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Abstract This study clarified a pedestrian crossing strategy 
for elderly Japanese pedestrians when perceiving an 
autonomous vehicle in a shared space by eliminating road 
features. Crossing strategy is the basis of pedestrian crossing 
behavior, and this study distinguishes two types of crossing 
strategies: conservative and aggressive. We proposed a process 
for pedestrians who use a strategy to cross the road. 
Experimental data collected in a virtual reality facility were 
analyzed to investigate pedestrian-crossing strategies. The 
variables contributing to the pedestrian crossing behavior and 
crossing strategy selection were explored. The results indicated 
that the proposed crossing strategy predicted the observed 
behaviors of the participants. Pedestrian crossing behavior is 
influenced by gender, age, and vehicle speed. Higher vehicle 
speed and pedestrian age lead to pedestrians increasing their 
crossing time and selecting a conservative walking strategy. The 
study also showed that males selected an aggressive strategy 
more frequently than females and that males needed more time 
to cross the road than females. 

Keywords Autonomous vehicle, crossing behavior, elderly 
pedestrian, human-machine interaction, shared space 

I. INTRODUCTION 

Shared space traffic design has been utilized in several 
countries and areas to decrease traffic congestion and improve 
pedestrian safety and community issues, such as the zone in 
Graz, Austria, and the project of Bohmte,  Germany. 
Monderman [1] pioneered the introduction of shared space, 
which has been considered the most suitable method for 
multiple modes of transport [2]. This is an urban design 
approach to decrease road utilization gaps between users by 
eliminating road features (e.g., traffic signs and road marks). 
However, the disappearance of these road features in shared 
spaces may confuse pedestrians and make their crossing 
behaviors different from regular road conditions. Moreover, 
this problem is aggravated when autonomous vehicles (AVs) 
enter shared spaces. Compared to human drivers, AVs have 
several limitations in predicting pedestrian intentions and 
behaviors [3]. For example, an AV may crash into a pedestrian 
by mismatching the image of one pedestrian with that of 
others [4]. Another limitation is that AVs lack the eye contact 
and social interaction that human drivers have with 

pedestrians, which is a significant factor between vehicles and 
pedestrians for understanding each other's behavior [5]. 
Therefore, vehicle manufacturers should understand 
pedestrian crossing behavior in shared spaces to reduce 
potential crash risks between pedestrians and AVs. In 
particular, an investigation into elderly pedestrians is required. 
Due to older people's deteriorating perceptual and cognitive 
abilities [6], they have difficulty perceiving road situations 
and interacting with AVs. 

To understand the interactions between elderly pedestrians 
and AVs in a shared space and investigate their crossing 
behaviors, this study proposed a pedestrian crossing strategy. 
In addition, variables influencing pedestrian crossing behavior 
were clarified. The structure of this study was described as 

on of 
pedestrian crossing behavior and proposed a pedestrian 
crossing strategy, which is the basis of pedestrian crossing 

crossing strategy selection variable was defined, and analysis 

variables on crossing time and crossing strategy selection 
were discussed. Finally, we concluded our study contribution 

. 

II. PEDESTRIAN CROSSING BEHAVIOR AND 

STRATEGY 

A. Pedestrian Crossing Behavior 

Pedestrian crossing behavior is defined as the performance 
of a pedestrian when crossing a road. Timmermans [7] 
highlighted two standards for pedestrian crossing behavior 
(choosing the next step and selecting the walking speed or 
type). In this study, we proposed two parameters for these two 
standards: pedestrians' waiting times (WT) for AVs to pass 
and pedestrians' crossing times (CT). The reason is that 
different waiting times illustrate pe anned steps for 
crossing (e.g., stopping to avoid the AV or ignoring the AV to 
continue to walk), and crossing time can calculate the walking 
speeds of the pedestrians. 

Andrijanto Andrijanto



The benefits of researching pedestrian crossing behavior 
are substantial. For instance, Papadimitriou, Lassaree, and 
Yannis [8] argued that understanding pedestrian crossing 
behavior enhances the design and planning of traffic 
environments and improves pedestrian safety when traveling. 

Several studies have clarified the variables that influence 
pedestrian crossing behavior. Himanen and Kulmala [9] 
demonstrated that vehicle speed and size influence pedestrian 
crossing behavior. Tarawneh [10] integrated the effects of age 
and gender on pedestrian walking speeds. Considering the 
el
size into a K-car. The reason is that an approaching big-size 
vehicle (e.g., truck and coach) may scare the participants, and 
multiple factors require them to execute repeat tests, which is 
difficult for older people to complete. Thus, due to the elderly 

fixed-size car and investigated the variables (i.e., gender, 
vehicle speed, and age) influencing pedestrian crossing 
behavior. Further, we hypothesized that the direction of AVs 
toward the pedestrian is another influencing variable.

In classifying pedestrian crossing behavior, Papadimitriou, 
Lassaree, and Yannis [11] summarized three components of 
pedestrian crossing behavior: 1. risk-taking and optimization, 
2. conservative and public transport user, and 3. pedestrian for 
pleasure. However, their classification was based on 
questionnaire research. The intentional behavior of 
respondents may differ from the observed behavior of 
pedestrians. Moreover, recruiting elderly people to walk 
across entire street areas is challenging. Thus, it is necessary 
to consider the physical factors of older people when 
classifying their crossing behavior.

Andrijanto et al. [12] tested an experiment to observe 
elderly pedestrian behaviors in a shared space, and now this 
study utilized the experimental data. We used the pedestrian 
crossing behavior classification [11] to develop our 
classification. However, there were two differences between 
our study and [11]. Firstly, we aimed to investigate the 

the experiment, we informed the participants that their 

action (e.g., decrease the speed or change the direction to 
avoid crushing). Another difference was that pedestrians 
should walk following the marks set in the experiment for 
interacting with an AV rather than tending to walk for health 
purposes [11]. Thus, the classification of pleasure [11] was 
reduced in this study. Finally, our classification of pedestrian 
crossing behavior was explained as follows. 

1. Aggressive behavior is related to optimizing the 
crossing process with a low safety perception, such as 
avoiding detours and saving time. In our experiment, 
aggressive behaviors were explained as disobeying the 
instructions to follow the route and not hesitating to cross in 
front of the AV.

2. Conservative behavior relates to increasing pedestrian 
safety, including following traffic marks, not avoiding detours, 
and crossing delays by yielding to vehicles. We treated that 
the participants obeyed our route for crossing and stopped to 
yield the AV as conservative behaviors.

B. Pedestrian Crossing Strategy

Our study hypothesized that a pedestrian should consider 
a crossing strategy before executing crossing behavior. Based 

three elements: diagnosis, guiding policy, and action plans. 
We explained these three elements of the crossing strategy as 
follows.

Diagnosis: Pedestrians observe the road before crossing 
and perceive potential challenges. In this study, the challenge 
is assumed to be an approaching AV.

Guiding policy: After perceiving an AV, they should 
collect road situation information (i.e., vehicle speed and 
distance). Based on this information, they should select a 
crossing behavior from the proposed crossing behavior 
classification (i.e., aggressive and conservative behavior).

Fig. 1. The pedestrian-crossing process.

Action plans:  Following the guiding policy, they execute 
crossing behaviors to end the crossing process.

We proposed that pedestrian crossing strategy is the basis 
of pedestrian crossing behavior. This study explains the 
categorization of pedestrian crossing strategies using the 
proposed crossing behavior classification. We named them
Aggressive Strategy (AS) and Conservative Strategy (CS). 

We designed a system process based on the previous 
discussion about the pedestrian crossing strategy. The 
system's purpose is to ensure the safety of the Japanese elderly 
when they cross a shared space facing an approaching AV. 
Pedestrians should collect the road situation information as the 
system input. Then, they should consider the information and 
decide on one crossing strategy (i.e., the system conversion 
process). Finally, they execute the crossing behaviors to finish 
the process by walking through the shared space as the system 
output. 

Fig. 1 illustrates the pedestrian-crossing process. First, an 
elderly pedestrian walks into a shared space and perceives an 
AV approaching them. They then analyze the road situation 
information and select one of two strategies for crossing. 
Some elderly may consider the vehicle will not threaten their 
priority for walking. Thus, they prefer to choose AS. However, 
other pedestrians may fear being crashed by an AV and choose 
CS. Finally, they execute the crossing behaviors (i.e., 
aggressive or conservative behavior) according to the selected 
strategy and finish the crossing process.



III. EXPERIMENT

A. Apparatus and Task

The experiment of this study was based on the previous 
study [12], which was supported by a project of designing and 
utilizing "LargeSpace." The introduction of the project was as 
follows: Initially, an experimental virtual reality facility 
named "LargeSpace" was designed by Takatori et al. [14]. It 
is one of the largest immersive projection displays in the world 
and contains an encapsulated space for projecting visual 
images using several cameras around the area. "LargeSpace" 
provides the possibility to display a full-size virtual shared 
space. Fig. 2 illustrates this facility. 

Fig. 2. Pedestrian and virtual vehicle in LargeSpace.

Further, Andrijanto et al. [12] conducted experimental 
scenarios for Japanese elderly pedestrians crossing the shared 
space based on "LargeSpace." They can observe the shared 
space from their viewpoints and walk independently. Finally, 
an experiment was developed based on the facility and 
scenario: an elderly pedestrian crossed the shared space while 
a virtual AV approached the pedestrian.

With the experiment's observed data (e.g., distance to 
collision point and deflection angle), Andrijanto et al. [12] 
analyzed pedestrian behaviors by trajectory. However, the 
influences of participants' demography and scenarios on 
pedestrian crossing behavior were not discussed in [12]. Thus, 
we collected the data for these variables for a more detailed 
analysis.

B. Data Collection

We collected data on vehicle speed, scenario, pedestrian 
crossing behavior, and demographics (i.e., gender and age) 
from the experiment. We observed the behaviors of the 
participants and obtained 984 available tests. 

Vehicle speed: The experiment set the speed to 20, 25, and 
30 km/h [12]. 

Scenario: We designed two scenarios by setting four 
points (i.e., A
influence on the 
the two scenarios. Scenario 1 ensures that the participants do 
not observe the AV before crossing. They should walk by the 
following points on the ground: A, B, C, and D. In Scenario 2, 
a pedestrian crosses points D, C, B, and A. The vehicle 
direction was the same in these two scenarios, which means 
the difference between the scenarios is whether pedestrians 
could perceive the vehicle before crossing. 

Crossing time: The crossing time (CT) was measured 
when a pedestrian walked from the start to the final point, 
which was named traveling time by Andrijanto et al. [12]: 
the range of the CT from 7.6 to 27.3s. 

Waiting time: The waiting time (WT) was measured when 
a pedestrian stopped yielding to a vehicle [12]. The WT 
explains the three types of behaviors observed in this study. 

Demographics: ten males and nine females aged 66 to 77 
were recruited (mean age = 72.1; s.d. = 3.5). 

To satisfy the standards of pedestrian crossing behavior 
(i.e., choosing the next step and selecting the walking speed or 
type) in [7], we proposed CT and WT to explain these two 
standards. CT was chosen as a dependent variable to illustrate 

ver, WT was transferred 
into the crossing strategy selection variable to present the 

.

Fig. 3. Two scenarios.

Fig. 4. Transfer process.

IV. DATA ANALYSIS

A. Variable Definition

The transfer process of the crossing strategy selection 
variable is illustrated in Fig. 4. First, we distinguished the 
three types of observed behaviors from the WT data and 
explained them as follows.

Type A: Pedestrians stop paces at point B or C and wait 
for the AV to pass through them. After the vehicle passes, they 
begin to cross the road.

Type B: Pedestrians initially attempted to cross the road. 
However, they give up and yield to the vehicle. After the car 
passes, they cross the street.

Type C: Pedestrians cross the road before AV arrives.

To explain the crossing strategy, the observed behaviors 
(i.e., Types A, B, and C) should be considered in the proposed 
crossing behavior classification (i.e., aggressive and 
conservative behaviors). Because pedestrians waited for the 



 

vehicle in Type A, the WT data in Type A were considered 
conservative behavior. However, because the observed 
behaviors in Types B and C have a high risk of crashing with 
the vehicle, the WT data in these types were treated as 
aggressive behavior.  

Finally, the observed behaviors in the WT explain the 

convert crossing strategy selection into a categorical variable. 
We defined this as AS = 0 and CS = 1.  

After defining the crossing strategy, CT (Ya) and crossing 
strategy (Yb) were treated as dependent variables. Gender (x1), 
vehicle speed (x2), age (x3), and scenario (x4) were 
considered independent variables. Scenario and gender data 
were defined as a binary. Female = 0 and male = 1; scenario 1 
= 0 and scenario 2 = 1. 

B. Hypotheses 

We proposed three hypotheses to prove the reasonability 
of the proposed pedestrian crossing strategy and the variables 
influencing the behavior. Fig. 5 presents the hypotheses.  

H1: The proposed crossing strategy is reasonable for 
explaining pedestrian crossing behavior in the experiment; 

H2: Gender, vehicle speed, age, and scenario have 
significant relationships with the CT; 

H3: Gender, vehicle speed, age, and scenario have 
significant relationships with the selection of crossing strategy. 

C. Results 

A Hosmer-Lemeshow test proved the reasonability of the 
proposed crossing strategy [15]. This test evaluates the 
goodness-of-fit between the observed and predicted realities. 
For example, Sze and Wong [16] introduced the Hosmer-
Lemeshow test to assess a pedestrian injury risk model.  

The result of the Hosmer-Lemeshow test was x2 = 11.233, 

behavior by the crossing strategy is similar to the observed 
 Based on the results, 

H1 is supported. The proposed crossing strategy reasonably 
explains pedestrian crossing behavior.  

Multiple regression analysis was used to estimate the 
correlation between the independent variables and the CT. 
Zheng et al. [17] showed that this method can explore the 
relationship between pedestrian behavior and personality 
traits.  

Significant relationships exist between vehicle speed, 
pedestrian gender, age, and cept 
for 
Table I partly support H2. Meanwhile, the variance inflation 
factor confirmed no multi-collinearity between the dependent 
variables [18]. From the results, it can be concluded that 
gender, vehicle speed, and age positively influence CT.  

Synthesizing the analysis results from the above 
description, a linear model of the influencing variables on CT 
(Ya) was constructed. 

Ya = 0.377x1 + 0.105x2 + 0.289x3 

Logistic regression analysis was used to clarify the 
correlation between the selection of crossing strategy and 
variables. Kong and Yang [19] studied the pedestrian casualty 

risk from the regression results. Ferenchak [20] studied the 
influence of pedestrian age and gender on pedestrian crossing 
behavior using regression analysis.  

The logistic regression result illustrates that scenario 
variable does not significantly influence the dependent 

this variable and 
retained the other variables. Regression results are listed in 
Table II. The result indicates gender, vehicle speed, and age 
significantly correlate with Yb  Thus, 
H3 is partially supported by these results. Significant 
relationships exist between vehicle speed, pedestrian gender, 
age, and the selection of crossing strategy. Males prefer to 
select AS compared with females. Higher vehicle speed and 
pedestrian age influence a pedestrian to choose CS.  

The regression model for the influencing variables on 
crossing strategy selection (Yb) was developed as follows. 

Yb = - 19.266 - 1.47x1 + 0.326x2 + 0.165x3 

V. DISCUSSIONS 

A. Pedestrian Crossing Strategy 

This study proposes a crossing strategy for the Japanese 
elderly to engage in crossing behavior when they perceive an 
AV in a shared space. We consider the crossing strategy as 
the basis for pedestrian crossing behavior. In this research, 
Hosmer-Lemeshow test proved the reasonability of the 
crossing strategy, and the strategy explained the pedestrian 
crossing behavior observed in the experiment. These results 
supported the appropriateness of adopting a crossing strategy 
to investigate the crossing behavior of elderly people in a 
shared space.  

The proposed strategy comprised two parts: AS and CS. 
In 52% of the tests, we found that the participants selected 
AS. We explained that the participants were tested several 
times during the experiment. Hence, when the participants 
were familiarized with the test, they may attempt to choose 
aggressive crossing behavior, expecting to complete crossing 
faster. However, the gap between the AS and CS selection by 
the participants was not noticeable. We suggest that the AS 
and CS have no advantages over each other. Pedestrians 
should observe the situation information to select an 
appropriate strategy, as assumed in the conceptual model of 
the crossing process. 

B. Scenario 

In scenario 2, we hypothesized that the participants would 
adjust their behaviors before arriving at point C because they 
should perceive the coming AV. However, we rejected this 
hypothesis because of the insignificant relationships between 
the scenario and dependent variables. 

There are two possible explanations for this. Zhuang and 
Wu [21] suggested that 57% of pedestrians do not look at 
vehicles when crossing the road because pedestrians believe 
they have priority to cross the road. If they check the road 
situation and notice the vehicle, they may hesitate to avoid the 
vehicle and give up the preceding priority. Thus, they prefer 
not to stare at the approaching vehicle to force the vehicle to 
avoid the crush by slowing down. This perception may cause 
the potential crashing risk. Therefore, AV manufacturers 
should consider these factors when designing vehicles.   

 



TABLE I. HYPOTHESES 2 TESTING

TABLE II. 

Fig. 5. Statistical hypotheses.

However, the participants monitored the shared space 
during the crossing process, expecting to check where the AV 
came from. Thus, they perceived the car as wherever they had 
started to cross. The participants' monitoring behaviors prove 
that limiting the participants' tracks to clarify the influence of 
the scenario on their crossing behaviors is unfeasible and does 
not reflect the features of the shared space. However, the 
points assisted our study in classifying the participants' 
crossing behaviors into the proposed classification. Thus, we 
should modify the experimental methods, such as limiting the 
participant's walking area rather than providing the walking 
tracks by points. 

  Another reflect
pedestrians' low trust in high-level AV [22]. Because high-
level AV systems may fail and cannot be adjusted by drivers, 
pedestrians prefer to pay attention to AVs on the road when 
they cross. Therefore, it is necessary to improve the pedestrian 
acceptance of AV for future adoption. One possible method is 
to introduce a technology acceptance model [23] to investigate 
perceptions of AVs.

C. Crossing Time

Here, we discuss some interesting findings regarding the 
variables that influence CT. First, the high speed of the virtual 
vehicle caused the participants to spend more time crossing 
the road. We observed that the participants hesitated to 
approach the AV because of the difficulty in recognizing its 
speed [6]. They may execute the same crossing behavior at 
different car speeds. We considered this to have been caused 
by the lack of an effective visual depth cue for judging the 
vehicle speed [24].

Second, age positively influenced CT. This finding 
supports Steffen et al.'s [25] finding that pedestrians of older 
ages spend more time walking.

Finally, male participants required more time to cross than 
female participants. This result differs from those reported by 
Bohannon and Andrews [26]. They measured the speed of 
elderly males walking faster than females. In addition, gender 
had the highest significance on the CT. Our post-investigation 
results explain these findings. Some female participants joined 
walking clubs. The participants walked swiftly during the 
experiment because of their daily exercise habits.

D. Crossing Strategy Selection

The logistic regression model clarified that a higher AV 
speed and pedestrian age forced them to choose CS in a 
shared space for crossing. Meanwhile, males participants 
behaved more aggressively toward the approaching AV than 
female participants.

We considered that vehicle speed influenced the crossing 
strategy similarly to that of the CT. Participants preferred CS 
because of their danger perceptions of the coming vehicle at 
high speed. We suggest decreasing AV speed in shared 
spaces to improve pedestrian safety and comfort.

Another finding is that gender influenced the selection of 
the crossing strategy of the participants the most. Our 
experiment proved that female participants prefer to yield 
vehicles despite their low speed. The results were supported 
by Ferenchak [20]: males exhibit more dangerous crossing 
behavior than females by waiting for shorter amounts of time 
and using the crosswalks less. Thus, we suggested AV 
manufacturers design different AV cruising modes by 
recognizing pedestrians' gender for encountering possible 
aggressive behaviors.

Finally, the correlation between age and strategy selection 
was minimal. The age gap between participants was limited 
because our experiment focused on investigating the crossing 
behavior of older people. Because the physiological factors 
of participants were similar, their crossing strategy selections 
might have been the same. Therefore, we believe that there is 
a significant difference between older and younger people in 
selecting a crossing strategy.

E. Limitations

One limitation of this study is that the fitness of the 
regression model was poor. The number of influencing 
variables was insufficient. Additional variables should be 
adopted to refine the analysis. We considered AV noise a 
significant variable, allowing pedestrians to perceive the 
vehicle before observation. Pedestrian gaze behavior [27] is 



 

another variable worth researching. The second limitation is 
that we did not include the accelerating walking behavior in 
the crossing behavior classification. Thus, we can further 
expand pedestrian-crossing strategies. 

VI. CONCLUSION 

Considering the crossing behavior of Japanese 
pedestrians when perceiving an AV in a shared space, this 
study proposes a pedestrian crossing strategy. Strategies were 
divided into aggressive and conservative strategies. We offer 
a process for pedestrians to use the crossing strategy for 
finishing the crossing process: 1) a pedestrian will perceive 
an AV as challenging to cross the road, 2) they judge the road 
situation information and choose one crossing strategy, and 3) 
they execute crossing behaviors based on this strategy.  

We clarified the influence of the variables (i.e., pedestrian 
age, gender, and vehicle speed) on the participant crossing 
time and strategy selection. Higher vehicle speed and older 
age caused the participants to spend more time crossing the 
road. Thus, pedestrians prefer CS under these conditions. The 
results also indicate that males behave aggressively toward 
approaching AVs more frequently than females. Nevertheless, 
their CTs were longer than those of the females. 

We plan to address these limitations in the future. First, 
subsequent investigations will include vehicle noise and 
pedestrian gaze behavior as influencing variables to explore 
their potential influences on the crossing strategy. Moreover, 
we will extend the definition of the crossing strategy to 
include accelerating crossing behavior. 
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