o v

I E‘I’ A International Information and
Engineering Technology Association

ISSN:1633-1311 (Print), 2116-7125 (Online)

Editorial Board

EDITOR-IN-CHIEF

Prof. Renato Bruni Prof. Rui Peng

Sapienza University of Beijing University of Technology
Rome (Italy) (China)

EDITORIAL BOARD

Prof. Bangti Jin
University College
London (UK)

Prof. Rupa Chiramdasu
V R Siddhartha
Engineering College
(India)

Dr. SEONGKI KIM
Seoul National
University (Korea)

Dr. Amrendra Singh

Prof. Enrico Cambiaso
CNR-IEIT (ltaly)

Prof. Soumen Kanrar
DIT University Dehardun (India)

Dr. Nageswara Rao Moparthi

Dr. Ahmed Elaraby

Yadav Y
MNNIT (India) South Valley University (Egypt)
Assoc. Prof. FATIH
OZYURT Assoc. Prof. Yougang Sun
FIRAT University Tongji University (China)
(Turkey)
/\sst. Prof. Erdal Asst. Prof. Ankit Kumar
Ozbaybr . .

. . Swami Keshvanand Institute of
Firat University Technology (India)
(Turkey) 9y

Asst. Prof. ROSHAN Dr. Ganjikunta Ganesh Kumar
M. BODILE
NIT, Warangal (India) ology (India)

Dr. Avishek

Chakraborty Dr. Verma Akhilesh

Academy of Dr. A.P.J. Abdul Kalam Technical
Technology (under University (India)

MAKAUT) (India)

Dr. Feroz khan A.B
SHASC (India)

Assoc. Prof. Sanjay Ku
mar
SRM University (India)

Dr. GUNES EKiM
Karadeniz Technical University
(Turkey)

Assoc. Prof. Smith K. Khare
IITDM (India)

Sri Krishnadevaraya University (India)

Sreenidhi Institute of Science and Techn

Prof. Abdellah Kaci
Ecole Nationale Supérieure
de Technologie (Algeria)

Prof. Le Anh Tuan
Vietnam Maritime
University (Vietnam)

Dr. Prabira Kumar Sethy
Sambalpur University
(India)

Dr. Gourav Bathla
Kurukshetra University (In
dia)

Assoc. Prof. Melih
KUNCAN

Siirt University (Turkey)

Dr. Kamred Udham Singh
National Cheng Kung
University, Tainan
(Taiwan)

Dr. Shyamal Virnodkar
Mumbai University (India)

Dr. ALTI ADEL
University of Setif 1
(Algeria)

Dr. M. LAAVANYA
Anna University (India)

%_

Scopus Preview Q. Author Search Sources

Source details

Ingenierie des Systemes d'Information
Years currently covered by Scopus: from 2012 to 2024
Publisher: Lavoisier

ISSN: 1633-1311 E-ISSN: 2116-7125

Subject area: (Cumpulel Science: Information Systems)

Source type: Journal

[Save to source list

CiteScore CiteScore rank & trend ~ Scopus content coverage

© & [cowweon | [N

Feedback » Compare sources »

CiteScore 2023

®
2.5
SJR 2023

@
0.239

SNIP 2023

0.670 ©

CiteScore 2023 CiteScoreTracker 2024 @
2 5 1,177 Citations 2020 - 2023 978 Citations to date
*= " 463 Documents 2020 - 2023 2.0 -

481 Documents to date

Calculated on 05 May, 2024 Last updated on 05 August, 2024 . Updated monthly

ABOUT SERVICES JOURNALS CONFERENCES BOOKS SUBMISSION

I ET A International Information and

a JOURNALS ' ISl

Aims and scope

ditorial Board

nstructions for Authors

> Articie Processing Charge

> Pubkcation Ethics

> Submission

> Curent Issue

> Archive

> Citation List

JOURNAL METRICS
CitaScore 2023:25 @

SCimago Joumnal Rank (SJR) 2023
0239

Source Normalized Impact per

Paper (SNIP) 2023: 0.67 @

i,

w":mf
e

Scopus

INGENIERIE DES SYSTEMES D'INFORMATION

Ingénierie des Systémes d’Information

ISSN: 1633-1211 (print): 2116-7125 (onéine)

Indexing & Archiving: Scopus, SCimago (SJR). CrossRef, Portico, EBSCORost, Google Schotar, Puslons, MIAR, ScienceOpen, Microsoft Academic, CNKI
Scholar. Baidu Schoiar

* Subject: Computer Sciences

mscience

“publons

Scopus o Mhenticate

Ingénierie des Systémes d’Information (IS} is a top-rated international journal devoted to publishing the most innovative models. algorithms, software and hardware
for information systems.

The subject areas mainly include data management issues and data-related issues in the following fields: data mining, data management, information refrieval, process
management, machine learning, scientific computing, data science and audiovisual information systems. We welcome implementation articles that deal with fault
detection and tolerance, parallel and distributed data management. as well as general or special purpose hardware for data-intensive systems. We also welcome

manuscripts from application domains like cloud platform. Intemnet of Things (IoT). and peer-t ¢ from industrial are also
welcome
All manuscripts should provide novel solutions to data management problems, namely, data models and and the applicat

potential of these solutions. Moreover, all manuscripts should handle the research problems with solid empirical evidences from real-world or future applications
Systems papers must include rigorous experiment on prototype or robust simulations of real systems. Theoretical articles must have clear motivations from applications
develop innovative algorithms or extend existing solutions, and fully manifest the applicability of their ideas. The technical solutions must be explained clearly in a
uniform notation, facilitating their applications beyond the research domain. The extremely complex details may be demonstrated with reference to previous studies

Focus and Scope
The ISI welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to:

+ Data mining

Traitement
du Signal

.
An lIETA Joumal

SUBMIT NOW

int Purhlinhad

o Q, Author Search Sources @ m

Source details

Ingenierie des

Systemes d'Information 25

Years currently covered by Scopus: from 2012 to 2024

Publisher:
ISSN: 1633-1311 E-I

Lavoisier

SSN: 2116-7125

Subject area: ((Computer Science: Information Systems)

Source type: Journal

CiteScore

CiteScore rank & trend

SNIP 2023

0.670

[Save to source list

Scopus content coverage

CiteScore 2023

SJR 2023

0.239

Search for

Usemame
Password
[Remember me

LOGIN

| Journal Content
S -

Browse

* Bylssue

« ByTe

« ByAuthor

* Other Journals

| Information

* ForReaders
* ForAuthors

* For Librarians

Latest News & Announcement

Create account m

Feedback » Compare sources >

CiteScore 2023

1,177 Cit

2.5 -

Caloulated on 05 May, 2024

463 Documents 2020 - 2023

CiteScoreTracker 2024 ©

ations 2020 - 2023 1,106 Citations to date

2.1-

Last updated on 05 Ocaber, 2024 - Updated monthly

519 Documents to date

2023

Ingénierie des Systemes d’Information E&=s q

25
o ISSN: 1633-1311 (print); 2116-7125 (online)

» Indexing & Archiving: Scopus, SCimago (SJR), CrossRef, Portico, EBSCChost, Google
Scholar, Publons, MIAR, Science Open, Microsoft Academic, CNEI Scholar, Baidu Scholar

s Subject: Computer Sciences

B | | [FEEY | ymewae | fpublons || s

Vol. 29, No. 5, October 2024

Analyzing Road Users' Behavior: A Data Mining Approach Using Google Maps Popular
Time and Web Scraping for Rest Area Visitation Patterns on Highways and Toll Roads

Marita Prasetyani, R. Rizal Isnanto, Catur Edi Widodo
Page 1711-1722

Sick and Dead Chicken Detection System Based on YOLO Algorithm

Lailis Syafaah, Amrul Farug, Novendra Setyawan, Muhammad Ikhwanul Khair
Page 1723-1729

Recognition of the Sound of the Lonchura Maja Bird and the Threat of House Sparrows
Using Edge Impulses Based on a Custom Deep Neural Network to Protect Rice Plants

Aeri Rachmad, Eko Setiawan, Abdul Wahib Hasbullah
Page 1755-1762

Optimized Deep Learning Model to Predict Business Bankruptcy

Dino Quinteros-Navarro, Ciro Rodriguez
Page 1763-1777

Buffer Association of Network on Chip (NoC) Using Simulated Network

Manjunath Managuli, Kanmani Pappa Chandramohan, Maheswari Marimuthu,
Kumutha Duraisamy, Surendran Rajendran
Page 1797-1807

Machine Learning for Cloud Data Classification and Anomaly Intrusion Detection

Leila Megouache, Abdelhafid Zitouni, Salheddine Sadouni, Mahieddine Djoudi
Page 1809-1819

Gait Recognition Using Multilevel Wavelet Entropy and Machine Learning

Muhammad Abdullah Asyrof Baizuhdi, Istigomah, Achmad Rizal
Page 1821-1827

https://www.iieta.org/journals/isi/paper/10.18280/isi.290505
https://www.iieta.org/journals/isi/paper/10.18280/isi.290505
https://www.iieta.org/journals/isi/paper/10.18280/isi.290506
https://www.iieta.org/journals/isi/paper/10.18280/isi.290509
https://www.iieta.org/journals/isi/paper/10.18280/isi.290509
https://www.iieta.org/journals/isi/paper/10.18280/isi.290510
https://www.iieta.org/journals/isi/paper/10.18280/isi.290513
https://www.iieta.org/journals/isi/paper/10.18280/isi.290514
https://www.iieta.org/journals/isi/paper/10.18280/isi.290515

An Efficient Deep Learning Based AgriResUpNet Architecture for Semantic Segmentation of
Crop and Weed Images

Ali Asgar Hussain, Pramod Sekharan Nair
Page 1829-1845

A Proposed CPU Job-Scheduling Technigue Based on Round Robin Method Using Dual
Synchronized Time-Slices

Salam Ayad Hussein, Emad Issa Abdul Kareem
Page 1847-1858

Multi-Task Learning with BERT, RoBERTa, GPT-3.5, ELECTRA, and XLNet for Urgency
Classification, Topic Similarity, and Sentiment Analysis in MOOCs

Aicha Marrhich, Ichrak Lafram, Naoual Berbiche
Page 1891-1901

Security Analysis of SOL Injection Attacks on Multimedia and Journal-Services Sites Using
Concatenated Input Validation and Parsing Method (CIVVP)

Marvin Chandra Wijaya
Page 1915-1924

Ensemble Learning Based Model for Student’s Academic Performance Prediction Using
Algorithms

Mukesh Kumar, Vivek Bhardwaj, Deepti Thakral, Abdulnaser Rashid, Mohamed
Tahar Ben Othman

Page 1925-1935

Advancements in Deep Learning Technigues for Potato Leaf Disease Identification Using
SAM-CNNet Classification

Shruti Patil, Anusuya Devi Vandavagula Satya, Usha Rani Bajjuri, Pramodh Krishna
Damarapati, Manohar Manur, Arunadevi Thirumalraj, Ramesh Vatambeti
Page 2021-2030

Deep Learning Based Multistage Approach for Anomaly Detection

Megha G. Pallewar, Vijaya R. Pawar, Arun N. Gaikwad
Page 2031-2038

Cholesterol Checking Tool and Blood Type Prototype with Telegram Notification System

Andreanda Nasution, Yuggo Afrianto, Fikri Adam Fadillah, Fakhri Sofwan Ramadhan,
Jani Kusanti, Ritzkal
Page 2039-2046

A New Dynamic S-Box-Based Microfluidic Technigue

Ali M. Jasim, Isam H. Halil, Nadia M. G. Al-Saidi
Page 2047-2059

https://www.iieta.org/journals/isi/paper/10.18280/isi.290516
https://www.iieta.org/journals/isi/paper/10.18280/isi.290516
https://www.iieta.org/journals/isi/paper/10.18280/isi.290517
https://www.iieta.org/journals/isi/paper/10.18280/isi.290517
https://www.iieta.org/journals/isi/paper/10.18280/isi.290521
https://www.iieta.org/journals/isi/paper/10.18280/isi.290521
https://www.iieta.org/journals/isi/paper/10.18280/isi.290523
https://www.iieta.org/journals/isi/paper/10.18280/isi.290523
https://www.iieta.org/journals/isi/paper/10.18280/isi.290524
https://www.iieta.org/journals/isi/paper/10.18280/isi.290524
https://www.iieta.org/journals/isi/paper/10.18280/isi.290533
https://www.iieta.org/journals/isi/paper/10.18280/isi.290533
https://www.iieta.org/journals/isi/paper/10.18280/isi.290534
https://www.iieta.org/journals/isi/paper/10.18280/isi.290535
https://www.iieta.org/journals/isi/paper/10.18280/isi.290536

Z‘ I El' A International Information and

Engineering Technology Association

Ingénierie des Systémes d’Information
Vol. 29, No. 5, October, 2024, pp. 1915-1924

Journal homepage: http://iieta.org/journals/isi

Security Analysis of SQL Injection Attacks on Multimedia and Journal-Services Sites Using |

Concatenated Input Validation and

Marvin Chandra Wijaya

Check for
updates

Parsing Method (CIVP)

Department of Computer Engineering, Maranatha Christian University, Bandung 40164, Indonesia

Corresponding Author Email: marvin.cw@eng.maranatha.edu

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290523

ABSTRACT

Received: 24 January 2024
Revised: 4 September 2024
Accepted: 10 September 2024
Available online: 24 October 2024

Keywords:
SQL injection, input validation, parsing
method, concatenated

Web applications and databases continue to face grave danger from SQL injection attacks,
which can result in unauthorized access, data modification, and system compromise. This
report discusses the methods attackers use to exploit SQL injection vulnerabilities and
emphasizes the dangers of successful attacks, such as data leaks and system compromise.
This research proposes a comprehensive system for detecting SQL injection attacks using
concatenated Input Validation and Parsing Method (CIVP). The site used as experimental
material is the Multimedia and Journal Services Site. Based on the results of forensic
analysis on the Journal Services Site, there were several attacks in cyberspace, including
using SQLMAP and Python. The system created has successfully detected SQL injection
attacks. Based on the test results, it was found that the use of the method proposed in this
study succeeded in making processing time 15.2% more efficient. Experiments carried out
with the method proposed in this study succeeded in increasing the attack detection

accuracy from 96-97% to 99.5% with a p-value of 0.008446.

1. INTRODUCTION

The official site is an identity of an institution which is the
identity or a mirror of the image of the institution. The official
website contains the institution's identity, institution profiles,
activities, internal news, and external news. Therefore, an
official site must be guarded in such a way against attacks in
cyberspace. The official site may be located and managed by
a third party that provides website hosting services. In addition,
an institution can manage its own official website. With self-
management, there will be a lot of freedom and facilities that
can be provided in the system. However, with self-
management, the challenge of maintaining the site and
information system becomes essential.

Apart from the official website, other websites are also very
important to protect, such as e-commerce websites. Systems
on e-commerce sites are also often attacked by irresponsible
people [1]. Even though e-commerce is now widely used
throughout the world, many are still vulnerable to attacks.
Many e-commerce websites in various countries are down due
to various attacks.

Websites, web applications, and web users have all been
subject to severe and ongoing risks from web assaults,
including SQL injection attack (SQLi), XSS, Operating
System Command injection (CMDi), and Path traversal [2].
Because of the widespread usage of websites and online
applications and the accessibility of web attack tools on the
internet, these kinds of attacks are frequent [3]. The SQLi,
XSS, CMDi, DDoS, and Path traversal (Path) web attack
family is referred to as the "common web attacks" [4]. It is
seen that now attacks via the “common web attacks” are

becoming more and more frequent nowadays [5]. Web attacks
are becoming more massive day by day, requiring fast
countermeasures [6]. To be able to deal with attacks quickly
on websites, it is necessary to detect attacks properly and
quickly.

There are various ways to attack a website, one of the most
popular ways is SQL Injection Attack (SQLi). Website
defacement is one of the biggest dangers for business,
corporate, and government websites and web services.

Defacement will have negative implications for website
owners, including disruption of various kinds and things that
website developers will experience [7]. After the first attack
step, the next step is to compromise the resources on the web
server that has been attacked [8]. Therefore, the database in a
web server needs strict security and resistance to attack [9].

One of the most frequent security risks to cloud-deployed
web-based services is SQL injection attacks as shown in Table
1 [10]. More than 40% of attacks on the web are in the form
of SQL injection, while the second largest attack is username
or password disclosure only at 7%. That means the web
protection against attacks is good to focus on protection
against SQL Injection. SQL injection attackers can run
dangerous and bad code on target databases to obtain or
corrupt sensitive data by taking advantage of online software
flaws.

SQL injection attacks are common online application
vulnerabilities that can have serious security repercussions.
SQL injection attacks can be especially harmful in the context
of journal-services sites, where databases are used to store and
retrieve information. By inserting malicious code into user-
supplied input, an attacker can alter a SQL query, resulting in

1915

https://orcid.org/0000-0001-5920-4348
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290523&domain=pdf

unwanted and potentially destructive database activities.

Table 1. Most frequent attacks

Vulnerability Types # Vuln #WS Percentage
SQL Injection 502 92 84.9%
Possible Usqrname or 47 3 71%
Password Disclosure
Xpath Injection 20 2 3.1%
Possible Path Disclosure 17 5 3.1%
Possible Parameter Base 0
Buffer Overflow 4 3 1%
Code Execution 2 2 0.6%
Total 593 107 100%

SQL Injection Attack (SQL.i)

1. Hacker identifies
vulnerable, SQL-

2. Malicious SQL
query is validated &

Username

driven website & P — command is
injects malicious SQL executed by
query via input data. database.

WEBSITE
INPUT FIELDS

0 Lo O

3. Hacker is granted access
to view and alter records or
potentially act as database

administrator.
@ DATABASE

Figure 1. Illustration of SQL injection attacks

HACKER

Figure 1 illustrates an SQL injection attack, in which a
hacker identifies weaknesses in a website and injects SQL
queries with input data. The server will execute malicious SQL
queries to inject databases and hackers will gain access to the
website.

In Indonesia, SQL injection attacks have targeted various
sectors, including government websites, which are vulnerable
to exploitation of sensitive data; e-commerce platforms, where
attackers seek to expose customer information such as
personal and financial details; and financial institutions, where
banks and financial services face risks of data breaches.
Several notable SQL injection incidents in Indonesia include
the 2021 breach of government websites, where attackers
defaced sites and leaked sensitive citizen data. E-commerce
platforms have also been frequent targets, with hackers
exploiting poorly secured payment systems to steal customer
information, such as emails, passwords, and financial details.
In the education sector, SQL injection has been used to
compromise university databases, exposing student records
and academic information. While specific cases are not always
publicly detailed, these trends highlight the vulnerability of
various sectors to such attacks.

Current research on SQL injection (SQLi) is focused on
enhancing detection techniques, particularly through advanced
methods like deep neural networks. One effective approach is
the use of models such as recurrent neural networks (RNNs)
and autoencoders, which can accurately detect SQLi by
identifying patterns in database queries. These models
leverage large datasets to learn the structure of both legitimate
and malicious queries, significantly improving detection

1916

accuracy compared to traditional methods. This evolving
research demonstrates the growing importance of machine
learning in combating SQL injection attacks.

2. LITERATURE REVIEW

SQL injection attacks can be classified based on intent:
extracting data, adding data, modifying data, and others
attacks. SQL injection attacks have several types: tautologies,
illegal, logically incorrect queries, piggyback queries, stored
procedures, and alternate encodings.

The system network has several security weaknesses
because of the computer network's size and volume of
information. In order to create an efficient and useful
simulation model of computer network security evaluation, a
system for network security evaluation must be built. Using
the simulation model, network security impact can be
increased. The simulation of global computer security
evaluation is a novel topic in our nation since the reform and
opening up. It has the ability to research network security
thoroughly. Also, it can be used to construct a system for
global security evaluation and study network security directly.
It may assess, investigate, develop, and plan different phases
in the computer network simulation system in order to play a
significant role [11]. In this study, a new algorithm was
implemented after analyzing the artificial network system
model and addressing the neural network's weaknesses in
convergence and search. Based on this analysis, a simulation
model for computer network security was developed, and its
performance was validated through appropriate testing. The
results of the simulation highlight the model's exceptional
performance and significant improvement potential.

Numerous websites access the World Wide Web using one
of the many web servers that exist in the world. These websites
are vulnerable to attacks, usually input validation-related ones.
These attacks make website hacking simple and let
anonymous users expose sensitive data. The open market is
currently in a very dangerous state. The analysis carried out as
previously said and on top of the computerized environment
prompts us to conduct a study on SQL injection attacks and
dangerous invasion approaches, that use runtime validation for
detecting such assaults and tracking their event [12]. A
technique for identifying and containing SQLIA issues is
presented in this paper. The method involves a one-time
offline process that employs stagnant application code analysis
to extract an application's planned SQL query behaviour,
which will take the form of a predetermined series of tokens.

In an effort to gain access to sensitive data, attackers are
considering web apps as a prime target. A company may be
vulnerable to different attacks if it does not implement
efficient data protection mechanisms. To ensure effective data
protection, government institutions in particular need to look
outside the box when it comes to security measures. Therefore,
it is crucial to do security testing and ensure that the system is
secure before an attack occurs. One of the oldest, most
common, and most dangerous online application
vulnerabilities is the SQL Injection flaw because it may harm
any website or web application that uses a SQL-based database.
Utilizing various security systems is necessary to solve the
SQL injection issues [13].

The main goal of conventional wireless application
firewalls is to stop erroneous SQL requests. Few of them can
rapidly assess the severity of an attack and precisely determine

whether it is truly detrimental. to make the renters more
conscious of how severe a SQL injection attack is. In 2019, Gu
et al. and associates presented DIAVA, a novel traffic-based
SQL injection attack detection and vulnerability analysis
platform that may proactively and immediately alert tenants.
DIAVA can precisely identify successful SQL injection
attacks from every SQL query input from bidirectional
network traffic of SQL operations using the suggested
multilayer regular expression model. DIAVA, meanwhile, can
swiftly assess the seriousness of such SQL injection attacks
and the vulnerabilities of the associated spilled data using its
GPU-based dictionary attack analysis engine. According to
experimental findings, DIAVA not only exceeds cutting-edge
wireless application firewalls in terms of precision and recall
when it comes to identifying SQL attacks, but it also offers
real-time vulnerability evaluation of data leaks brought on by
SQL injection [14]. SQL injection attacks (SIA) have recently
grown to be a serious hazard to Web applications. Attackers
can expose or control a Web application's back-end database
through properly prepared user input.

Alkhathami and Alzahrani [15] in 2022 will detect SQL
injection attacks using machine learning. SQL injection
requests are divided into two groups by the model: attack and
valid. Four machine learning algorithms are being used to train
the model. After conducting data preprocessing and feature
extraction. Authors used various classification methods to
classify every SQL query. Figure 2 shows the steps of the
model used in Jamilah’s system.

In 2019, Tashenova et al. [16] conducted a study to look at
various ways of SQL injection attacks. Different strategies for
implementing SQL injection and techniques to prevent it were
taken into consideration and experimentally used in the
research effort. The author also comprehended the traits of
SQL injections and how they connect to their fundamental
structure. On the basis of this, it was experimentally put into
practice, launching an assault on two web apps that had a
similar interface but a different core structure. In other words,
the second web application was secure, whereas the first web
application was open to assault.

Volkova et al. [17] in 2019 studied the use of machine
learning in advanced SQL injection attacks. The main goal of
the research is to apply machine learning techniques for
identifying injection features in the HTTP query string.
Authors use various machine learning techniques. Deep
Sequential Models and a Neural Network with Dropout layers
were also used. The results demonstrated the benefits of using
a machine-learning approach to identify harmful patterns in
HTTP query strings. Figure 3 shows the steps of the SQL
injection attack detection research scheme researched by
Volkova et al.

Dataset
Data Processing
Training Algorithm
Trained Model

Evaluation

Figure 2. Jamilah’s system model [15]

1917

HTTP
request

Parsing
Data . Cleaning '
Preprocessing K

QUETY | e e e e -

String Parameter
TF-IDF
Word Embedding

Feature Extraction

Vector

Support Vector Machine
Multilayer Perceptron
Recurrent Neural Network ;

Classification

b

Prediction

Total Accuracy
False Positive Rate
Prediction Time

Quality Estimation

Decision l

Figure 3. Marina Volkova's research scheme [17]

Bandhakavi et al. [18] studies to prevent SQL injection
attacks using a technique called CANDID (candidate
evaluations). The method proposed in this study for detecting
SQL injection attacks focuses on comparing the query
structure the programmer intended for any input with the
structure of the actual query that gets executed. The authors
introduce a simple and innovative approach to extract intended
queries by continuously evaluating runs using well-formed
candidate inputs. This theoretically robust technique operates
by interpreting the symbolic query generated during program
execution to infer the intended queries.

Research on SQL injection (SQL1) attacks on multimedia
websites highlights significant vulnerabilities in systems
handling media content, especially due to the complex nature
of multimedia data and dynamic content delivery. Many of
these sites rely heavily on databases to manage large volumes
of user-generated content, video, and other media files, which
makes them a prime target for SQLi attacks. Attackers can
exploit weaknesses in these sites by injecting malicious SQL
code through input fields, leading to unauthorized access, data
breaches, or defacement of media content [19].

Recent studies emphasize the use of machine learning (ML)
and hybrid techniques for detecting and preventing SQLi
attacks. Approaches such as pattern-matching algorithms and
the integration of deep learning methods like recurrent neural
networks (RNNs) have shown promise in identifying
malicious queries and preventing attacks in real-time.
Additionally, encryption techniques (such as AES-128) and
token-based authentication have been suggested to mitigate
SQLi risks by securing database access and input validation.
These methods aim to enhance detection accuracy while
minimizing false positives, crucial for sites with heavy traffic
and multimedia usage [20].

3. METHODOLOGY

A security analysis of SQL injection threats on websites
using journal services is provided below.

e Impact on Data Confidentiality

SQL injection attacks may threaten the confidentiality of
private data kept in the database. Attackers can create
malicious SQL queries to retrieve data that they are not
allowed to access. This situation could include user personal
information from journal-services websites, such as names,
email addresses, or research data.

e Impact on Data Integrity

Attacks using SQL injection can also change or manipulate
database data. Attackers have the ability to alter the database's
structure, add harmful data, or modify or delete records. This
could result in the unlawful change or deletion of published
papers, research data, or user accounts on sites that provide
journal services.

e Impact on Availability

By establishing the database or the entire application
unusable or crashing, SQL injection attacks can lead to denial-
of-service scenarios. Attackers may take advantage of SQL
query flaws to exhaust system resources or carry out laborious
tasks, disrupting service for authorized users.

e Privilege Escalation

Attackers may be able to increase their privileges within the
program through SQL injection attacks. Attackers can get
around access controls and obtain administrator or superuser
rights by inserting specially crafted SQL queries. As a result,
the application and underlying database may be entirely under
the control.

The procedures and steps proposed to mitigate SQL
injection attacks in this study are shown in Figure 4. These
procedures will be experimented on the Multimedia and
journal service site. This procedure is designed to ensure the
security of the application on the targeted website.

Before utilizing it in SQL queries, every user-supplied input
should be checked for accuracy and cleaned up. In order to
make sure that user input is regarded as data rather than
executable code, prepared statements or parameterized queries
should be utilized. By doing this, attackers are unable to inject
malicious SQL code. The application's database user accounts
should have the bare minimum of permissions. Avoid using
privileged accounts or giving application users unauthorized
access.

Input Validation and Parameterized

Queries

Principle of Least Privilege

Secure Coding Practices

Regular Patching and Updates

Web Application Firewalls

Security Testing

Figure 4. Proposed procedures to mitigate SQL injection
attacks

1918

Developers should adhere to secure coding standards and
refrain from concatenating user input into SQL queries.
Instead, they ought to make use of the appropriate query-
creation techniques offered by the employed programming
language or framework. Update the application with the most
recent security patches, upgrades, and the underlying database
management system. This situation aids in defending against
weaknesses that attackers might use. Install a web application
firewall (WAF) to recognize and stop SQL injection threats. A
WAF can offer an extra layer of security by scrutinizing
incoming requests and denying those that display suspected
SQL injection patterns. Conduct regular security audits, such
as penetration tests, to find and fix the application's
weaknesses. Potential SQL injection vulnerabilities can be
found using automated tools and manual testing methods.

The theoretical analysis of SQL injection threats on
websites, particularly those providing multimedia and journal
services, highlights several critical impacts and mitigation
strategies. SQL injection attacks can severely compromise
data confidentiality by enabling unauthorized access to
sensitive information, such as personal user details and
research data. These attacks also pose a risk to data integrity,
as they can alter, add, or delete database records, potentially
tampering with published papers and wuser accounts.
Furthermore, SQL injection can impact availability by
disrupting the service through database crashes or resource
exhaustion, leading to denial-of-service scenarios. Attackers
might also exploit SQL injection to escalate privileges,
bypassing access controls and gaining administrative rights,
thereby gaining complete control over the application and
database.

To counter these threats, the proposed procedures include
validating and sanitizing all user-supplied input to ensure it is
treated as data rather than executable code, employing
prepared statements or parameterized queries to prevent code
injection, and limiting database user permissions to the
minimum required. Adherence to secure coding practices,
regular updates, and the use of a web application firewall
(WAF) are recommended to detect and block SQL injection
attempts. Additionally, conducting regular security audits,
including penetration tests, helps identify and address
potential vulnerabilities in the application.

3.1 Input validation

An attack known as SQL injection takes advantage of
websites' carelessness in allowing users to enter specific data
without filtering out dangerous characters. Typically, users
submit information into the search box or other areas of the
website that communicate with the site's SQL database. The
command that the attacker enters is typically a piece of
information containing a specific link that takes the victim to
a particular website that the attacker uses to retrieve the
victim's personal information.

Developers can use programs like NoScript, an add-on for
the Firefox web browser, to prevent dangerous links from
websites subjected to SQL injection attacks. With SQL
Injection, an attacker can access the database by sending
commands to the server via URIs or form fields. As an
example of a vulnerability in accessing a username:

statement="SELECT*FROM
name=""+userName+";"

users WHERE

The "userName" variable can be abused by careless users,
even if the SQL code is intended to get the user's table records
with a specific username. Setting the "userName" variable and
executing the altering SQL statement with:

| SELECT*FROM users WHEREname="OR 'I'='1; |

Input validation’s implementation for the Multimedia and
Journal Services site is as follows:

e Sanitize and Validate User Input:

Allowing only specific characters, formats, or values, also
known as whitelisting input, helps ensure that the input
adheres to the expected format, such as restricting an email
field to valid email formats. It's also crucial to perform type
checking to confirm that the input matches the required data
type, such as integers or dates.

e Use Prepared Statements and Parameterized Queries:

It is advisable to use prepared statements instead of inserting
raw user input into SQL queries, as this approach ensures that
the input is treated as data rather than part of the query itself.

query="SELECT * FROM users WHERE
username=%s AND password=%s"

cursor.execute(query, (username, password))

e Escape Special Characters
If parameterized queries are not possible, escape special

characters in user input before including them in SQL queries.

$username=mysqli_real escape_string ($connection,
$username);

e Enforce Strong Input Validation Rules:

For numeric inputs, it is important to ensure that the input is
validated as numeric using appropriate language-specific
methods, such as is_numeric() in PHP. String inputs should
have any potentially harmful characters removed or encoded
to prevent misinterpretation by the database engine, including
characters like “;”, “ -, “"'” and “ " ”. Additionally, date
inputs should align with the required format, which can be
verified using regular expressions or built-in date parsing
libraries.

13

¢ Use ORM or Framework-Level Protections:
The risk of SQL injection is mitigated when frameworks
abstract query construction, as this approach reduces direct

interaction with raw SQL.

if (filter var($email,

FILTER VALIDATE EMAIL) &&

preg_match("/"[a-zA-Z0-9]*$/", $username)) {
$stmt = $conn->prepare("SELECT * FROM

users WHERE email = ? AND username = ?");
$stmt->bind_param("ss", $email, $username);
$stmt->execute();

} else {
echo "Invalid input.";

}

1919

3.2 Principle of least privilege

The Principle of Least Privilege (PoLP), a fundamental
concept in computer security, suggests that individuals,
processes, or systems should be granted only the minimum
level of access or permissions necessary to perform their
specific tasks or functions. Key elements of the least privilege
principle include:

Access Control

Privilege Separation

Regular Review

Principle of Fail-Safe Default
Segmentation and Isolation
Least Privilege

3.3 Secure coding practices

The technique of developing software code in a way that
minimizes vulnerabilities and lowers the risk of security
threats and attacks is known as secure coding. To create
applications that are resistant to common security concerns,
security considerations must be incorporated into the
development process. Several fundamental ideas and
recommended methods for secure coding:

Input Validation

Parameterized Queries

Secure Authentication

Avoid Hardcoding Sensitive Information
Secure Error Handling

Protect Against Cross-Siste Scripting
Secure File Handling

Regularly Update

Secure Coding Frameworks

Security Testing and Code Reviews

3.4 Regular patching and updates

Patching and updating often is essential for preserving the
security and reliability of software systems. Consider the
following best practices for managing patches and updates:

Implement a Patch Management Process
Prioritize Critical Update

Automate Patch Deployment

Maintain System Documentation

3.5 Multimedia and web applications and firewalls

A security tool called a Web Application Firewall (WAF) is
made to shield web applications against different kinds of
assaults. Between the web application and the internet, it
serves as a firewall, examining incoming and outgoing traffic
to spot and stop dangerous or suspicious activity. Key
characteristics and advantages of web application firewalls
include:

Application Layer Protection
Attack Detection and Prevention
Web Application Hardening
DDoS Mitigation

Logging and Auditing

3.6 Security testing

A crucial phase in the software development life cycle is
security testing, which aims to identify weaknesses,
vulnerabilities, and security issues within a system or
application. An initial test often involves inserting a single
quote or semicolon into the field or parameter being examined.
The single quote acts as a string terminator in SQL, and if not
properly filtered by the application, can lead to a faulty query.
Similarly, the semicolon is used to terminate an SQL statement,
and if not filtered, is likely to trigger an error. The output from
a vulnerable field may appear as follows on a Microsoft SQL
Server:

cap = pyshark.FileCapture(‘example.pcap')
Iterate through packets and display information
for packet in cap:

print(packet)

e Additional Steps

Effective handling of PCAP files involves filtering packets
with BPF (Berkeley Packet Filter) to focus on specific traffic
types, extracting and analyzing protocols such as TCP, UDP,
and HTTP along with their metadata, and using tools like
Wireshark for visual inspection of the traffic, or alternatively,
developing a custom tool for detailed analysis.

Microsoft OLE DB Provider for ODBC Drivers error
'80040e04'

{Microsoft} {ODBC SQL Server Driver][SQL Server}
Unclosed quotation mark before the

character string ' '.

/folder/file.php, line 254

4. RESULTS

The experiment for this study was carried out on a
multimedia and journal service website. Firstly, need to know
the original query is always required to achieve union-based

To try to alter the query, use comment delimiters (/* */, --,
or others) as well as additional SQL keywords such as AND
and OR. A straightforward yet sometimes effective technique
is to input a string where a number is expected, which can
result in the following error:

injection. The object of this research is a multimedia website
and service journal that has been verified for accuracy [21].
The content of the multimedia and journal services site is as
follows:

Research Papers and Articles
Abstracts and Summaries

Microsoft OLE DB Provider for ODBC Drivers error
'80040e08'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax
error converting the

varchar value 'book’ to a column of data type float.
/folder/folder.asp, line 254

Author Profiles
Citations References
Downloaded Content
Video/Audio Content
Images and Graphics
Content Descriptions

Monitor all web server responses and review the JavaScript
or HTML source code, as issues may be present but not visible
to the user. Detailed error messages, like those in the examples,
can provide attackers with valuable information to execute a
successful injection attack. However, applications often reveal
minimal information, such as a generic '500 Server Error' or a
custom error page, which may require the use of blind
injection techniques. Regardless, it is essential to test each
field individually, ensuring that only one variable is altered at
a time, to accurately identify which parameters are more
vulnerable than others.

Metadata

Table 2 shows the steps to retrieve the original query using
the default DBMS tables.

Extracting and analyzing network traffic data that has been
recorded in the PCAP format is what is involved in parsing file
log PCAP (Packet Capture). Pcap files preserve captured
packets, payloads, and headers, enabling offline analysis or
post-event research. The developer can adhere to the general
methods listed below to parse a PACAP file:

. . . e Select a tool for PCAP parsing.
3.7 Parsing PCAP implementations e Open up the PCAP File.
Extract Inf tion from Packets.
Parsing PCAP (Packet Capture) files can be implemented : A’;; cze r;noflr?lﬁtle?nP::lil s ackets
using various programming languages and libraries designed Y:)
to read and analyze network traffic data. e Examine the headers and payloads of packets.
e Conduct a protocol analysis.
o Parse PCAP Files with Scapy e Extract Relevant Information.
e Produce reports or visuals.
from scapy.all import rdpcap
packets = rd peap(‘file.pcap’) Table 2. Default DBMS table
for packet in packets:
. DBMS Table
print(packet. summary()) My SQL information_schema. processlist
Postgres SQL pg. stat activity
e Parse PCAP Files with PyShark Microsoft SQL Server sys.dm exec cached plans
Oracle V$ SQL

import pyshark
Load the PCAP file

Reading log files is implemented on a network forensics

1920

server. The log file is examined, which helps observe the flow
of packet headers that move around the network.

My data@my data:~$perl parsing_pcap.pl

Time: 03-12 17:40:11.152692

IP Address Source: aaa.aaa.aaa.aaa Mac Address Source:
031341601983 Port Numbers: 45602

IP Address Destination: aaa.aaa.aaa.aaa Mac Address
Destination: 003462758dda Port Numbers: 80

Time: 03-11 19:16:31.123545

IP Address Source: aaa.aaa.aaa.aaa Mac Address Source:
00124a41f375 Port Numbers: 123704

IP Address Destination: aaa.aaa.aaa.aaa Mac Address
Destination: O009dfd4343 Port Numbers: 80

A tool to determine which ports are open or closed on a
server or host is a port scanning application. The developer can
use it by entering perl portscan.pl, followed by the required
port number and the IP address of the server or host they wish
to analyze.

root@my_data:/folder/my_data#
aaa.aaa.aaa.aaa 2)-26

perl port_scan.pl

The Results are
Target aaa.aaa.aaa.aaa: Port 20 is closed

Target aaa.aaa.aaa.aaa: Port 21 is open

Target aaa.aaa.aaa.aaa: Port 22 is closed
Target aaa.aaa.aaa.aaa: Port 23 is closed
Target aaa.aaa.aaa.aaa: Port 24 is closed
Target aaa.aaa.aaa.aaa: Port 25 is closed

Target aaa.aaa.aaa.aaa: Port 26 is closed

In order to get the answers to forensic queries like what IP
address attacked a server, what port did the attacker use to
access a system, and other things, log files that have been
retrieved from IDS are analyzed using parsing logs and port
scans. In the third script, the log files are analyzed using
SQLite. They were calling the pkts2db.pl script, opening the
logfileall.pcap file, specifying the name of the new database
log file, and then typing-d (to create a database) completes the
process of converting a log file into a database.

My data@my_data:~$ perl log kedb.pl-r data_log.pcap-d
data_log.db

sqlite>select s addr, d addr, count(*) as count
_ >from ip
__>group by s addr, d addr
__>order by count desc; s addr d addr count
- 22a.22a.2aa.aaa aaa.aaa.aaa.aaa
256
2aa.aaa.aaa.aaa aaa.aaa.aaa.aaa 41
222.22a.222.2aa aaa.aaa.aaa.aaa 35

1921

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 20
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 19
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 13
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 18
aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 14

Only a small number of IP addresses will be examined by
the attacker's analysis tool. An attacker believed to be located
in Asia Pacific is identified by the IP address 125.201.71.aaa.
The website for Multimedia and Journal Services was attacked
using sqlmap.

My data@my data:~$ perl logkedb.pl-r data log.pcap-d
data log.db

sqlite>select s addr, d addr, count(*) as count
_ >from ip

__>group by s addr, d addr
__>order by count desc; s addr d addr count

Time s addr d addr

2022-08-10 11:18 80.255.47.aaa aaa.aaa.aaa
2022-08-10 11:18 80.255.47.aaa aaa.aaa.aaa
2022-08-10 11:18 80.255.47.aaa aaa.aaa.aaa

80.255.47.aaa 10.13.254.42 Python_urllib/2.8
80.255.47.aaa 10.13.254.42 Python_urllib/2.8

An attacker who is known to be in Europe is identified by
the IP address 80.255.47.aaax. Python is used by the attacker
to target the Journal Services Site.

My _data@my_data:~$ perl logkedb.pl-r data log.pcap-d
data_log.db

sqlite>select s addr, d addr, count(*) as count
__>from ip

__>group by s addr, d addr
__>order by count desc; s addr d addr count

Time s addr d addr

2022-08-09 10:13 125.201.71.aaa aaa.aaa.aaa
2022-08-09 10:13 125.201.71.aaa aaa.aaa.aaa
2022-08-09 10:14 125.201.71.aaa aaa.aaa.aaa

125.201.71.aaa aaa.aaa.aaa.aaa sqlmap/1.0_dev (rNone)
(http://www.sqlmap.org)

The process of identifying SQL injection attacks using input
validation and parsing methods requires quite a long
processing time. Figure 5 is the result of measuring the time
required for the input validation process. It can be seen that in
the input validation process, the processing time starts to look
stable at around 2250 users.

Figure 6 shows the results of measuring the time required
for the parsing method process. As with input validation, it can
be seen that in the parsing method the processing time starts to
look stable at a number of users around 500 users.

The concatenated method process proposed in this study

succeeded in making the processing time more efficient, as
shown in Table 3. The concatenated method processing time
succeeded in reducing the processing time to be 15.2% more
efficient than the sum of the processing times of the two
methods separately.

Input Validation's Processing Time
1200

1000 Y

800

600

Time (ms)

400

200

500 1000 2000 2500

Number of users

1500

Figure 5. Input validation’s processing time graph

Parsing Method's Time Processing

1400
1200

1000
800
600

Time (ms)

400
200

500 1000 1500 2000 2500

Number of users

Figure 6. Parsing method’s processing time graph

Table 3. Processing time comparison

Users Time (ms) Efficiency
Input Parsing
validation method Concatenated
10 6 10 14 12.50%
20 16 21 32 13.51%
30 32 41 63 13.70%
40 42 53 81 14.73%
50 55 64 101 15.12%
2230 986 1084 1749 15.51%
2240 997 1103 1772 15.62%
2250 999 1105 1775 15.64%

The next test is to measure the success rate of identification
if an attack occurs on the website. Testing will use a confusion
matrix. Testing is carried out by measuring the success of
attack identification using input validation, parsing methods
and concatenated methods. The formulas for the confusion
matrix are in Eqgs. (1)-(3) and Table 4.

1922

Table 4. Confusion matrix

Matrix Actual Class
Attack Not Attack
TP (True FP (False
Prediction Attack Positive) Positive)
Class FN (False TN (True
Not Attack Negative) Negative)

Table 5. Confusion matrix for input validation

Matrix Actual Class
Attack Not Attack
Prediction Attack TP=94 FP=0
Class Not Attack FN=6 TN=100

Table 6. Confusion matrix for parsing method

Matrix Actual Class
Attack Not Attack
Prediction Attack TP=92 FP=0
Class Not Attack FN=8 TN=100

Table 7. Confusion matrix for concatenated method

Matrix Actual Class
Attack Not Attack
Prediction Attack TP=99 FP=0
Class Not Attack FN=1 TN=100
Precisi T 100% (1
=—X

recision TP T FP 0
Recall = — x 1009 2
eca TP T FN % 2

TP+ TN

Accuracy = X 100% 3)

TP+TN+ FP+FN

Based on the data in Table 5, the results of the attack
detection experiment with input validation are as follows:

Precision=(94)/(94)x100%=100%
Recall=(94)/(100)x100%=94%
Accuracy=(94+100)/(200)=97%

Based on the data in Table 6, the results of the attack
detection experiment with the parsing method are as follows:

Precision=(92)/(92)x100%=100%
Recall=(92)/(100)x100%=92%
Accuracy=(92+100)/(200)=96%

Based on the data in Table 7, the results of the attack
detection experiment with concatenated method are as follows:

Precision=(99)/(99)x100%=100%
Recall=(99)/(100)x100%=99%

Accuracy=(99+100)/(200)=99.5%

In order to calculate the confidence interval of the efficiency
carried out, the formula used is

c1=xt% (4)

Sample size (amount)=2250
Sample mean (average)=15.2%
Standard deviation=1.5%
Confidence Level=95%

CI=15.240.062

The statistical calculation of the Confidence Level of the
efficiency of using the concatenated method is 15.2+0.062.

The next statistic used is to calculate the p-value using an
analysis of variance (ANOVA).

Based on Table 8 and Table 9, The f-ratio value is 6.99968.
The p-value is 0.008446. The result is significant at p < 0.05.
Based on the ANOVA statistical results, it was found that the
proposed method significantly improved efficiency.

Table 8. Summary of ANOVA data

Treatment
1 2 Total
N 250 250 500
T X 377974 349241 727215
Mean 1718.06 1587.46 1652.76
T X2 712734536 608464667 1321199203
Std. Dev. 537.85 496.83 521.27
Table 9. Results
Source SS DF MS
Between- 1876330.20 1 1876330.20
treatments
Within- 117410017.75 448 268059.40
treatments
Total 119286347.94 449

Table 10. Comparative study with other methods

Method Strengths Weaknesses Best Used For
Concatenated Batch Parsing Systems where
Input processing, complexity, inputs are
Validation and simplicity in difficult error combined
Parsing certain isolation, before
(CIvP) scenarios security risks validation
Granular Hard to
Regular control, maintain, Simple, well-
Expressions efficient limited logic, defined input
(RegEXx) pattern potential fields
matching security issues
High security, Restrictive, Systems with
Whitelisting simpleand frequent updates strict input
effective required rules
Blocking
Insecure, s
Easy to specific
L . complex to
Blacklisting implement for L known
. maintain for L
basic cases - malicious
evolving threats :
inputs
Structured . S”Of‘g dat_a Performance Structured
A integrity, wide data formats,
Validation validation overhead, such as APIs
(JSON/XML) complexity .
rules and services

Table 10 is a comparison between the Concatenated Input

Validation and Parsing (CIVP) method and other methods.
Other methods used for comparison are Regular Expression
(RegEx), Whitelisting, Blacklisting, and Structured Validation
(JSON/XML).

Based on the results of statistical calculations, several
further analyses can be taken as follows:

¢ The narrow range of the confidence interval (CI) suggests

that the sample mean is a good estimate of the population mean,
indicating high precision in the study's estimate of efficiency.

o F-Ratio: The F-value of 6.99968 indicates that there is

variability between the treatment means that is larger than
what we would expect due to random chance. A higher F-value
indicates more substantial differences between group means.

* p-Value: The p-value is 0.008446, which is less than the

common significance level of 0.05. This indicates that the
differences between the two-treatment means are statistically
significant. In other words, there is strong evidence that
efficiency improvement is seen with the concatenated method.

» The Concatenated Input Validation and Parsing Method

offers efficiency in certain batch processing scenarios but may
introduce significant security risks and error-handling
challenges, particularly if parsing is not well-defined. Other
methods like RegEx, Whitelisting, and Structured Validation
provide more granular control, but each comes with trade-offs
in complexity, flexibility, and security. Whitelisting is usually
the most secure method, whereas Structured Validation excels
in complex data formats.

5. CONCLUSIONS

Network forensic investigations are carried out to trace the
traces of the attacker. The log files can be used to look for
evidence of unauthorized network activity. The information is
derived from IDS Snort, a network-based intruder detection
system. IDS Snort uses a number of rules (rules) to identify
network intruders, and enforcing these rules is crucial to
identifying attacks.

On the network forensic server, PERL scripts are used to
decipher log files according to the time of the attack, the IP
address, the Mac address, and the port. The script for log file
analysis using SQLite and the ports scanning script are then
used to discover open ports on a server. A port scan script aims
to determine which ports are open if an attacker successfully
breaches a system using SQL Injection or exploiting online
vulnerabilities with databases. Then the log file is examined
using the SQLite script. The three scripts and the employed
modules are uploaded to the forensic network server.

By having network forensic research available via the
Journal Services Site, people are believed to realize how
challenging it is to defend networks from intrusions. It is
possible to take steps to stop it from happening again or lessen
the harm the attack will do.

Based on the test results, it was found that the use of the
method proposed in this study succeeded in making processing
time 15.2% more efficient. Experiments carried out with the
method proposed in this study succeeded in increasing the
attack detection accuracy from 96-97% to 99.5%.

SQL attack prevention is very limited by the form of data to
be protected. The method in this study has limitations because
it is specifically for data contained in the Multimedia and
Journal Services Site which consists of research article data

including multimedia files such as video and audio.

ACKNOWLEDGMENT

This research was supported and carried out in the computer
network laboratory at the Department of Computer Systems at
Maranatha Christian University.

REFERENCES

(1]

(2]

(3]

(4]

(3]

(6]

(8]

[10]

[11]

Chala, O., Novikova, L., Chernyshova, L., Kalnitskaya,
A. (2020). Method for detecting shilling attacks based on
implicit feedback in recommender systems. EUREKA:
Physics and Engineering, 5: 21-30.
https://doi.org/10.21303/2461-4262.2020.001394
Hoang, X.D., Nguyen, T.H. (2021). Detecting common
web attacks based on supervised machine learning using
web logs. Journal of Theoretical and Applied
Information Technology, 99(6): 1339-1350.
Szczypiorski, K. (2020). Cyber (in) security.
International Journal of Electronics and
Telecommunications, 6(1): 243-248.
https://doi.org/10.24425/ijet.2020.131870

Wisniewski, P., Sosnowski, M., Burakowski, W. (2022).
On implementation of efficient inline DDoS detector
based on AATAC algorithm. International Journal of
Electronics and Telecommunications, 68(4): 889-898.
https://doi.org/10.24425/ijet.2022.143899

Kumar, H.T.|R. (2021). Attack and anomaly detection in
IoT networks using supervised machine learning
approaches. Revue d’Intelligence Atrtificielle, 35(1): 11-
21. https://doi.org/10.18280/ria.350102

Dasari, K.B., Devarakonda, N. (2022). TCP/UDP-Based
exploitation DDoS attacks detection using ai
classification algorithms with common uncorrelated
feature subset selected by pearson, spearman and kendall
correlation methods. Revue d’Intelligence Artificielle,
36(1): 61-71. https://doi.org/10.18280/ria.360107
Hoang, X.D., Nguyen, N.T. (2019). Detecting website
defacements based on machine learning techniques and
attack signatures. Computers, 8(2): 35.
https://doi.org/10.3390/computers8020035

Challa, R., Rao, K.S. (2022). Resource based attacks
security using RPL protocol in internet of things.
Ingénierie des Systémes d’Information, 27(1): 165-170.
https://doi.org/10.18280/isi.270120

Murty, M.S., Rao, N.N. (2020). Stalking the resources
for security in linked data applications using resource
description framework. Ingénierie des Systeémes
d’Information, 25(6): 793-801.
https://doi.org/10.18280/is1.250609

Antunes, N., Vieira, M. (2009). Detecting SQL injection
vulnerabilities in web services. In 2009 Fourth Latin-
American Symposium on Dependable Computing, Joo
Pessoa, Brazil, pp- 17-24.
https://doi.org/10.1109/LADC.2009.21
Nagabhooshanam, N., Ganapathy, N.B.S., Ravindra

1924

[12]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

Murthy, C., Mohammed Saleh, A.A., CosioBorda, R.F.
(2023). Neural network based single index evaluation for
SQL injection attack detection in health care data.
Measurement: Sensors, 27: 100779.
https://doi.org/10.1016/j.measen.2023.100779

Dubey, A.M.S., Mehra, N. (2023). A review on SQL
injection, detection and preventions techniques. Journal
of Pharmaceutical Negative Results, 1: 1068-1073.
https://doi.org/10.47750/pnr.2023.14.S01.148

Maraj, A., Rogova, E., Jakupi, G., Grajqevci, X. (2017).
Testing techniques and analysis of SQL injection attacks.
In 2017 2nd International Conference on Knowledge
Engineering and Applications (ICKEA), London, UK,
pp- 55-59.
https://doi.org/10.1109/ICKEA.2017.8169902

Gu, H., Zhang, J., Liu, T., Hu, M., Zhou, J., Wei, T.,
Chen, M. (2019). DIAVA: A traffic-based framework for
detection of SQL injection attacks and vulnerability
analysis of leaked data. IEEE Transactions on Reliability,
69(1): 188-202.
https://doi.org/10.1109/TR.2019.2925415

Alkhathami, J.M., Alzahrani, S.M. (2022). Detection of
SQL injection attacks using machine learning in cloud
computing platform. Journal of Theoretical and Applied
Information Technology, 100(15): 5446-5459.
Tashenova, Z., Nurlybaeva, E., Tulegulov, A.,
Abdugulova, Z. (2021). SQL-Attack research and
protection. Journal of Theoretical and Applied
Information ~ Technology, 99(19): 4536-4545.
http://www.jatit.org/volumes/Vol99No19/8Vol99No19.
pdf

Volkova, M., Chmelar, P., Sobotka, L. (2019). Machine
learning blunts the needle of advanced SQL injections.

In MENDEL, 25(1): 23-30.
https://doi.org/10.13164/mendel.2019.1.023
Bandhakavi, S., Bisht, P., Madhusudan, P.,

Venkatakrishnan, V.N. (2007). CANDID: Preventing
SQL injection attacks using dynamic candidate
evaluations. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, New York,
United States, pp. 12-24.
https://doi.org/10.1145/1315245.1315249

Johny, J.H.B., Nordin, W.A.F.B., Lahapi, N.M.B., Leau,
Y.B. (2021). SQL Injection prevention in web
application: A review. In Advances in Cyber Security:
Third International Conference, ACeS 2021, Penang,
Malaysia, Revised Selected Papers, Springer, Singapore,
3: 568-585. https://doi.org/10.1007/978-981-16-8059-
535

Demilie, W.B., Deriba, F.G. (2022). Detection and
prevention of SQLI attacks and developing compressive
framework using machine learning and hybrid
techniques. Journal of Big Data, 9(1): 124.
https://doi.org/10.1186/s40537-022-00678-0

Wijaya, M.C., Maksom, Z., Abdullah, M.H.L. (2021).
Two verification phases in multimedia authoring
modeling. Journal of Information and Communication
Convergence Engineering, 19(1): 42-47.
https://doi.org/10.6109/jicce.2021.19.1.42

