input Parsing
validation method Concatenated
10 6 10 14 12.50%
20 16 21 32 13.51%
30 32 41 63 13.70%
40 42 53 81 14.73%
50 55 64 101 15.12%
2230 986 1084 1749 15.51%
2240 997 1103 1772 15.62%
2250 999 1105 1775 15.64%

The concatenated method process proposed in this study
succeeded in making the processing time more efficient, as
shown in Table 3. The concatenated method processing time
succeeded in reducing the processing time to be 15.2% more
efficient than the sum of the processing times of the two
methods separately.

The next test is to measure the success rate of identification
if an attack occurs on the website. Testing will use a confusion

matrix. Testing is carried out by measuring the success of
attack identification using input validation, parsing methods
and concatenated methods. The formulas for the confusion
matrix are in Egs. (1)-(3) and Table 4.

Table 4. Confusion matrix

Matrix Actual Class
Attack Not Attack
TP (True FP (False
- Attack N s
Prediction Positive) Positive) {Commented [wg3]: Please confirm
Class Not Attack FN (False TN (True 2
Negative) Negative) {Commented [MCW4R3]: Corrected

Table 5. Confusion matrix for input validation

Matrix Actual Class
Attack Not Attack
Prediction Attack TP=94 FP=0
Class Not Attack FN=6 TN=100
Precisi s 100% (O]
=—X
recision TP T FP o
Recall s 100% @
=—-X
TP Y AN o
TP+ TN
Accuracy = -——————————— X 100% 3)

TP+TN + FP+FN

Based on the data in Table 5, the results of the attack
detection experiment with input validation are as follows:

Precision=(94)/(94)x100%=100%
Recall=(94)/(100)x100%=94%
Accuracy=(94+100)/(200)=97%

Based on the data in Table 6, the results of the attack
detection experiment with the parsing method are as follows:

Precision=(92)/(92)x100%=100%
Recall=(92)/(100)x100%=92%
Accuracy=(92+100)/(200)=96%

Based on the data in Table 7, the results of the attack
detection experiment with concatenated method are as follows:

Precision=(99)/(99)x100%=100%
Recall=(99)/(100)x100%=99%
Accuracy=(99+100)/(200)=99.5%

Table 6. Confusion matrix for parsing method

Matrix Actual Class
Attack Not Attack
Prediction Attack TP=92 FP=0
Class Not Attack FN=8 TN=100

Table 7. Confusion matrix for concatenated method

Actual Class

Matrix

Attack Not Attack
Prediction Attack TP=99 FP=0
Class Not Attack FN=1 TN=100

In order to calculate the confidence interval of the efficiency
carried out, the formula used is

N
Cl=X+— @)

Sample size (amount) =2250
Sample mean (average)=15.2 %
Standard deviation =1.5%
Confidence Level =95%

CI=15.2+0.062

The statistical calculation of the Confidence Level of the
efficiency of using the concatenated method is 15.2+0.062.

The next statistic used is to calculate the p-value using an
analysis of variance (ANOVA).

Based on Table 8 and Table 9, the f-ratio value is 6.99968.
The p-value is 0.008446. The result is significant at p < 0.05.
Based on the ANOVA statistical results, it was found that the
proposed method significantly improved efficiency.

Table 9 is a comparison between the Concatenated Input
Validation and Parsing (CIVP) method and other methods.
Other methods used for comparison are Regular Expression
(RegEx), Whitelisting, Blacklisting, and Structured Validation
(JSON/XML).

Based on the results of statistical calculations, several
further analyses can be taken as follows:

e The narrow range of the confidence interval (CI)
suggests that the sample mean is a good estimate of
the population mean, indicating high precision in the
study's estimate of efficiency.

e F-Ratio: The F-value of 6.99968 indicates that there
is variability between the treatment means that is
larger than what we would expect due to random
chance. A higher F-value indicates more substantial
differences between group means.

e p-Value: The p-value is 0.008446, which is less than
the common significance level of 0.05. This indicates
that the differences between the two treatment means
are statistically significant. In other words, there is
strong evidence that efficiency improvement is seen
with the concatenated method.

e The Concatenated Input Validation and Parsing
Method offers efficiency in certain batch processing
scenarios but may introduce significant security risks
and error-handling challenges, particularly if parsing
is not well-defined. Other methods like RegEx,
Whitelisting, and Structured Validation provide more
granular control, but each comes with trade-offs in
complexity, flexibility, and security. Whitelisting is
usually the most secure method, whereas Structured
Validation excels in complex data formats.

lTable\ 8. Summary of ANOVA Data

Mean 1718.06 1587.46 1652.76

£ X2 712734536 608464667 1321199203
Std. Dev. 537.85 496.83 521.27

Table 9. Results

Source SS DF MS

Between- 1876330.20 1 1876330.20
treatments

Within-

117410017.75 448 268059.40

treatments

Total 110286347.94 449

Table 10. Comparative Study with Other Methods

Method Strengths Weaknesses Best Used For
Concatenated Batch Parsing Systems
Input processing, complexity, where inputs
Validation simplicity in difficulterror are combined
and Parsing certain isolation, before
(CIvpP) scenarios security risks validation
Granular Hard to
Regular control, maintain, Simple, well-
Expressions efficient limited logic, defined input
(RegEXx) pattern potential fields
matching security issues
High security, Restrictive, Systems with
Whitelisting simpleand frequent updates strict input
effective required rules
Blocking
Easy to Insecure, specific
Blacklisting implement for complt_ax o known
. maintain for L
basic cases evolving threats mglluous
inputs
Strong data Structured
Structu _red integrit?/, wide Performance data formats,
Validation validation overhead, such as APIs
(JSON/XML) complexity |
rules and services
5. CONCLUSIONS

Network forensic investigations are carried out to trace the
traces of the attacker. The log files can be used to look for
evidence of unauthorized network activity. The information is
derived from IDS Snort, a network-based intruder detection
system. IDS Snort uses a number of rules (rules) to identify
network intruders, and enforcing these rules is crucial to
identifying attacks.

On the network forensic server, PERL scripts are used to
decipher log files according to the time of the attack, the IP
address, the Mac address, and the port. The script for log file
analysis using SQLite and the ports scanning script are then
used to discover open ports on a server. A port scan script aims
to determine which ports are open if an attacker successfully
breaches a system using SQL Injection or exploiting online
vulnerabilities with databases. Then the log file is examined
using the SQLite script. The three scripts and the employed
modules are uploaded to the forensic network server.

By having network forensic research available via the
Journal Services Site, people are believed to realize how

Treatment
1 2 Total
N 250 250 500
2 X 377974 349241 727215

possible to take steps to stop it from happening again or lessen
the harm the attack will do.

Based on the test results, it was found that the use of the
method proposed in this study succeeded in making processing
time 15.2% more efficient. Experiments carried out with the

Commented [wg5]: There are two instances of Table 7;
please renumber the tables and modify the corresponding
citations in the article.

{Commented [MCWG6R5]: Corrected

method proposed in this study succeeded in increasing the
attack detection accuracy from 96-97% to 99.5%.

SQL attack prevention is very limited by the form of data to
be protected. The method in this study has limitations because
it is specifically for data contained in the Multimedia and
Journal Services Site which consists of research article data
including multimedia files such as video and audio.

ACKNOWLEDGMENT

This research was supported and carried out in the computer
network laboratory at the Department of Computer Systems at
Maranatha Christian University.

REFERENCES

[1] Chala, O., Novikova, L., Chernyshova, L., Kalnitskaya,
A. (2020). Method for detecting shilling attacks based on
implicit feedback in recommender systems. EUREKA:
Physics and Engineering, S: 21-30.
https://doi.org/10.21303/2461-4262.2020.001394

[2] Hoang, X.D., Nguyen, T.H. (2021). Detecting common
web attacks based on supervised machine learning using
web logs. Journal of Theoretical and Applied
Information Technology, 99(6): 1339-1350.

[3] Szczypiorski, K. (2020). Cyber (in) security.
International Journal of Electronics and
Telecommunications, 6(1): 243-248.
https://doi.org/10.24425/ijet.2020.131870

[4] Wisniewski, P., Sosnowski, M., Burakowski, W. (2022).
On implementation of efficient inline DDoS detector
based on AATAC algorithm. International Journal of
Electronics and Telecommunications, 68(4): 889-898.
https://doi.org/10.24425/ijet.2022.143899

[5] Kumar, H.T.|R. (2021). Attack and anomaly detection in
IoT networks using supervised machine learning
approaches. Revue d’Intelligence Artificielle, 35(1): 11-
21. https://doi.org/10.18280/ria.350102

[6] Dasari, K.B., Devarakonda, N. (2022). TCP/UDP-Based
exploitation DDoS attacks detection wusing ai
classification algorithms with common uncorrelated
feature subset selected by pearson, spearman and kendall
correlation methods. Revue d’Intelligence Artificielle,
36(1): 61-71. https://doi.org/10.18280/ria.360107

[71 Hoang, X.D., Nguyen, N.T. (2019). Detecting website
defacements based on machine learning techniques and
attack signatures. Computers, 8(2): 35.
https://doi.org/10.3390/computers8020035

[8] Challa, R., Rao, K.S. (2022). Resource based attacks
security using RPL protocol in internet of things.
Ingénierie des Systemes d’Information, 27(1): 165-170.
https://doi.org/10.18280/isi.270120

[91 Murty, M.S., Rao, N.N. (2020). Stalking the resources
for security in linked data applications using resource
description framework. Ingénierie des Systémes
d’Information, 25(6): 793-801.
https://doi.org/10.18280/isi.250609

[10] Antunes, N., Vieira, M. (2009). Detecting SQL injection

[11]

[12]

[13]

[14]

[15]

(1e]

[17]

[18]

[19]

[20]

[21]

Symposium on Dependable Computing, LADC: 17-24.
https://doi.org/ 10.1109/LADC.2009.21
Nagabhooshanam, N., Ganapathy, N.B.S., Ravindra
Murthy, C., Mohammed Saleh, A.A., CosioBorda, R.F.
(2023). Neural network based single index evaluation for
SQL injection attack detection in health care data.
Measurement: Sensors, 27: 100779.
https://doi.org/10.1016/j.measen.2023.100779

Dubey, A.M.S., Mehra, N. (2023). A review on SQL
injection, detection and preventions techniques. Journal
of Pharmaceutical Negative Results, 1: 1068-1073.
https://doi.org/10.47750/pnr.2023.14.S01.148

Maraj, A., Rogova, E., Jakupi, G., Grajgevci, X. (2017).
Testing techniques and analysis of SQL injection attacks.
In 2017 2nd International Conference on Knowledge
Engineering and Applications (ICKEA), London, UK,
pp. 55-59.
https://doi.org/10.1109/ICKEA.2017.8169902

Gu, H., Zhang, J., Liu, T., Hu, M., Zhou, J., Wei, T,
Chen, M. (2019). DIAVA: A traffic-based framework for
detection of SQL injection attacks and vulnerability
analysis of leaked data. IEEE Transactions on Reliability,
69(1): 188-202.
https://doi.org/10.1109/TR.2019.2925415

Alkhathami, J.M., Alzahrani, S.M. (2022). ‘Detection of
SQL injection attacks using machine learning in cloud
computing platform. Journal of Theoretical and Applied
Information Technology, 100(15): 5446-5459.
Tashenova, Z., Nurlybaeva, E., Tulegulov, A.,
Abdugulova, Z. (2021). SQL-Attack research and

protection. Journal of Theoretical [andl Applied

Information Technology, 99(19): 4536-4545.
http://www jatit.org/volumes/Vol99No19/8Vol99No19.
pdf

Volkova, M., Chmelar, P., Sobotka, L. (2019). Machine
learning blunts the needle of advanced SQL injections.
In MENDEL, 25(1): 23-30.
https://doi.org/10.13164/mendel.2019.1.023
Bandhakavi, S., Bisht, P., Madhusudan, P.,
Venkatakrishnan, V.N. (2007). CANDID: Preventing
SQL injection attacks using dynamic candidate
evaluations. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, New York,
United States, pp- 12-24.
https://doi.org/10.1145/1315245.1315249

Johny, J.H.B., Nordin, W.A.F.B., Lahapi, N.M.B., Leau,
Y.B. (2021). SQL Injection prevention in web
application: A review. In Advances in Cyber Security:
Third International Conference, ACeS 2021, Penang,
Malaysia, Revised Selected Papers, Springer, Singapore,
3: 568-585. https://doi.org/10.1007/978-981-16-8059-
535

Demilie, W.B., Deriba, F.G. (2022). Detection and
prevention of SQLI attacks and developing compressive
framework using machine learning and hybrid
techniques. Journal of Big Data, 9(1): 124.
https://doi.org/10.1186/s40537-022-00678-0

Wijaya, M.C., Maksom, Z., Abdullah, M.H.L. (2021).
Two verification phases in multimedia authoring
modeling. Journal of Information and Communication

vulnerabilities in Web Services. Latin-American

Convergence Engineering, 19(1): 42-47.
https://doi.org/10.6109/jicce.2021.19.1.42

Commented [wg9]: Please provide the URL for
reference [16]. If it is not available, kindly suggest an
alternative reference that can be found via Google.
Additionally, please update the citation details in the article
to reflect any changes.

{ Commented [MCW10R9]: URL Added

Commented [wg7]: Please provide the URL for
reference [10]. If it is not available, kindly suggest an
alternative reference that can be found via Google.
Additionally, please update the citation details in the article
to reflect any changes.

{ Commented [MCW8R7]: URL Added

