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The rising prevalence of diabetes worldwide has prompted the need for innovative
solutions that leverage advancements in technology to improve patient outcomes. This
paper explores the application of machine learning algorithms to the real-time analysis of
multimedia data from loT-based health instruments for effective diabetes management.
This research proposes a novel framework for real-time diabetes management by
leveraging the power of wearable 10T devices, edge computing, and advanced machine
learning techniques. Specifically, we utilize Recurrent Neural Networks, trained using
backpropagation through time, to analyze temporal patterns in continuous glucose
monitoring data and physical activity logs. This approach enables the system to predict
and prevent episodes of hyperglycemia and hypoglycemia, providing personalized
recommendations for insulin adjustments and dietary modifications. Evaluation results
demonstrate the effectiveness of the proposed approach, achieving an 80% accuracy in
classifying hypoglycemia, normal glucose levels, and hyperglycemia. Notably, the system
exhibits high precision in identifying hyperglycemic events, indicating its potential in
preventing severe complications. Further personalization and integration of additional

health data are planned to enhance the system's accuracy and comprehensiveness.

1. INTRODUCTION

The rapid advancements in Internet of Things technology
have revolutionized the healthcare industry, enabling the
development of innovative health monitoring instruments that
can continuously collect and analyze a wide range of patient
data [1]. These IoT-based health devices are particularly
valuable for the management of chronic conditions, such as
diabetes. Diabetes, a chronic metabolic disorder affecting
millions globally, demands continuous monitoring and
management of various factors, including blood glucose levels,
physical activity, diet, and medication adherence [2]. The
emergence of Internet of Things has revolutionized healthcare
by enabling the development of smart, interconnected health
instruments. These devices, such as continuous glucose
monitors, smart insulin pens, and fitness activity trackers,
generate a wealth of real-time data, offering unprecedented
opportunities for personalized diabetes care. However,
extracting meaningful insights from this vast and complex data
requires advanced analytical techniques [3].

Real-time monitoring using IoT provides several
advantages over conventional approaches. Firstly, it offers
continuous insights into a patient's physiological parameters,
enabling timely detection of critical events like hypoglycemia
or hyperglycemia. This allows for proactive interventions,
preventing severe complications and improving overall
glycemic control. Secondly, the continuous data streams
generated by loT devices provide valuable feedback on the
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effectiveness of treatment plans, facilitating personalized
adjustments to medication, diet, and exercise regimens. By
leveraging of real-time data and intelligent algorithms, we can
transition from a reactive to a proactive approach to diabetes
management, improving the quality of life for individuals with
diabetes while reducing the burden on healthcare systems [4].
The use of Multimedia can also provide convenience for its
users [5].

This research explores the potential of machine learning
algorithms in processing and analyzing multimedia data
collected from loT-based health instruments for enhanced
diabetes management. By leveraging the power of machine
learning, we aim to develop models capable of real-time
prediction of glucose fluctuations, enabling timely
interventions; generating personalized recommendations for
diet, exercise, and medication adjustments; and early detection
of potential complications, facilitating proactive healthcare
interventions. An appropriate multimedia model needs to be
researched to be integrated with health instruments [6].

A significant research gap exists in current diabetes
management systems, which primarily rely on numerical data
from IoT-based health instruments, such as glucose levels and
heart rate, while neglecting real-time analysis of multimedia
data, including images, voice inputs, and video recordings.
The integration of machine learning for multimodal data
fusion remains underexplored, particularly in real-time
processing on resource-constrained IoT devices. Additionally,
current models are often static and fail to adapt to individual
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health variations over time, limiting their personalization
capabilities. Furthermore, security and privacy concerns in
handling sensitive multimedia data have not been adequately
addressed, highlighting the need for privacy-preserving
machine learning techniques such as federated learning and
differential privacy.

This research introduces a novel approach by integrating
real-time machine learning algorithms for multimodal data
analysis in loT-based diabetes management, combining sensor
data with images, voice, and videos for a more comprehensive
health assessment. It proposes lightweight edge Al models
optimized for real-time processing on IoT devices, ensuring
efficiency and scalability. The system will leverage adaptive
learning techniques to personalize predictions based on
individual lifestyle patterns and health trends. Additionally,
secure data processing methods, including federated learning,
will be implemented to enhance privacy while maintaining
accurate decision-making. This approach aims to transform
diabetes management by enabling real-time, context-aware,
and secure health monitoring.

2. LITERATURE REVIEW
2.1 IoT in diabetes management

The advent of the Internet of Things has sparked a paradigm
shift in diabetes management, empowering both patients and
healthcare providers with real-time insights and personalized
interventions. IoT-enabled devices, such as continuous
glucose monitors, smart insulin pens, and wearable activity
trackers, have emerged as indispensable tools for continuous
monitoring and data collection [7].

CGMs, for instance, have revolutionized blood glucose
monitoring by providing dynamic readings throughout the day,
eliminating the need for frequent finger-prick tests . These
devices transmit real-time data to smartphones or dedicated
receivers, enabling patients to track glucose trends, identify
patterns, and make informed decisions regarding insulin
dosage, meal planning, and physical activity [8].

Smart insulin pens, on the other hand, offer automated
insulin delivery and dosage tracking, improving adherence to
medication regimens and reducing the risk of hypoglycemia
[9]. These pens can also integrate with CGMs to adjust insulin
delivery based on real-time glucose levels, paving the way for
closed-loop insulin delivery systems [10].

Furthermore, wearable activity trackers provide valuable
data on physical activity levels, sleep patterns, and heart rate
variability, all of which are crucial for managing diabetes and
mitigating associated risks [11]. The integration of these
diverse IoT devices creates a comprehensive ecosystem for
personalized diabetes management, enabling data-driven
insights and proactive interventions. Despite the wealth of data
generated by IoT-based health instruments, the challenge lies
in effectively processing and analyzing this information to
derive meaningful insights.

2.2 Machine learning in diabetes
Machine learning has emerged as a powerful tool for

analyzing complex medical data, and its application in
diabetes management has shown significant promise [12].
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Researchers have successfully employed various machine
learning techniques, including regression models, neural
networks, and reinforcement learning, to predict blood glucose
levels, detect insulin sensitivity, and offer personalized
recommendations based on lifestyle data [3].

Regression models, such as linear regression and support
vector regression, have been widely used to predict future
glucose levels based on historical data and other relevant
factors [13]. Neural networks, particularly recurrent neural
networks and long short-term memory networks, have
demonstrated superior performance in capturing temporal
dependencies and non-linear relationships within glucose data,
leading to more accurate predictions [14].

Reinforcement learning, a type of machine learning that
learns through trial and error, has shown potential in
developing personalized insulin delivery strategies. By
continuously learning from the patient's glucose responses to
insulin and other factors, reinforcement learning algorithms
can optimize insulin dosages in real-time, mimicking the
function of a closed-loop insulin delivery system [15].

The integration of machine learning with IoT-based health
instruments holds immense potential for transforming diabetes
management. By leveraging the predictive power of machine
learning, healthcare providers can develop personalized
interventions, improve patient outcomes, and reduce the
burden of this chronic condition.

2.3 Challenges in real-time monitoring

Despite the advancements in IoT and machine learning,
real-time monitoring and analysis of multimedia data for
diabetes management present significant challenges.
Processing vast amounts of data generated by multiple sensors
while ensuring accurate and timely predictions of blood
glucose fluctuations remains a complex task [16].

Delays in data transmission, processing, or prediction can
have serious consequences for individuals with diabetes. For
instance, a delay in predicting a hypoglycemic event could
prevent timely intervention, potentially leading to severe
complications such as loss of consciousness or seizures [17].
Similarly, inaccurate predictions of hyperglycemia could
result in inappropriate insulin administration, leading to
hypoglycemia or other adverse effects [18].

Ensuring real-time monitoring systems' reliability,
robustness, and accuracy is paramount for their successful
implementation in clinical practice. Addressing data quality,
algorithm optimization, and system latency challenges is
crucial for developing effective and trustworthy solutions for
real-time diabetes management.

Muhammad Mulhim Md Jani presents the development of
a weight system and real-time monitoring platform for
tracking the activity patterns of a stingless bee colony. The
system, using an microcontroller, load cells, and an RTC
module, is designed with enhanced stability and allows
continuous mobile monitoring via the Blynk app. Data shows
peak foraging activity between 9:00 AM and 1:00 PM, with
occasional evening activity. Correlation analysis of weight
fluctuations helps beekeepers understand foraging patterns,
which can be linked to bee activity, human interference, or
environmental factors. This IoT-based system aids in
improving hive management, monitoring bee health, and
optimizing honey production [19].



3. METHODOLOGY

Effective diabetes management necessitates the continuous
monitoring of multiple health metrics, including blood glucose
levels, insulin administration, dietary intake, and physical
activity. While loT-based instruments can gather this data
consistently, the challenge lies in real-time analysis to generate
actionable insights. Traditional diabetes management
approaches rely on intermittent monitoring and retrospective
evaluation, which may fail to capture critical glucose
fluctuations or anticipate complications in a timely manner.
Machine learning models designed to process multimedia data
can offer more accurate and personalized solutions for
diabetes management.

The objectives of this research are to develop machine
learning models for real-time analysis of glucose levels,
insulin use, and lifestyle data collected from IoT devices for
diabetes management. These models will be optimized to
predict episodes of hyperglycemia or hypoglycemia based on
real-time data. Additionally, the research aims to explore the
use of multimedia data, such as diet images, physical activity
videos, and glucose trends, to offer personalized health
recommendations for diabetes patients.

This research will employ a multifaceted methodology
encompassing data collection, machine learning model
development, real-time processing framework implementation,
and rigorous evaluation.

3.1 Diabetes management tools integration and workflows

The proposed machine learning-based system for real-time
analysis of multimedia data from loT-based health instruments
can be seamlessly integrated with existing diabetes
management tools and workflows. This integration leverages
technologies like 10T, cloud computing, and machine learning,
allowing the system to work alongside current diabetes
solutions to enhance real-time decision-making, provide
personalized recommendations, and automate insulin delivery.

The system can connect with existing loT-based devices
such as Continuous Glucose Monitors (CGMs), smart insulin
pumps, activity trackers, and heart rate monitors that patients
are already using. These devices collect continuous data on
blood glucose levels, insulin delivery, physical activity, heart
rate, and other vital metrics. Through Bluetooth or Wi-Fi
connectivity, the system can pull data from these devices into
a centralized cloud platform for processing and analysis. For
instance, CGMs provide real-time glucose data, which the
system can analyze to identify trends and make predictions.
Smart insulin pumps can synchronize their data with the
system, allowing for automated adjustments based on glucose
trends and activity levels. Data from wearables, including
activity trackers and heart rate monitors, is also integrated,
enabling the system to predict glucose fluctuations based on
physical activity and stress levels.

Once the data is collected, it is sent to the cloud for
centralized processing and storage. The system uses machine
learning models and real-time analytics to process the data and
generate actionable insights. For example, the system can
predict hypoglycemic episodes, suggest insulin dosage
adjustments, or alert the patient about activity-induced glucose
fluctuations. In addition, the system can handle missing or
inconsistent data from 10T devices using deep learning-based
imputation techniques, ensuring that the diabetes management
process remains accurate even in the case of sensor failures.
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The system can also interface with existing mabile apps or
patient portals commonly used in diabetes management.
Through these platforms, patients and healthcare providers can
access real-time data, receive alerts, and review insights on
glucose levels, activity, and insulin use. The system can send
real-time alerts to patients if their blood sugar is approaching
dangerous levels, prompting them to take corrective actions
such as insulin injections or eating. Data visualization tools
within the app provide trends in glucose levels, insulin usage,
and other health metrics, helping both patients and healthcare
providers monitor and adjust their diabetes management
strategies.

Furthermore, the system can be integrated with Electronic
Health Records (EHR) systems used by healthcare providers.
This integration facilitates the easy sharing of patient data,
allowing healthcare providers to view real-time insights
alongside the patient’s historical health data. Providers can
make informed decisions about treatment adjustments based
on the system's recommendations and the patient’s ongoing
health trends. The integration also ensures compliance with
data privacy regulations, protecting patient confidentiality
while enabling data-driven decision-making.

One of the significant advantages of the proposed system is
its ability to continuously learn from the patient’s data and the
outcomes of previous decisions. As more data is gathered, the
machine learning models are retrained to improve the accuracy
of predictions and recommendations. Federated learning
ensures that the patient’s data remains private, contributing to
the improvement of the models without centralizing sensitive
information. This personalized approach allows the system to
continuously adapt to the patient’s changing health status,
preferences, and lifestyle.

For patients using smart insulin pumps, the system can offer
automated insulin delivery adjustments based on real-time
glucose data and activity levels. This integration creates a
closed-loop system, where the insulin pump communicates
with the CGM to adjust insulin delivery automatically. This
functionality essentially turns the system into an Artificial
Pancreas, providing automatic insulin adjustments to maintain
optimal blood glucose levels.

3.2 Data collection

A diverse dataset will be assembled through the use of
various 10T devices and digital platforms:
e |oT Devices:
o Continuous Glucose Monitors: Utilized to capture
continuous blood glucose measurements.
o Insulin Pumps/Smart Insulin Pens: Employed to
record insulin administration data.
o Wearable Sensors: Leveraged to collect physical
activity information.
¢ Digital Platforms:
o Smartphone Applications: Used in conjunction with
multimedia data to log and analyze dietary intake.
This research proposes a comprehensive system for
personalized diabetes management using advanced machine-
learning techniques and real-time data. The system will
leverage continuous glucose monitors, physical activity logs,
and dietary intake records to predict and prevent episodes of
hyperglycemia and hypoglycemia as shown in Figure 1 [20].
By employing reinforcement learning models, personalized
recommendations for insulin adjustments and dietary
modifications will be generated. Additionally, deep learning



models will integrate multimedia data, such as food intake
images and activity data, to provide a holistic management
plan. The use of proper and good biosensors will increase the
accuracy of data collection [21].

(@) (b) ()

Figure 1. Continuous glucose monitor (CGM)

An insulin pump is a small, computerized medical device
that continuously delivers insulin to individuals with diabetes,
particularly those with Type 1 and some with Type 2 diabetes
requiring intensive insulin therapy as shown in Figure 2. It
mimics the natural insulin release by providing a basal dose
throughout the day and bolus doses before meals or to correct
high blood sugar. The device consists of a pump, an insulin
reservoir, and an infusion set that delivers insulin through a
small cannula inserted under the skin. Compared to multiple
daily injections, insulin pumps offer more precise insulin
delivery, improved blood sugar control, and greater flexibility
in lifestyle, though they require regular monitoring and
maintenance to prevent issues like pump failure or infection.
Modern loT-enabled smart pumps integrate with Continuous
Glucose Monitors (CGMs) and Al-driven algorithms, creating
an Artificial Pancreas System (APS) that automatically adjusts
insulin doses based on real-time glucose readings,
significantly enhancing diabetes management.

( ————
|
) (3
Glucose Transmitter Insulin
Sensor Pump

Figure 2. Insulin pump

The Al-powered monitoring wearable would act as a
personalized diabetes management assistant, offering real-
time, adaptive, and automated insights to improve glucose
control while reducing the burden of manual tracking.

A robust real-time processing framework will be
established using high speed computing for the immediate
processing of critical data and cloud integration for long-term
analysis. This approach aims for individuals with diabetes
condition to effectively manage their condition and improve
the quality of their overall health outcomes.

3.3 Machine learning models

Advanced machine learning techniques will be employed to
analyze the collected data and provide actionable insights:
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e Glucose Forecasting: Time-series analysis methods and
regression models, such as Recurrent Neural Networks
and Long Short-Term Memory networks, will be utilized
to predict future blood glucose levels based on historical
data, encompassing glucose trends, insulin administration,
and activity patterns.

e Hypoglycemia and  Hyperglycemia  Detection:
Classification algorithms will be implemented to identify
and forecast episodes of hyperglycemia or hypoglycemia
in a timely manner. These algorithms will leverage real-
time data from Continuous Glucose Monitors, physical
activity logs, and dietary intake records.

e Personalized Recommendations: Reinforcement learning
models will be employed to generate personalized
recommendations, including insulin adjustments and
dietary modifications, tailored to the patient's unique
health profile and real-time data.

e Multimedia Integration: Deep learning models will be
explored to process multimedia data, such as food intake
images and activity data, integrating them with
physiological information to provide a comprehensive
and personalized management plan.

Recurrent Neural Networks differ from conventional multi-
layer perceptron networks in two crucial ways as shown in
Figure 3. Firstly, RNNs have a memory-like capability,
allowing them to incorporate previous inputs and patterns
when processing new information. Secondly, RNNs employ
the same parameters or weights across different steps of the
input sequence, which enables them to generalize and learn
temporal dependencies more efficiently. The hidden states,
represented by the green blocks, comprise hidden nodes or
units, symbolized by the blue circles labeled 'a’. The
hyperparameter 'd’ specifies the number of these hidden nodes.
Each hidden state can be conceptualized as an activation
function, analogous to those employed in multilayer
perceptrons, operating on the individual blue nodes. The
computational intricacies within the hidden states will be
further elaborated upon in the subsequent section on forward
propagation.

@
<

(=)
.

Figure 3. The architecture of an RNN

The matrices Wx, Wh, and Wy represent the weights within
the RNN architecture. These weights are shared across all time
steps in the network. This means that the values of Wx at time
step t=1 are identical to the values of Wx at t = 2 and all other
time steps. This weight-sharing mechanism is a fundamental
characteristic of RNNs, enabling them to learn and generalize



temporal patterns effectively.

The vector h represents the output of a hidden state after an
activation function has been applied to its hidden nodes.
Notably, at any given time step t, the architecture incorporates
information from the previous time step (t-1) by considering
both the previous hidden state's output (h) and the current input
(X). This mechanism allows the network to retain and utilize
information from previous inputs in a sequential manner. It's
important to highlight that the initial h vector, at time step zero,
is always initialized as a vector of zeros. This is because, at the
beginning of the sequence, there is no preceding information
for the algorithm to consider.

The matrices Wx, Wy, and Wh represent the weights of the
RNN. These weights are shared, meaning they remain the
same across all time steps. For instance, the values of Wx at
time step t=1 are identical to the values of Wx at t=2 and every
other time step as shown in Figure 4. This weight-sharing
characteristic is crucial for RNNs to learn and generalize
temporal patterns effectively.

Output from §
hidden state (az1)
at t-1

-

Figure 4. The hidden state at time step t=2 receives input
from two sources: the output of the hidden state at the
previous time step (t-1) and the current input (x) at time step
t=2

The vector x; represents the input provided to each hidden
state in the sequence. The subscript 'i* denotes the position of
the element within the input sequence, where 'i’ ranges from 1
to 'n". It's crucial to remember that textual data needs to be
converted into a numerical format for processing. For instance,
each letter in the word "dogs" could be represented as a one-
hot encoded vector with dimensions (4>1). Similarly, x can
also be represented using word embeddings or other suitable
numerical representations.

The recurrent neural network architecture involves three
key equations:

e The hidden nodes are computed by combining the
weighted output of the previous state (multiplied by the
weight matrix Wy) with the weighted current input
(multiplied by the weight matrix Wx) as Eg. (1).

e The tanh activation function, represented by the green
block, is applied to the hidden nodes to obtain the output
of the hidden state as Eq. (2).

e To generate a prediction, the hidden state output is
multiplied by the weight matrix Wy, and then a softmax
activation function is applied as Eq. (3).

ar = Wyhe_y + WyX, (D
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h; = tanh (a;) (2)

Ve = Softmax(Wyh,) 3)
where, a=Hidden notes; h=Output from hidden state;
y=Prediction time t.

Similar to Multilayer Perceptron, Recurrent Neural
Networks leverage the backpropagation algorithm to learn
from sequential data. However, backpropagation in RNNs
presents a greater challenge due to the recursive nature of
weights and their impact on the loss function across time. The
general workflow of backpropagation in RNNs involves
randomly initializing the weight matrices, followed by
forward propagation to generate predictions. Subsequently,
the loss is computed, and backpropagation is performed to
determine the gradients. Finally, the weights are updated based
on these gradients. This cyclical process, from forward
propagation to weight updates, is reiterated iteratively. Multi-
class cross-entropy loss function as Eq. (4) and total loss as Eq.
(5) and Figure 5 shows the RNN with entropy loss function.
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Figure 5. RNN with entropy loss function

3.4 Real-time processing framework

A robust and efficient real-time processing framework will
be established to manage the continuous influx of data:

e Edge Computing: Edge computing will be leveraged for
real-time processing of glucose and activity data directly
on wearable devices. This approach facilitates faster
predictions and alerts for potentially hazardous glucose
fluctuations, such as hypoglycemic events.

e Cloud Integration: Cloud-based systems will be utilized
for processing non-critical data and conducting long-term
health trend analysis. This integration enables the
generation of periodic reports and personalized insights
for both healthcare providers and patients.

e Model Optimization: Lightweight machine learning
models will be implemented to ensure efficient operation
on loT devices with limited computing resources. This
optimization ensures real-time predictions without
compromising accuracy.



Table 1. Data experiments

Patient Blood Insulin Heart Step Calories Intake Exercise Type Prediction
ID Glucose Dosage Rate Count (Image Analysis) (Video) (Hypo/Hyperglycemia)
(mg/dL) (Units) (bpm)
P001 100 6 78 2500 400 Yoga Normal
P002 145 8 85 4500 600 Running Hyperglycemia
P003 120 7 72 6000 300 Cycling Normal
P004 95 5 68 2000 250 Walking Hypoglycemia
P005 160 9 90 5000 800 Running Hyperglycemia
P006 130 6 75 3500 400 Swimming Normal
P007 110 4 80 2200 350 Walking Normal
P008 180 10 100 5500 900 Aerobics Hyperglycemia
P009 140 7 78 4000 500 Normal

Cycling

A wearable 10T device is a smart, internet-connected
apparatus that can be worn on the body to continuously
monitor, collect, and transmit data. In the context of diabetes
management, these wearable 10T devices play a critical role in
tracking essential health metrics, such as blood glucose levels,
physical activity, heart rate, and dietary factors. These devices
enable real-time analysis, predictive modeling, and alerts,
empowering patients to manage their condition more
effectively.

3.5 Handles missing or inconsistent data from loT devices

In real-time diabetes management using loT devices,
missing data can arise due to various reasons such as sensor
malfunctions, transmission issues, or user non-compliance
(e.g., removing a wearable device). Deep learning-based
imputation offers a sophisticated solution for handling such
gaps in data by leveraging advanced models that can learn
complex temporal patterns and relationships among
physiological signals like glucose levels, heart rate, activity
levels, and meal intake.

Recurrent Neural Networks (RNNSs), particularly Long
Short-Term Memory (LSTM) networks, are effective for this
purpose as they are designed to handle time-series data.
LSTMs can learn sequential dependencies within historical
glucose and activity data, which is crucial for diabetes
management. When missing values are detected, the LSTM
model predicts the missing data based on previous and future
trends. For instance, if glucose readings are missing for a short
period, the LSTM can predict the values using the trend from
past glucose levels, heart rate data, and activity patterns. This
ensures that even if data is lost, the predictions remain
consistent with the patient’s health trends.

In diabetes management, LSTMs can be applied to predict
and impute missing glucose readings, analyze trends in heart

rate, and provide personalized recommendations based on
sequential sensor data. For example, if glucose readings are
missing for a certain period, the LSTM model can predict the
missing values by learning from the previous readings and
other factors, such as meal intake, insulin administration, and
physical activity. This makes LSTMs particularly valuable for
real-time analysis in loT-based health devices, as they ensure
accurate data interpretation and decision-making even when
some data is missing or inconsistent.

4. RESULTS

The proposed framework demonstrates significant
improvements in real-time diabetes management compared to
traditional approaches. The key results are shown in Table 1.

Continuous glucose monitoring and activity tracking
through wearable [oT devices have shown promising results in
improving diabetes. Such systems can provide real-time
insights to patients and healthcare providers, enabling timely
interventions to prevent complications. A large-scale real-time
glucose monitoring system has been developed, which ingests
data from sensors, insulin, and meal information from patient
apps, and activity levels from phone sensors. This system
demonstrated improvements in patient health, with reduced
periods of hyper- and hypoglycemia. Recent trends in IoT-
based solutions for healthcare highlight the move towards
edge computing, where analytics and predictions are
performed directly on IoT devices. This approach ensures
faster response times and reduces the reliance on cloud
infrastructure.

Testing was carried out on 30 patients, and then the
accuracy was measured using a confusion matrix, as shown in
Table 2, with the interpretation as follows.

Table 2. Confusion matrix

Predicted: Normal

Predicted: Hypoglycemia
Actual: Hypoglycemia 7
Actual: Normal 1
Actual: Hyperglycemia 0

Predicted: Hyperglycemia
0

1
9 2
2 8

e  True Positives (TP):

o Hypoglycemia: The model correctly predicted 7
cases where the patient was actually experiencing
hypoglycemia.

o Normal: The model correctly predicted 9 cases of
normal glucose levels.

o Hyperglycemia: The model correctly predicted 8
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cases of hyperglycemia.

e False Positives (FP):

o Hypoglycemia: There was 1 case where the patient
was normal, but the model incorrectly predicted
hypoglycemia.

o Normal: There were 2 cases where the patient was



hyperglycemic, but the model incorrectly predicted
normal glucose levels.

o Hyperglycemia: The model did not incorrectly
predict hyperglycemia when the patient was actually
hypoglycemic or normal.

e False Negatives (FN):
o Hypoglycemia: The model failed to detect 1 case of
hypoglycemia, predicting it as normal.
o Normal: The model misclassified 2 cases of normal
glucose levels as hyperglycemia.
o Hyperglycemia: The model failed to detect 2 cases of
hyperglycemia, predicting them as normal.

Performance metrics derived from the Confusion Matrix:
e Accuracy:
Accuracy =(7+9+8)/30=24/30 =~ 80%

e  Precision (for each class):
o Hypoglycemia:
Precision =7/ (7+1) = 87.5%
o Normal:
Precision=9 / (9+2) ~81.8%
o Hyperglycemia:
Precision= 8 / (8+0) = 100%

e Recall (for each class):
o Hypoglycemia:
Recall=7/(7+1) =87.5%
o Normal:
Recall=9/ (9+2) ~81.8%
o Hyperglycemia:
Recal= 8/ (8+2) = 80%

e F1 Score (harmonic mean of precision and recall):
o Hypoglycemia:
F1 Score =2 %(0.875 x 0.875) / (0.875 +0.875) = 87.5%
o Normal:
F1 Score =2 %(0.818 x 0.818) / (0.818 +0.818) =~ 81.8%
o Hyperglycemia:
F1 Score =2 %(1.00 x 0.80) / (1.00 +0.80) ~ 88.9%

Summary of the model's performance:

e  Accuracy is 80%, which means the model is correct in 24
out of 30 cases.

e The model performs well in predicting hyperglycemia
with a precision of 100%, though it misses some cases
with a recall of 80%.

e Hypoglycemia prediction is strong with a precision and
recall of 87.5%.

e  The model struggles slightly with normal glucose levels,
where both precision and recall are around 81.8%,
indicating some misclassifications between normal and
hyperglycemia.

This confusion matrix provides a clearer understanding of
how well the machine learning model performs across
different glucose levels and where improvements can be made.

Table 3 shows the comparison between the prosposed study
and existing studies.

The proposed machine learning-based system for real-time
IoT-based health data analysis can significantly improve
patient outcomes and healthcare costs. By continuously
monitoring glucose levels, insulin delivery, and other health
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metrics, the system can detect fluctuations and predict
potential hypoglycemic or hyperglycemic events, enabling
early intervention and reducing the risk of complications such
as neuropathy, retinopathy, and cardiovascular disease.
Personalized treatment recommendations based on individual
data ensure better management of diabetes, improving patient
adherence and reducing the likelihood of emergency situations
like severe hypoglycemia or diabetic ketoacidosis.

Table 3. Comparison with existing studies

The Differences
The existing study explores how IoT devices
and machine learning algorithms can be
used to predict diabetes, focusing on data
collection, preprocessing, and classification.
While this study provides a broad overview
of IoT-based diabetes prediction, it lacks
real-time glucose monitoring, predictive
analytics for glucose fluctuations, and
automated insulin adjustment, which are key
aspects of the proposed system.

Existing Studies

"Integration of
IoT and MLA In
Prediction of
Diabetes: An
Overview" [22]

“An IoT Based
diabetic patient
Monitoring
System Using
Machine
Learning and
Node MCU” [23]

The existing study focuses on remote
monitoring of diabetic patients using [oT
sensors and machine learning techniques.

While it provides a foundation for diabetes
monitoring, it lacks real-time glucose
prediction, advanced deep learning models,
and automated insulin regulation, which are
the key advancements in the proposed

system.

The existing study focuses on non-invasive
monitoring of diabetic patients using [oT
sensors and machine learning models to
predict potential diabetic events. While this
study aims to improve diabetes management
through self-care recommendations, it lacks
real-time glucose prediction, adaptive
learning, and closed-loop insulin
adjustment, which are key strengths of the
proposed system.

“IoT and
Machine
Learning-Based
Self-Care System
for Diabetes
Monitoring and
Prediction” [24]

The system also enhances patient quality of life by
providing continuous monitoring and real-time alerts, helping
patients maintain stable glucose levels with fewer blood sugar
swings. Integration with mobile apps and patient portals
increases patient engagement, allowing them to actively track
their health and make informed decisions. From a healthcare
cost perspective, the system can reduce hospitalizations,
emergency care, and long-term complications by offering
early intervention and proactive care. It allows healthcare
providers to monitor patients remotely, optimize resources,
and reduce unnecessary tests and visits, leading to lower
operational costs.

By preventing complications such as kidney disease, nerve
damage, and cardiovascular issues, the system helps reduce
the high costs associated with chronic care. It also ensures
more efficient medication management, preventing insulin
overuse and lowering drug costs. The system offers a cost-
effective, preventive approach to diabetes care, improving
patient outcomes and reducing long-term healthcare expenses.

5. CONCLUSIONS

This research presents a robust framework for real-time
diabetes management leveraging wearable IoT devices, edge



computing, and machine learning. The system successfully
integrates real-time data from continuous glucose monitors,
physical activity trackers, and dietary intake records to provide
personalized insights and timely interventions.

The evaluation results, including the confusion matrix
analysis, demonstrate the effectiveness of the proposed
approach. With an accuracy of 80%, the model accurately
predicts and classifies different glycemic states, including
hypoglycemia, normal glucose levels, and hyperglycemia.
Notably, the model exhibits high precision in identifying
hyperglycemic events, indicating its potential in preventing
severe complications. While the model demonstrates strong
performance overall, there's room for improvement in
distinguishing between normal and hyperglycemic cases, as
observed in the confusion matrix.

Future work will focus on enhancing the model's accuracy
in classifying borderline cases and further personalizing the
system based on individual patient characteristics and lifestyle
factors. Additionally, integrating data from other sources, such
as sleep patterns and stress levels, could provide a more
comprehensive understanding of individual glycemic control.
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