

UKTI KORESPONDENSI

ARTIKEL JURNAL INTERNASIONAL BEREPUTASI

Judul artikel : Performance Comparison Robot Path Finding uses Flood Fill – Wall

Follower Algorithm and Flood Fill – Pledge Algorithm

Jurnal : International Journal of Mechanical Engineering and Robotics

Research, Vol. 9, No. 6, pp. 857-864.

Penulis : Semuil Tjiharjadi

No. Perihal Tanggal

1. Bukti konfirmasi submit artikel dan artikel yang

disubmit

22 Mei 2019

2. Bukti konfirmasi lolos hasil preliminary review 29 Mei 2019

3. Bukti konfirmasi review dan hasil review kedua 14 Juni 2019

4. Bukti konfirmasi submit revisi kedua, respon kepada

reviewer, dan artikel yang disubmit ulang

19 – 25 Juni 2019

5. Bukti konfirmasi permintaan revisi tambahan 22 Mei2019

6. Bukti konfirmasi submit revisi tambahan, dan artikel

yang disubmit ulang

26 Juni 2019

7. Bukti korespondensi artikel akan segera diterbitkan dan

butuh konfirmasi terakhir, submit artikel terakhir dan

perbaikannya.

7 Nopember 2019

8. Bukti konfirmasi artikel published online 19 Mei 2020

1. Bukti Konfirmasi Submit Artikel dan Artikel

yang Disubmit

(22 Mei 2019)

Semuil Tjiharjadi <semuiltj@gmail.com>

ICAME2019-paper received-E009
4 messages

icameconf <icameconf@zhconf.ac.cn> Wed, May 22, 2019 at 3:12 PM
To: semuiltj <semuiltj@gmail.com>

Dear Semuil Tjiharjadi,

Greentings from ICAME 2019.

Thank you so much for your submission and support to ICAME 2019. Your paper "Performance Comparison Robot Path Finding uses Flood Fill - Wall
Follower Algorithm and Flood Fill - Pledge Algorithm" has submitted successfully. Then we will send it for first review and infom you soon.

By the way, your paper is given the paper ID: E009. please keep in mind.

Please fill in the Authors’ background and send the form back by May 24, 2019.

Position can be chosen from:

Prof. / Assoc. Prof. / Asst. Prof. / Lect. / Dr. / Ph. D Candidate / Postgraduate /
others

Paper ID

+organization

Full Name Email
address

Position Research
Interests

Personal
website (if
any)

Please feel free to contact me.
Have a wonderful day!

Thanks & Best Regards

Ms. Rachel Cao | Conference Secretary

E-mail: icameconf@zhconf.ac.cn | Web: http://www.icame.org/

2019 3rd International Conference on Automation and Mechatronics Engineering ICAME 2019

P Please consider the environment before printing this email.

Semuil Tjiharjadi <semuiltj@gmail.com> Thu, May 23, 2019 at 9:17 AM
To: icameconf <icameconf@zhconf.ac.cn>

Dear Ms. Rachel Cao,
Thank you for your confirmation email. I send back my information that you requested.
By the way, can I get an advance acceptance notification before June 15, 2019, because my institution will have a lot of loading work so it will
take a long time to process my conference registration?
Thank you for your help and support.
Best Regards,

mailto:icacer@zhconf.ac.cn
mailto:icacer@zhconf.ac.cn
http://www.icacer.com/

Semuil Tjiharjadi

Position can be chosen from:

Prof. / Assoc. Prof. / Asst. Prof. / Lect. / Dr. / Ph. D Candidate / Postgraduate /
others

Paper ID

+organization

Full
Name

Email address Position Research
Interests

Personal
website
(if any)

 E009 Semuil

Tjiharjadi

 semuiltj@gmail.com Asst.

Prof.

 Robot

[Quoted text hidden]

icameconf@zhconf.ac.cn <icameconf@zhconf.ac.cn> Thu, May 23, 2019 at 9:28 AM
To: semuiltj@gmail.com

Dear Sir/Madam,

Greetings and thanks for your email.

The organizing committee will respond to your enquiry within two working days.

If you have any questions regarding the conference, please visit the website:

http://www.icame.com

Kind Regards

ICAME 2018

icameconf <icameconf@zhconf.ac.cn> Fri, May 24, 2019 at 10:06 AM
To: Semuil Tjiharjadi <semuiltj@gmail.com>

Dear Asst. Prof. Semuil Tjiharjadi,
Greetings.
We are well noted and due to keep the quality of all papers, we need enough time to review paper.
We will try to send you the notification before Jun 15, but we can not completely assured.
Please keep in touch.
If you have any question, please contact me.
Have a nice day.

Thanks & Best Regards

Ms. Rachel Cao | Conference Secretary

E-mail: icameconf@zhconf.ac.cn | Web: http://www.icame.org/

2019 3rd International Conference on Automation and Mechatronics Engineering ICAME 2019

P Please consider the environment before printing this email.

mailto:semuiltj@gmail.com
http://www.icame.com/
mailto:semuiltj@gmail.com
mailto:semuiltj@gmail.com
mailto:icameconf@zhconf.ac.cn
mailto:icacer@zhconf.ac.cn
mailto:icacer@zhconf.ac.cn
http://www.icacer.com/

======= 2019-05-23 10:05:18 semuiltj@gmail.com在来信中写道： =======
------------------------------- 源邮件 --------------------------------
主题: Re: ICAME2019-paper received-E009
发件人: Semuil Tjiharjadi <semuiltj@gmail.com>
日期: Thu, May 23, 2019 10:17 am
收件人: ICAME <icameconf@zhconf.ac.cn>
--
[Quoted text hidden]

Performance Comparison Robot Path Finding

uses Flood Fill - Wall Follower Algorithm and

Flood Fill - Pledge Algorithm

Semuil Tjiharjadi
Maranatha Christian University, Bandung, Indonesia

Email: semuiltj@gmail.com

Abstract — As a path-finding robot in the labyrinth, the robot

must have ability to decide the direction taken at the

intersection inside the labyrinth. Robot will map route and

try to reach the destination in the fastest time and shortest

distance. Robot will use two algorithms for path finding

process, the wall follower algorithm and the pledge

algorithm. Both algorithms can determine the direction in the

process of achieving the expected target location. After the

robot reach the destination, the robot will return to its

starting position. Robot can easily reach its destination by

using the flood fill method to decide the fastest and shortest

route to reach that position now. This research is an analysis

of the combination of the Flood fill method with the Wall

Follower algorithm compared to the Flood Fill method with

the Pledge algorithm, based on a series of experiments

conducted on various maze patterns in the labyrinth. The

experimental results show that robots can explore the maze

and map it using the wall follower algorithm, pledge

algorithm and a combination of both with the Flood Fill

algorithm. Based on the analysis, it was found that the use of

the Flood Fill algorithm that works in synergy with the Wall

Follower algorithm and the Pledge algorithm, can

dramatically increase the effectiveness of target point

searches.

Index Terms — path finding, flood fill, wall follower, pledge

I. INTRODUCTION

Robot Maze is a robot that is a search robot that can find

directions in the maze. Its ability to determine direction

independently is the advantage of this robot. The way the

robot automatically determines the direction, performs a

route mapping, and finally finds the shortest and fastest

distance is the goal of applying the search algorithm to the

labyrinth robot. There are several algorithms that have

been developed for this purpose and each algorithm has its

own advantages and disadvantages [1].

As part of its autonomous ability, the Path Finding

Robot uses structured algorithms to control the

autonomous navigation it has [2]. In this study two

combinations of algorithms were used to achieve the

shortest and fastest target. The two combination

algorithms are Flood fill algorithm - Wall follower

algorithm as the first combination, while the second

combination is Flood Fill algorithm - Pledge algorithm.

Both combinations of algorithms are compared to get the

best method and are expected to find new proposals for the

development of better search techniques. It is hoped that

this comparison will get the best method for autonomous

robots to explore the labyrinth. The main task is to find a

path to complete the labyrinth in the shortest possible time

and use the shortest way. The robot must start navigation

from the corner of the labyrinth to the target as quickly as

possible.

The information that the robot has is the location of the

search and target. The initial task is to collect all

information about obstacles to reach the target location. In

this study the labyrinth was designed consisting of 25

square cells, with the size of each cell about 18 cm x 18

cm. The cells are designed to form a labyrinth of 5 rows x

5 columns. The initial search position is set in one cell

from its angle and the target location is in the middle of the

labyrinth. The search terms are only one cell that is opened

to pass. The design of the labyrinth wall size and

supporting platforms uses the IEEE standard.

II. LITERATURE REVIEW

2.1. Breadth First Search

 Breadth First Search is a search algorithm that tries all

the possibilities available. Starting from the root node,

Breadth First Search explores all neighboring nodes to

find the target node. Breadth First Search tests all available

nodes, so it requires large memory space to store node

information and routes that have been made. This

algorithm can find a few solutions for the route so that the

shortest route can be found. This algorithm is using First

In First Out queue and it will work poorly and consume a

lot of memory when finding target that has a long path.

 Although Zhou has shown Breadth First Search

modifications when using the divide-and-conquer solution

reconstruction, it can reduce search memory needs. The

result is Breadth-First Search to be more efficient than

Best-First Search because it requires less memory to

prevent regeneration of closed nodes [3].

2.2. Depth First Search

 The Depth First Search is an algorithm for searching

based on tree data structures that uses the Last In First Out

queue method. This algorithm is easy to implement. It

starts from the root node and tries each path to the end, and

then backtracks until it finds an unexplored path, and then

re-explores the new path, until it finds a target. The search

principle that uses this depth, requires large computing

power. A small increase in a path can result in a runtime

increasing exponentially [4].

2.3. Heuristic Function

 Heuristic Function plays vital role in optimization

problem. It is a function that uses all mapping information

to help the search process towards the right direction to

achieve goals effectively [3].

2.4. Genetic Algorithm

 Genetic algorithm is a machine-learning

technique loosely based on the principles of genetic

variation and inspired by natural evolution to find

approximate optimal solution. Advantages of Genetic

algorithm are it solves problem with multiple solutions.

But it needs very large input and data. Problems of Genetic

algorithm are certain optimization cases cannot be solved

due to poorly known fitness function. It is not able to

assure constant optimization response times because of the

entire population are improving [5].

2.5. A* algorithm

 As one of the most popular methods for finding the

shortest path in the labyrinth area, A* develops a

combination heuristic approach. This approach is also used

by the Best-First-Search (BFS) algorithm and the Dijkstra

algorithm. Algorithm A* calculate the costs that associated

with each used node. Such as the application of BFS, A*

will follow its path with the lowest heuristic cost. Both

them require large memory to store information, because

all nodes that have been tested must be stored [6].

 The A* algorithms can, during searching, judge the

movement of target point by referring heuristic

information, it does not need to thumb through the map, so

that the calculating complexity is relative simple, and

effective fast searching can be achieved [7].

2.6. Flood Fill Algorithm

 Flood fill algorithm that also known as seed fill

algorithm, is an algorithm that determines the area

connected to a given node in a multi-dimensional array.

This algorithm needs all information of maze and proper

planning. It is used widely for robot maze problem [8].

 The Flood fill algorithm gives values to each node that

represents the distance of the node from the center. It

floods the labyrinth when it reaches a new cell or node.

This algorithm requires continue update [9].

2.7. Wall Follower Algorithm

 Wall follower algorithm is one of the best known and

one of the simplest mazes solving algorithms. It starts

following passages, and whenever it reaches a junction

always uses the righthand rule or the left-hand rule. It will

turn right or left at every junction base on the right- or left-

hand rule. Wall Follower is fast algorithm and uses no

extra memory. But this method will not necessarily find

the shortest solution, and this algorithm has weakness

when the labyrinth is not connected, it can back at the start

point of the labyrinth [10].

2.8. Pledge Algorithm

 The Pledge algorithm is designed to solve wall follower

weakness. It can avoid obstacles and requires an arbitrarily

chosen direction to go toward. At the beginning of

algorithm, Pledge algorithm sets up direction and follows

this direction. When an obstacle is met, one hand rule is

kept along the obstacle while the angles turned are counted.

When the object is facing the original direction again, the

solver leaves the obstacle and continues moving in its

original direction [10].

I. HARDWARE DESIGN

This research is tested using mobile robot. It have robot

base construction by miniQ 2WD robot chassis, it is shown

at Figure 1. It has a 122 mm diameter robot chassis, a

couple wheels, a piece of ball caster and a couple Direct

Current (DC) motors which have gear box and DC motor

bracket.

Figure 2 is shown a couple pieces rotary encoder that

attached to the DC motor to calculate the rotation of the

wheels.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile Robot from side view.

The robot has three infrared sensors to detect the

front, right and left positions of the labyrinth wall. It uses

the L293D driver to control the speed and rotation of a DC

motor, a rotary encoder that has the task of calculating the

rotation of both wheels, and a button to start the robot.

The robotic system will drive a DC motor to drive

the wheel. It will control the robot to move forward, turn

left or right, and turn backwards. This labyrinth robot has

an AT Mega 324 microcontroller to respond to input

signals and run actuators based on processing algorithms.

All statuses and information are displayed on Liquid

Crystal Display (LCD) 16 x 2 in Figure 3.

Figure 3. Mobile Robot from above view.

 The block diagram of design of whole hardware

system and the flowchart of main program can be seen at

Figure 4 and Figure 5 [11].
 The labyrinth designed for the robot to solve is of the

size of 5×5 cells as shown in Figure 6. The actual labyrinth

constructed, as shown in Figure 7, has a physical size of

about 1.32 m2. The labyrinth was designed so that it will

have two paths for it to be solved. One of the paths is

longer than the other. The robot (Figure 2) must decide

which one of the paths is shorter and solve the labyrinth

through that path [12].

The labyrinth designed to be solved by robots is 5 × 5

cells as shown in Figure 6. The actual labyrinth that was

built, as shown in Figure 7, has a physical size of about

1.32 m2. The labyrinth is designed so that it will have two

paths to complete. A path can be longer than the other and

the robot must decide which path is shorter and complete

the labyrinth through that path.

Figure 4. Maze Robot’s Block Diagram.

II. ALGORITHM

 In this study, three types of algorithms were used.

Wall follower algorithm, Pledge algorithm and Flood Fill

algorithm. The results obtained from the Wall Follower

algorithm, Pledge algorithm, Wall Follower combination

method - Flood Fill and Pledge - Flood Fill will then be

compared.

Figure 5. Flowchart of the main program.

Figure 6. The layout of labyrinth.

Figure 7. The labyrinth arena.

 Together with the Flood Fill algorithm, they are used

to find the fastest way to achieve the objectives. Results of

Wall Follower algorithm and Pledge algorithm were

compared, when determining the priority of directions

taken when the robot finds the same priority value based

on the Flood Fill algorithm [9]. The Wall Follower

algorithm will use the right- or left-hand method in

determining the direction to be taken at each intersection.

While the Pledge algorithm will assign +1 value to the

'Play' variable every time the robot turns right and the

value -1 every time the robot turns left, the goal is to

achieve the goal by prioritizing the smallest possible 'Turn'

variable value. Every time the Pledge algorithm finds an

intersection, the turn decision taken is to reduce the value

of the 'Play' variable from rotation. The Wall Follower

algorithm and the Pledge algorithm are used to help the

Flood Fill algorithm so that collaboration will produce

smarter decisions.

 The Artificial Intelligence program has a two-

dimensional array of memory to map the 5x5 labyrinth

arena. Memory arrays are used to store information on

each maze cell wall and every cell value information. The

position of the robot in the program is expressed by

coordinates (rows, columns). The movement of the robot

in the array is done to position the robot as shown in Figure

8.

 The line coordinates will increase 1 when the robot

moves one cell to the South. On the other hand, it will

decrease by 1 when the robot moves north. The column

will decrease by 1 when the robot moves to the West, and

it will increase by 1 when the robot moves to the East.

Robots already have information about the initial

orientation, initial position, labyrinth size, and location of

the outer wall of the labyrinth.

Flood fill algorithm has four main steps: the first is

updating wall data, the second is updating cell values, the

third is calculating the smallest neighbor cell, and the last

is moving to the smallest neighbor cell.

Figure 8. Robot’s Array Movement

4.1 Wall data update

 Robot will check its environment, any walls in its

three directions: right, left and front directions. The robot

will also detect the distance of any obstacle of its three

directions. Anyone exceed 20 cm is updated as “wall” on

its respective side. Flowchart in the Figure 9 describes the

wall data update mechanism.

 The robot will check the environment, each wall in

three directions: right, left and front. Any obstacles

detected exceeding 20 cm will be updated as "walls" on

each side. The flow chart in Figure 9 explains the

mechanism for updating wall data.

 The maze robot also needs to know which direction it

is facing so it knows where to go. Table 1 describes the

relation of robot orientation and wall sensor detection. The

robot has an initial orientation when it starts at the

beginning and will continue to track changes in direction.

The robot orientation also determines the left, front and

right positions of the robot as described in table 1.

Table 1. Robot orientation and wall detection

Robot

Orientation

Wall Sensor Detection

Right Front Left

South West wall South wall East wall

West North wall West wall South wall

North East wall North wall West wall

East South wall East wall North wall

4.2 Cell value update

 The update value of cell wall is stored in a 2-

dimensional array of 5x5 memory cells. Renewing cell

values is done using a flood filling algorithm. The cells that

will be updated are the current level array while the

neighboring cells will be entered in the next level array.

After the value filling process is complete, the cells in the

next level array will be moved to the current level array to

do the next value. The update process will be completed if

the next level array cell is empty.

4.3 The smallest neigbour cell calculation

 Searching for the smallest neighbor cell is done by

priority, so if there are more than one neighboring cell that

has the smallest value, then that cell is chosen based on

priority.

Figure 9. Flowchart for updating wall location at each cell

 Priority is set based on the movement of robots that

move forward one cell has priority, the second priority is

to move one cell to the right, while the third priority is to

move one cell to the left, and the fourth or final priority is

to move one cell back. For example, if the robot faces the

East, then the East cell has priority, the two South have

priority cells, the cell has the priority third North and the

West cell has the fourth priority as in Figure 10. If the robot

faces the East, the East cell has priority, the South cell has

priority second, North has the third priority cell, and the

West cell has a fourth priority.

Figure 10. Priority of Neighbour cell

4.4. Moving to the smallest neighbour cell

 Program subroutines move the robot to the smallest

neighboring cells, then the robot will move to the cell by

observing orientation. For example, if the South cell is the

smallest cell and the orientation of the robot is facing west,

then moves to the position of the cell, the robot must turn

left, then move forward as in Figure 11.

Figure 11. Moving to smallest neighbour cell.

III. RESULTS AND DISCUSSION

In this experiment, the Robot will learn to find the

shortest path from the initial cell (row 4, column 0) to the

destination cell (row 2, column 2) and then return to the

initial cell. The robot's initial orientation faces North. The

robot will learn to find the shortest path from the initial cell

(row 4, column 0) to the destination cell (row 2, column 2)

and then return to the initial cell.

The maze program aims to facilitate observations about

how the flood filling algorithm is. Figure 12 is a maze

display simulator program. The labyrinth blue wall is a

wall whose position is known by robots. Whereas the wall

of the labyrinth is colored in an orange wall where the

robot is unknown.

3.1 First Experiment

The first experiment, the Robot will look for the initial

cell line (4.0) to the destination cell (2, 2). The results of

the wall follower algorithm and pledge algorithm are

shown in table 2 and 3. The results of combination method

of Wall Follower - Flood Fill algorithm when cell line

search (4, 0) to cell (2, 2) is shown in table 4, and the

simulation results of Pledge - Flood Fill algorithm is

shown in table 5.

Figure 12. Simulation search path to cell (2,2), Turn = 0

Table 2. First Experiment result using Wall Follower

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,1) → (2,1) →

(1,1) →(1,2) → (1,3) → (1,4) → (2,4) →
(3,4) → (4,4) → (4,3) → (4,2) → (4,1) →

(3,1) →(3,2) → (3,3) → (2,3) → (2,2)

24

Return
home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,1) → (2,1) →
(1,1) →(1,2) → (1,3) → (1,4) → (2,4) →

(3,4) → (4,4) → (4,3) → (4,2) → (4,1) →

(3,1) →(3,2) → (3,3) → (2,3) → (2,2)

24

Table 3. First Experiment result using Pledge

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,3) → (0,3) →
(0,4) →(0,3) → (1,3) → (2,3) → (2,2)

14

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →
(0,1) → (0,2) → (1,2) → (1,3) → (0,3) →

(0,4) →(0,3) → (1,3) → (2,3) → (2,2)

14

Table 4. First Experiment result using Wall Follower – Flood Fill

Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return
home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)

→ (2,2)

6

Table 5. First Experiment result using Pledge – Flood Fill Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →

(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →
(2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) →
(2,3) → (2,2)

6

The first run in the first experiment shows us that

pledge algorithm has better steps than wall follower

algorithm to achieve target point. But it also shows that

synergistic Wall follower – Flood Fill algorithm or Pledge

– Flood Fill algorithm have better results than search

applied only by using a wall follower algorithm or just a

pledge algorithm.

This experiment also shows that in second run, the

method that uses a combination of Wall Follower - Flood

Fill Algorithm or a combination of Pledge - Flood Fill

Algorithm has fewer steps than their first run. While the

second run of wall follower algorithm or second run of

pledge algorithm still have the same steps as first run,

because they do not record their experience in first run.

After the robot updates the wall data while running a

search on the first run in the first experiment and travels

home in the second run, the robot that using combination

algorithm, has enough data to find the fastest path to the

destination in the cell (2,2). That's the reason why the trip

back to the starting point and the second run has the same

number of steps for both combination algorithm.

3.2 Second Experiment

 The second experiment was carried out using a new

maze which can be seen in figures 13 and 14. The results

of this second experiment can be seen in tables 6 to 9.

Figure 13. Simulation search path to cell (2,2) for second experiment

Figure 14. The maze for second experiment.

Table 6. Second Experiment result using Wall Follower Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Table 7. Second Experiment result using Pledge Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(4,1) → (3,1) → (3,0) → (4,0)

8

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Table 8. Second Experiment result using Wall Follower – Flood Fill

Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)

→ (2,2)

6

Table 9. Second Experiment result using Pledge – Flood Fill Algorithm

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(4,1) → (3,1) → (3,0) → (4,0)

8

Second
run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)
→ (2,2)

6

 The results of the second experiment for all test have

same results. But for second run, all tests of the

combination methods still have better results than the wall

follower algorithm or the pledge algorithm.

3.3 Third Experiment

 The third experiment was carried out using a new

maze which can be seen in figures 15 and 16. The results

of this second experiment can be seen in tables 10 to 13.

Figure 15. Simulation search path to cell (2,2) for third experiment

Figure 16. The maze for second experiment.

Table 10. Third Experiment result using Wall Follower Algorithm

 Routes Steps

First

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (1,4) → (2,4) → (3,4) →

(4,4) → (4,3) → (3,3) → (3,2) → (2,2)

14

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (1,4) → (2,4) → (3,4) →
(4,4) → (4,3) → (3,3) → (3,2) → (2,2)

14

Table 11. Third Experiment result using Pledge Algorithm

 Routes Steps

First
run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →
(1,2) → (0,2) → (0,1) → (0,0) → (0,1) →

(0,2) → (1,2) → (1,3) → (2,3) → (2,2)

14

Return
home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (0,2) → (0,1) → (0,0) → (0,1) →

(0,2) → (1,2) → (1,3) → (2,3) → (2,2)

14

Table 12. Third Experiment result using Wall Follower – Flood Fill

Algorithm

 Routes Steps

First
run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →
(1,2) → (1,3) → (2,3) → (2,2)

8

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (4,1) → (4,2) → (3,2)

→ (2,2)

6

Table 13. Third Experiment result using Pledge – Flood Fill Algorithm

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (4,1) → (4,2) → (3,2)
→ (2,2)

6

In the first run of the third experiment, it was found

that the Wall Follower - Flood Fill algorithm turned out to

have better results than the Pledge - Flood Fill algorithm,

with a difference of 2 steps faster. While the return trip and

second run have the same results.

The results of the Wall Follower combination method

test - Flood Fill algorithm and Pledge - Flood Fill

algorithm still have better results than the Wall Follower

algorithm or the Pledge algorithm only.

In all experiments, wall map data will be updated

when the robot enters a cell that has never been visited

before. The Flood Fill algorithm will update cell values

based on the position of the wall that the robot has mapped.

 Robots always move to neighboring cells that have

the smallest value. If there are more than one neighboring

cell that has the smallest value, then cell selection will be

based on priority. Go foward has the first priority, turn

right has the second priority, turn left has the third priority,

and move backwards has the fourth priority.

 This value is changed according to the position of the

wall that has been mapped by the robot. The cell value

represents the distance of the cell to the destination cell.

IV. CONCLUSION

The testing of mobile robots is done with the ability to

learn how to navigate in unknown environments based on

their own decisions. Algorithm Flood Fill is an effective

algorithm as a combination of Wall Follower and Pledge

algorithms for the completion of a medium sized maze.

This mobile robot has managed to map the maze at

first, return home and run the second. In the second run, it

reaches the target cell through the shortest route that was

mapped in the first run before and returns home.

Based on three experiments that have been conducted,

it was found that the use of the Flood Fill algorithm is able

to increase the effectiveness of the Wall Follower

algorithm or the Pledge algorithm only. The results of the

Wall Follower - Flood Fill combination algorithm and the

Pledge - Flood Fill combination algorithm get almost the

same results for these two algorithm combinations.

REFERENCES

[1] G. Dudek, M. Jenkin, E. Milios, D. Wilkes, "Robotic Exploration

as Graph Construction," IEEE Transactions on Robotics and
Automation, vol. 7, no. 6, pp. 859-865, December 1991.

[2] E. &. C. K. Kivelevitch, "Multi-Agent Maze Exploration," Journal

of Aerospace Computing, Information, and Communication, vol.
7, no. 12, pp. 391-405, 2010.

[3] R. &. H. E. Zhou, "Breadth-First Heuristic Search," Journal

Artificial Intelligence, vol. 170, no. 4-5, pp. 385-408, April 2006.

[4] S. &. M. S. Khan, "Depth First Search in the Semi-streaming

Model," The Computing Research Repository (CoRR), January

2019.

[5] S. &. M. M. Forrest, "What Makes a Problem Hard for a Genetic

Algorithm? Some Anomalous Results and Their Explanation,"

Machine Learning, vol. 13, no. 2-3, pp. 285-319, November 1993.

[6] A. &. R. K. Kumaravel, "Algorithm for Automaton Specification

for Exploring Dynamic Labyrinths," Indian Journal of Science and

Technology, vol. 6, no. 5, pp. 4554-4559, 2013.

[7] &. G. D. X. Liu, "A Comparative Study of A-star Algorithms for

Search and Rescue in Perfect Maze," in International Conference

on Electric Information and Control Engineering, 2011.

[8] Elshamarka, I. & Saman, A.B.S, "Design and Implementation of a

Robot for Maze-Solving using Flood-Fill Algorithm,"

International Journal of Computer Application, vol. 56, no. 5, pp.

8-13, October 2012.

[9] Tjiharjadi, S. & Setiawan, S., "Design and Implementation of Path

Finding Robot Using Flood Fill Algorithm," International Journal
of Mechanical Engineering and Robotic Research, vol. 5, no. 3,

pp. 180-185, July 2016.

[10] Babula, M., "Simulated Maze Solving Algorithms through
Unknown Mazes," in XVIIIth Concurrency, Specification and

Programming (CS&P) Workshop, Krakow-Przegorzaly, 2009.

[11] Tjiharjadi, S., Wijaya, M. C., and Wijaya, E., "Optimization Maze
Robot Using A* and Flood Fill Algorithm," International Journal

of Mechanical Engineering and Robotics Research, vol. 6, no. 5,

pp. 366-372, September 2017.

[12] N. K. S. S. W. I. S. Rao, "Robot Navigation in Unknown Terrains:

Introductory Survey of Non-Heuristic Algorithms," Oak Ridge

National Laboratory, Oak Ridge, 1993.

Semuil Tjiharjadi is currently serves as vice

rector of capital human management, assets and
development. He is also Lectures in Computer

Engineering Department. His major research on

Robotics, Computer automation, control and
security. He has written several books, To Be a

Great Effective Leader (Jogjakarta, Indonesia:

Andi Offset, 2012), Multimedia Programming by
SMIL (Jogjakarta, Indonesia: Andi Offset, 2008),

Computer Business Application (Bandung, Indonesia: Informatics,

2006) and so on. The various academic bodies on which he
contributed as: Head of Computer Engineering Department, Member:

Senate of University, Member: APTIKOM, Member: MSDN

Connection, Member: AAJI.

Author’s formal
photo

2. Bukti Konfirmasi lolos hasil

preliminary review

(29 Mei 2019)

Semuil Tjiharjadi <semuiltj@gmail.com>

ICAME 2019-Preliminary review result-E009
3 messages

icameconf <icameconf@zhconf.ac.cn> Wed, May 29, 2019 at 9:53 AM
To: semuiltj <semuiltj@gmail.com>

Dear Asst. Prof. Semuil Tjiharjadi,

Greentings from ICAME 2019.
We here glad to inform you that our paper "Performance Comparison Robot Path Finding uses Flood Fill - Wall Follower Algorithm and Flood Fill
- Pledge Algorithm" has passed the first review. It follows the general rules of the paper format, and has passed the first primary review. It looks
prepared sufficiently and nicely. But then, it will enter further peer review process which is performed by the reviewers who are experts and
professors in related field, so the final review result will be sent by notification date June 15, 2019.
If you have any inquiries, please feel free to contact me anytime.

Thanks & Best Regards

Ms. Rachel Cao | Conference Secretary

E-mail: icameconf@zhconf.ac.cn | Web: http://www.icame.org/

2019 3rd International Conference on Automation and Mechatronics Engineering ICAME 2019

P Please consider the environment before printing this email.

Semuil Tjiharjadi <semuiltj@gmail.com> Wed, May 29, 2019 at 12:59 PM
To: icameconf <icameconf@zhconf.ac.cn>

Dear Ms Rachel.

Thank you for your confirmation email. I am looking forward my next progress acceptance.

Semuil Tjiharjadi
[Quoted text hidden]

icameconf@zhconf.ac.cn <icameconf@zhconf.ac.cn> Wed, May 29, 2019 at 1:01 PM
To: semuiltj@gmail.com

Dear Sir/Madam,

Greetings and thanks for your email.

The organizing committee will respond to your enquiry within two working days.

If you have any questions regarding the conference, please visit the website:

http://www.icame.com

Kind Regards

ICAME 2018

mailto:icacer@zhconf.ac.cn
mailto:icacer@zhconf.ac.cn
http://www.icacer.com/
http://www.icame.com/

3. Bukti Konfirmasi Review Dan

Hasil Review Kedua

(14 Juni 2019)

2019 the 3rd International Conference on Automation and Mechatronics Engineering (ICAME 2019)

Notification of Acceptance of ICAME 2019
October 25-27, 2019‖Phuket, Thailand

http://www.icame.org/

Dear Semuil Tjiharjadi,
Paper ID : E009
Paper Title : Performance Comparison Robot Path Finding uses Flood Fill - Wall Follower

Algorithm and Flood Fill - Pledge Algorithm

Congratulations! The review processes for 2019 the 3rd International Conference on Automation and

Mechatronics Engineering (ICAME 2019) has been completed. The conference committees received

submissions from nearly 10 countries and regions. Based on the recommendations of the reviewers

and the technical committees, we are pleased to inform you that your paper identified above has been

accepted for publication and oral presentation. You are cordially invited to present your paper orally

at ICAME 2019, during Oct. 25-27, 2019, in Phuket, Thailand.

All accepted papers after proper registration and presentation, will be included in International

Journal of Mechanical Engineering and Robotics Research (ISSN: 2278-0149), which will be

indexed by Index Corpernicus, ProQuest, UDL, Google Scholar, Open J-Gate, Scopus (since 2016)

etc.

Please follow the five steps to finish registration.

i. Format your paper according to Review Form and Template carefully.

http://www.ijmerr.com/uploadfile/2015/0819/20150819064635301.doc

ii. Finish the Copyright Form.

http://www.ijmerr.com/uploadfile/2015/0326/20150326112301988.pdf

iii. Download and complete the Registration Form.

http://www.icame.org/author_reg.doc English version

iv. Finish the payment of Registration fee by Credit Card. (The detailed information can be found

in the Registration form)

- 1 -

http://www.icame.org/
http://www.ijmerr.com/
http://www.ijmerr.com/
http://www.ijmerr.com/uploadfile/2015/0819/20150819064635301.doc
http://www.ijmerr.com/uploadfile/2015/0326/20150326112301988.pdf
http://www.icame.org/author_reg.doc

2019 the 3rd International Conference on Automation and Mechatronics Engineering (ICAME 2019)

v. Send your final papers (both .doc and .pdf format), copyright form (.jpg or .pdf format) and

filled registration form (.doc format) to us at icameconf@zhconf.ac.cn before July 20, 2019.

For the most updated information on the conference, please check the conference website at

http://www.icame.org/. The Conference schedule will be available in late September, 2019.

Please e-mail icameconf@zhconf.ac.cn for any queries concerning ICAME 2019.

Finally, we would like to further extend our congratulations to you and we are looking forward to

meeting you in Phuket!

ICAME 2019 Organizing Committees

http://www.icame.org/

Phuket, Thailand

- 2 -

mailto:icameconf@zhconf.ac.cn
http://www.icame.org/
mailto:icameconf@zhconf.ac.cn
http://www.icame.org/

Review Form of ICAME 2019

http://www.icame.org/

Paper Title: Performance Comparison Robot Path Finding uses Flood Fill - Wall Follower Algorithm
and Flood Fill - Pledge Algorithm

Evaluation(X where appropriate)

 Exceptional Very Good Good Fair Poor

Originality X

Innovation X

Technical Merit X

Applicability X

Presentation X

Relevance to the Conference X

Recommendation to Editors(X where appropriate)

 Strongly
Accept

Accept Marginally
Accept

Reject Strongly
Reject

Recommendation X

Comments and Instructions
This paper is an analysis of the combination of the Flood fill method with the Wall Follower
algorithm compared to the Flood Fill method with the Pledge algorithm, based on a series of
experiments conducted on various maze patterns in the labyrinth. This paper was well
organized. The abstract demonstrated the paper theme very well and the references are good to
prove the strong background research for this paper. However, there are some suggestions if the
author could consider revising this paper.

-Some references are aged. Please add more references in recent 5 years.
- It is recommended that the authors suggest possible directions for further studies beyond the
work that has been completed in this manuscript in the conclusion section.

Basically this paper is good. Its topic also falls well into the category of the conference interests.
So after some revision, it can be accepted for publication.

http://www.icame.org/

4. Bukti Konfirmasi Submit Revisi Kedua,

Respon Kepada Reviewer
Dan Artikel Yang DiSubmit Ulang

(19-25 Juni 2019)

Performance Comparison Robot Path Finding

uses Flood Fill - Wall Follower Algorithm and

Flood Fill - Pledge Algorithm

Semuil Tjiharjadi
Maranatha Christian University, Bandung, Indonesia

Email: semuiltj@gmail.com

Abstract — As a path-finding robot in the labyrinth, the robot

must have ability to decide the direction taken at the

intersection inside the labyrinth. Robot will map route and

try to reach the destination in the fastest time and shortest

distance. Robot will use two algorithms for path finding

process, the wall follower algorithm and the pledge

algorithm. Both algorithms can determine the direction in the

process of achieving the expected target location. After the

robot reach the destination, the robot will return to its

starting position. Robot can easily reach its destination by

using the flood fill method to decide the fastest and shortest

route to reach that position now. This research is an analysis

of the combination of the Flood fill method with the Wall

Follower algorithm compared to the Flood Fill method with

the Pledge algorithm, based on a series of experiments

conducted on various maze patterns in the labyrinth. The

experimental results show that robots can explore the maze

and map it using the wall follower algorithm, pledge

algorithm and a combination of both with the Flood Fill

algorithm. Based on the analysis, it was found that the use of

the Flood Fill algorithm that works in synergy with the Wall

Follower algorithm and the Pledge algorithm, can

dramatically increase the effectiveness of target point

searches.

Index Terms — path finding, flood fill, wall follower, pledge

I. INTRODUCTION

Robot Maze is a robot that is a search robot that can find

directions in the maze. Its ability to determine direction

independently is the advantage of this robot. The way the

robot automatically determines the direction, performs a

route mapping, and finally finds the shortest and fastest

distance is the goal of applying the search algorithm to the

labyrinth robot [1]. There are several algorithms that have

been developed for this purpose and each algorithm has its

own advantages and disadvantages [2].

As part of its autonomous ability, the Path Finding

Robot uses structured algorithms to control the

autonomous navigation it has [3]. In this study two

combinations of algorithms were used to achieve the

shortest and fastest target. The two combination

algorithms are Flood fill algorithm - Wall follower

algorithm as the first combination, while the second

combination is Flood Fill algorithm - Pledge algorithm.

Both combinations of algorithms are compared to get the

best method and are expected to find new proposals for the

development of better search techniques. It is hoped that

this comparison will get the best method for autonomous

robots to explore the labyrinth. The main task is to find a

path to complete the labyrinth in the shortest possible time

and use the shortest way. The robot must start navigation

from the corner of the labyrinth to the target as quickly as

possible [4].

The information that the robot has is the location of the

search and target. The initial task is to collect all

information about obstacles to reach the target location. In

this study the labyrinth was designed consisting of 25

square cells, with the size of each cell about 18 cm x 18

cm. The cells are designed to form a labyrinth of 5 rows x

5 columns. The initial search position is set in one cell

from its angle and the target location is in the middle of the

labyrinth. The search terms are only one cell that is opened

to pass. The design of the labyrinth wall size and

supporting platforms uses the IEEE standard.

II. LITERATURE REVIEW

2.1. Breadth First Search

 Breadth First Search is a search algorithm that tries all

the possibilities available. Starting from the root node,

Breadth First Search explores all neighboring nodes to

find the target node. Breadth First Search tests all available

nodes, so it requires large memory space to store node

information and routes that have been made. This

algorithm can find a few solutions for the route so that the

shortest route can be found. This algorithm is using First

In First Out queue and it will work poorly and consume a

lot of memory when finding target that has a long path.

 Although Zhou has shown Breadth First Search

modifications when using the divide-and-conquer solution

reconstruction, it can reduce search memory needs. The

result is Breadth-First Search to be more efficient than

Best-First Search because it requires less memory to

prevent regeneration of closed nodes [5].

2.2. Depth First Search

 The Depth First Search is an algorithm for searching

based on tree data structures that uses the Last In First Out

queue method. This algorithm is easy to implement. It

starts from the root node and tries each path to the end, and

then backtracks until it finds an unexplored path, and then

re-explores the new path, until it finds a target. The search

principle that uses this depth, requires large computing

power. A small increase in a path can result in a runtime

increasing exponentially [6].

2.3. Heuristic Function

 Heuristic Function plays vital role in optimization

problem. It is a function that uses all mapping information

to help the search process towards the right direction to

achieve goals effectively [5].

2.4. Genetic Algorithm

 Genetic algorithm is a machine-learning

technique loosely based on the principles of genetic

variation and inspired by natural evolution to find

approximate optimal solution. Advantages of Genetic

algorithm are it solves problem with multiple solutions.

But it needs very large input and data. Problems of Genetic

algorithm are certain optimization cases cannot be solved

due to poorly known fitness function. It is not able to

assure constant optimization response times because of the

entire population are improving [7].

2.5. A* algorithm

 As one of the most popular methods for finding the

shortest path in the labyrinth area, A* develops a

combination heuristic approach. This approach is also used

by the Best-First-Search (BFS) algorithm and the Dijkstra

algorithm. Algorithm A* calculate the costs that associated

with each used node. Such as the application of BFS, A*

will follow its path with the lowest heuristic cost. Both

them require large memory to store information, because

all nodes that have been tested must be stored [8].

 The A* algorithms can, during searching, judge the

movement of target point by referring heuristic

information, it does not need to thumb through the map, so

that the calculating complexity is relative simple, and

effective fast searching can be achieved [9].

2.6. Flood Fill Algorithm

 Flood fill algorithm that also known as seed fill

algorithm, is an algorithm that determines the area

connected to a given node in a multi-dimensional array.

This algorithm needs all information of maze and proper

planning. It is used widely for robot maze problem [10].

 The Flood fill algorithm gives values to each node that

represents the distance of the node from the center. It

floods the labyrinth when it reaches a new cell or node.

This algorithm requires continue update [11].

2.7. Wall Follower Algorithm

 Wall follower algorithm is one of the best known and

one of the simplest mazes solving algorithms. It starts

following passages, and whenever it reaches a junction

always uses the righthand rule or the left-hand rule. It will

turn right or left at every junction base on the right- or left-

hand rule. Wall Follower is fast algorithm and uses no

extra memory. But this method will not necessarily find

the shortest solution, and this algorithm has weakness

when the labyrinth is not connected, it can back at the start

point of the labyrinth [12].

2.8. Pledge Algorithm

 The Pledge algorithm is designed to solve wall follower

weakness. It can avoid obstacles and requires an arbitrarily

chosen direction to go toward. At the beginning of

algorithm, Pledge algorithm sets up direction and follows

this direction. When an obstacle is met, one hand rule is

kept along the obstacle while the angles turned are counted.

When the object is facing the original direction again, the

solver leaves the obstacle and continues moving in its

original direction [13].

I. HARDWARE DESIGN

This research is tested using mobile robot. It has robot

base construction by miniQ 2WD robot chassis, it is shown

at Figure 1. It has a 122 mm diameter robot chassis, a

couple wheels, a piece of ball caster and a couple Direct

Current (DC) motors which have gear box and DC motor

bracket.

Figure 2 is shown a couple pieces rotary encoder that

attached to the DC motor to calculate the rotation of the

wheels.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile Robot from side view.

The robot has three infrared sensors to detect the front,

right and left positions of the labyrinth wall. It uses the

L293D driver to control the speed and rotation of a DC

motor, a rotary encoder that has the task of calculating the

rotation of both wheels, and a button to start the robot.

The robotic system will drive a DC motor to drive the

wheel. It will control the robot to move forward, turn left

or right, and turn backwards. This labyrinth robot has an

AT Mega 324 microcontroller to respond to input signals

and run actuators based on processing algorithms. All

statuses and information are displayed on Liquid Crystal

Display (LCD) 16 x 2 in Figure 3.

Figure 3. Mobile Robot from above view.

 The block diagram of design of whole hardware

system and the flowchart of main program can be seen at

Figure 4 and Figure 5 [14].
 The labyrinth designed to be solved by robots is 5 × 5

cells as shown in Figure 6. The actual labyrinth that was

built, as shown in Figure 7, has a physical size of about

1.32 m2. The labyrinth is designed so that it will have two

paths to complete. A path can be longer than the other and

the robot must decide which path is shorter and complete

the labyrinth through that path [15].

Figure 4. Maze Robot’s Block Diagram.

II. ALGORITHM

 In this study, three types of algorithms were used.

Wall follower algorithm, Pledge algorithm and Flood Fill

algorithm. The results obtained from the Wall Follower

algorithm, Pledge algorithm, Wall Follower combination

method - Flood Fill and Pledge - Flood Fill will then be

compared.

Figure 5. Flowchart of the main program.

Figure 6. The layout of labyrinth.

Figure 7. The labyrinth arena.

 Together with the Flood Fill algorithm, they are used

to find the fastest way to achieve the objectives. Results of

Wall Follower algorithm and Pledge algorithm were

compared, when determining the priority of directions

taken when the robot finds the same priority value based

on the Flood Fill algorithm [11]. The Wall Follower

algorithm will use the right- or left-hand method in

determining the direction to be taken at each intersection.

While the Pledge algorithm will assign +1 value to the

'Play' variable every time the robot turns right and the

value -1 every time the robot turns left, the goal is to

achieve the goal by prioritizing the smallest possible 'Turn'

variable value. Every time the Pledge algorithm finds an

intersection, the turn decision taken is to reduce the value

of the 'Play' variable from rotation. The Wall Follower

algorithm and the Pledge algorithm are used to help the

Flood Fill algorithm so that collaboration will produce

smarter decisions.

 The Artificial Intelligence program has a two-

dimensional array of memory to map the 5x5 labyrinth

arena. Memory arrays are used to store information on

each maze cell wall and every cell value information. The

position of the robot in the program is expressed by

coordinates (rows, columns). The movement of the robot

in the array is done to position the robot as shown in Figure

8.

 The line coordinates will increase 1 when the robot

moves one cell to the South. On the other hand, it will

decrease by 1 when the robot moves north. The column

will decrease by 1 when the robot moves to the West, and

it will increase by 1 when the robot moves to the East.

Robots already have information about the initial

orientation, initial position, labyrinth size, and location of

the outer wall of the labyrinth.

Flood fill algorithm has four main steps: the first is

updating wall data, the second is updating cell values, the

third is calculating the smallest neighbor cell, and the last

is moving to the smallest neighbor cell.

Figure 8. Robot’s Array Movement

4.1 Wall data update

 Robot will check its environment, any walls in its

three directions: right, left and front directions. The robot

will also detect the distance of any obstacle of its three

directions. Anyone exceed 20 cm is updated as “wall” on

its respective side. Flowchart in the Figure 9 describes the

wall data update mechanism.

 The robot will check the environment, each wall in

three directions: right, left and front. Any obstacles

detected exceeding 20 cm will be updated as "walls" on

each side. The flow chart in Figure 9 explains the

mechanism for updating wall data.

 The maze robot also needs to know which direction it

is facing so it knows where to go. Table 1 describes the

relation of robot orientation and wall sensor detection. The

robot has an initial orientation when it starts at the

beginning and will continue to track changes in direction.

The robot orientation also determines the left, front and

right positions of the robot as described in table 1.

Table 1. Robot orientation and wall detection

Robot

Orientation

Wall Sensor Detection

Right Front Left

South West wall South wall East wall

West North wall West wall South wall

North East wall North wall West wall

East South wall East wall North wall

4.2 Cell value update

 The update value of cell wall is stored in a 2-

dimensional array of 5x5 memory cells. Renewing cell

values is done using a flood filling algorithm. The cells that

will be updated are the current level array while the

neighboring cells will be entered in the next level array.

After the value filling process is complete, the cells in the

next level array will be moved to the current level array to

do the next value. The update process will be completed if

the next level array cell is empty.

4.3 The smallest neigbour cell calculation

 Searching for the smallest neighbor cell is done by

priority, so if there are more than one neighboring cell that

has the smallest value, then that cell is chosen based on

priority.

Figure 9. Flowchart for updating wall location at each cell

 Priority is set based on the movement of robots that

move forward one cell has priority, the second priority is

to move one cell to the right, while the third priority is to

move one cell to the left, and the fourth or final priority is

to move one cell back. For example, if the robot faces the

East, then the East cell has priority, the two South have

priority cells, the cell has the priority third North and the

West cell has the fourth priority as in Figure 10. If the robot

faces the East, the East cell has priority, the South cell has

priority second, North has the third priority cell, and the

West cell has a fourth priority.

Figure 10. Priority of Neighbour cell

4.4. Moving to the smallest neighbour cell

 Program subroutines move the robot to the smallest

neighboring cells, then the robot will move to the cell by

observing orientation. For example, if the South cell is the

smallest cell and the orientation of the robot is facing west,

then moves to the position of the cell, the robot must turn

left, then move forward as in Figure 11.

Figure 11. Moving to smallest neighbour cell.

III. RESULTS AND DISCUSSION

In this experiment, the Robot will learn to find the

shortest path from the initial cell (row 4, column 0) to the

destination cell (row 2, column 2) and then return to the

initial cell. The robot's initial orientation faces North. The

robot will learn to find the shortest path from the initial cell

(row 4, column 0) to the destination cell (row 2, column 2)

and then return to the initial cell.

The maze program aims to facilitate observations about

how the flood filling algorithm is. Figure 12 is a maze

display simulator program. The labyrinth blue wall is a

wall whose position is known by robots. Whereas the wall

of the labyrinth is colored in an orange wall where the

robot is unknown.

3.1 First Experiment

The first experiment, the Robot will look for the initial

cell line (4.0) to the destination cell (2, 2). The results of

the wall follower algorithm and pledge algorithm are

shown in table 2 and 3. The results of combination method

of Wall Follower - Flood Fill algorithm when cell line

search (4, 0) to cell (2, 2) is shown in table 4, and the

simulation results of Pledge - Flood Fill algorithm is

shown in table 5.

Figure 12. Simulation search path to cell (2,2), Turn = 0

Table 2. First Experiment result using Wall Follower

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,1) → (2,1) →

(1,1) →(1,2) → (1,3) → (1,4) → (2,4) →
(3,4) → (4,4) → (4,3) → (4,2) → (4,1) →

(3,1) →(3,2) → (3,3) → (2,3) → (2,2)

24

Return
home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,1) → (2,1) →
(1,1) →(1,2) → (1,3) → (1,4) → (2,4) →

(3,4) → (4,4) → (4,3) → (4,2) → (4,1) →

(3,1) →(3,2) → (3,3) → (2,3) → (2,2)

24

Table 3. First Experiment result using Pledge

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,3) → (0,3) →
(0,4) →(0,3) → (1,3) → (2,3) → (2,2)

14

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →
(0,1) → (0,2) → (1,2) → (1,3) → (0,3) →

(0,4) →(0,3) → (1,3) → (2,3) → (2,2)

14

Table 4. First Experiment result using Wall Follower – Flood Fill

Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return
home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)

→ (2,2)

6

Table 5. First Experiment result using Pledge – Flood Fill Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →

(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →
(2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) →
(2,3) → (2,2)

6

The first run in the first experiment shows us that

pledge algorithm has better steps than wall follower

algorithm to achieve target point. But it also shows that

synergistic Wall follower – Flood Fill algorithm or Pledge

– Flood Fill algorithm have better results than search

applied only by using a wall follower algorithm or just a

pledge algorithm.

This experiment also shows that in second run, the

method that uses a combination of Wall Follower - Flood

Fill Algorithm or a combination of Pledge - Flood Fill

Algorithm has fewer steps than their first run. While the

second run of wall follower algorithm or second run of

pledge algorithm still have the same steps as first run,

because they do not record their experience in first run.

After the robot updates the wall data while running a

search on the first run in the first experiment and travels

home in the second run, the robot that using combination

algorithm, has enough data to find the fastest path to the

destination in the cell (2,2). That's the reason why the trip

back to the starting point and the second run has the same

number of steps for both combination algorithm.

3.2 Second Experiment

 The second experiment was carried out using a new

maze which can be seen in figures 13 and 14. The results

of this second experiment can be seen in tables 6 to 9.

Figure 13. Simulation search path to cell (2,2) for second experiment

Figure 14. The maze for second experiment.

Table 6. Second Experiment result using Wall Follower Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Table 7. Second Experiment result using Pledge Algorithm

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(4,1) → (3,1) → (3,0) → (4,0)

8

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Table 8. Second Experiment result using Wall Follower – Flood Fill

Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)

→ (2,2)

6

Table 9. Second Experiment result using Pledge – Flood Fill Algorithm

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(4,1) → (3,1) → (3,0) → (4,0)

8

Second
run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)
→ (2,2)

6

 The results of the second experiment for all test have

same results. But for second run, all tests of the

combination methods still have better results than the wall

follower algorithm or the pledge algorithm.

3.3 Third Experiment

 The third experiment was carried out using a new

maze which can be seen in figures 15 and 16. The results

of this second experiment can be seen in tables 10 to 13.

Figure 15. Simulation search path to cell (2,2) for third experiment

Figure 16. The maze for third experiment.

Table 10. Third Experiment result using Wall Follower Algorithm

 Routes Steps

First

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (1,4) → (2,4) → (3,4) →

(4,4) → (4,3) → (3,3) → (3,2) → (2,2)

14

Return
home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (1,4) → (2,4) → (3,4) →
(4,4) → (4,3) → (3,3) → (3,2) → (2,2)

14

Table 11. Third Experiment result using Pledge Algorithm

 Routes Steps

First
run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →
(1,2) → (0,2) → (0,1) → (0,0) → (0,1) →

(0,2) → (1,2) → (1,3) → (2,3) → (2,2)

14

Return
home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (0,2) → (0,1) → (0,0) → (0,1) →

(0,2) → (1,2) → (1,3) → (2,3) → (2,2)

14

Table 12. Third Experiment result using Wall Follower – Flood Fill

Algorithm

 Routes Steps

First

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (2,3) → (2,2)

8

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (4,1) → (4,2) → (3,2)

→ (2,2)

6

Table 13. Third Experiment result using Pledge – Flood Fill Algorithm

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (4,1) → (4,2) → (3,2)
→ (2,2)

6

In the first run of the third experiment, it was found

that the Wall Follower - Flood Fill algorithm turned out to

have better results than the Pledge - Flood Fill algorithm,

with a difference of 2 steps faster. While the return trip and

second run have the same results.

The results of the Wall Follower combination method

test - Flood Fill algorithm and Pledge - Flood Fill

algorithm still have better results than the Wall Follower

algorithm or the Pledge algorithm only.

In all experiments, wall map data will be updated

when the robot enters a cell that has never been visited

before. The Flood Fill algorithm will update cell values

based on the position of the wall that the robot has mapped.

 Robots always move to neighboring cells that have

the smallest value. If there are more than one neighboring

cell that has the smallest value, then cell selection will be

based on priority. Go foward has the first priority, turn

right has the second priority, turn left has the third priority,

and move backwards has the fourth priority.

 This value is changed according to the position of the

wall that has been mapped by the robot. The cell value

represents the distance of the cell to the destination cell.

IV. CONCLUSION

The testing of mobile robots is done with the ability to

learn how to navigate in unknown environments based on

their own decisions. Algorithm Flood Fill is an effective

algorithm as a combination of Wall Follower and Pledge

algorithms for the completion of a medium sized maze.

This mobile robot has managed to map the maze at

first, return home and run the second. In the second run, it

reaches the target cell through the shortest route that was

mapped in the first run before and returns home.

Based on three experiments that have been conducted,

it was found that the use of the Flood Fill algorithm is able

to increase the effectiveness of the Wall Follower

algorithm or the Pledge algorithm only. The results of the

Wall Follower - Flood Fill combination algorithm and the

Pledge - Flood Fill combination algorithm get almost the

same results for these two algorithm combinations.

In order to develop a method of searching the maze

that is more effective and faster, it is necessary to research

various combinations of existing maze methods. Future

works might include developing 3D maze research and

also the robot’s ability to complete in a bigger and more

complex maze.

REFERENCES

[1] K. Collins and K. Borowski, "Experimental Game Interactions in

a Cave Automatic Virtual Environment," in 2018 IEEE Games,
Entertainment, Media Conference (GEM), 2018.

[2] G. Dudek, M. Jenkin, E. Milios, D. Wilkes, "Robotic Exploration

as Graph Construction," IEEE Transactions on Robotics and
Automation, vol. 7, no. 6, pp. 859-865, December 1991.

[3] E. &. C. K. Kivelevitch, "Multi-Agent Maze Exploration,"

Journal of Aerospace Computing, Information, and
Communication, vol. 7, no. 12, pp. 391-405, 2010.

[4] S. Vignesh and et al., "Cave Exploration of Mobile Robots using
Soft Computing Algorithms," International Journal of Computer

Application, vol. 71, no. 22, pp. 14-18, 2013.

[5] R. &. H. E. Zhou, "Breadth-First Heuristic Search," Journal
Artificial Intelligence, vol. 170, no. 4-5, pp. 385-408, April 2006.

[6] S. &. M. S. Khan, "Depth First Search in the Semi-streaming

Model," The Computing Research Repository (CoRR), January
2019.

[7] S. &. M. M. Forrest, "What Makes a Problem Hard for a Genetic

Algorithm? Some Anomalous Results and Their Explanation,"
Machine Learning, vol. 13, no. 2-3, pp. 285-319, November 1993.

[8] A. &. R. K. Kumaravel, "Algorithm for Automaton Specification

for Exploring Dynamic Labyrinths," Indian Journal of Science
and Technology, vol. 6, no. 5, pp. 4554-4559, 2013.

[9] &. G. D. X. Liu, "A Comparative Study of A-star Algorithms for

Search and Rescue in Perfect Maze," in International Conference
on Electric Information and Control Engineering, 2011.

[10] Elshamarka, I. & Saman, A.B.S, "Design and Implementation of

a Robot for Maze-Solving using Flood-Fill Algorithm,"
International Journal of Computer Application, vol. 56, no. 5, pp.

8-13, October 2012.

[11] Tjiharjadi, S. & Setiawan, S., "Design and Implementation of
Path Finding Robot Using Flood Fill Algorithm," International

Journal of Mechanical Engineering and Robotic Research, vol.

5, no. 3, pp. 180-185, July 2016.

[12] J. R. B. D. Rosario and et al., "Modelling and Characterization of

a Maze-Solving Mobile Robot Using Wall Follower Algorithm,"

Applied Mechanics and Materials, Vols. 446-447, pp. 1245-1249,
2014.

[13] Babula, M., "Simulated Maze Solving Algorithms through

Unknown Mazes," in XVIIIth Concurrency, Specification and
Programming (CS&P) Workshop, Krakow-Przegorzaly, 2009.

[14] Tjiharjadi, S., Wijaya, M. C., and Wijaya, E., "Optimization Maze

Robot Using A* and Flood Fill Algorithm," International Journal
of Mechanical Engineering and Robotics Research, vol. 6, no. 5,

pp. 366-372, September 2017.

[15] N. K. S. S. W. I. S. Rao, "Robot Navigation in Unknown Terrains:

Introductory Survey of Non-Heuristic Algorithms," Oak Ridge

National Laboratory, Oak Ridge, 1993.

[16] A. B. S. Saman and I. Abdramane, "Solving a Reconfigurable
Maze using Hybrid Wall Follower Algorithm," International

Journal of Computer Application, vol. 82, no. 3, pp. 22-26, 2013.

[17] Z. Cai, L. Ye and A. Yang, "FloodFill Maze Solving with
Expected Toll of Penetrating Unknown Walls," in 2012 IEEE

14th International Conference on High Performance Computing

and Communication, 2012.

[18] L. L. Kai and F. Annaz, "Implementation of the Tremaux Maze

Solving Algorithm to an Omnidirectional Mobile Robot," in 13th

International Conference on Electronics, Information, and
Communication, Kinabalu, 2014.

[19] N. Z. Yew, K. M. Tiong and S. T. Yong, "Recursive Path-finding

in a Dynamic Maze with Modified Tremaux's Algorithm,"
International Journal of Mathematical and Computational

Sciences, vol. 5, no. 12, pp. 2102-2104, 2011.

[20] H. K. Wazir and F. Annaz, "Using unity for 3D object orientation
in a virtual environment," in 5th Brunei International Conference

on Engineering and Technology, 2014.

[21] K. L. Lim and F. Annaz, "Implementation of the Tremaux Maze

Solving Algorithm to an Omnidirectional Mobile Robot," in 13th

International Conference on Electronics, Information and
Communication, Kinabalu, 2014.

Semuil Tjiharjadi is currently serves as vice
rector of capital human management, assets and

development. He is also Lectures in Computer

Engineering Department. His major research on
Robotics, Computer automation, control and

security. He has written several books, To Be a
Great Effective Leader (Jogjakarta, Indonesia:

Andi Offset, 2012), Multimedia Programming by

SMIL (Jogjakarta, Indonesia: Andi Offset, 2008),
Computer Business Application (Bandung, Indonesia: Informatics,

2006) and so on. The various academic bodies on which he

contributed as: Head of Computer Engineering Department, Member:

Senate of University, Member: APTIKOM, Member: MSDN

Connection, Member: AAJI.

Author’s formal

photo

5. Bukti Konfirmasi Permintaan Revisi

Tambahan

(22 Mei 2019)

6. Bukti Konfirmasi Submit Tambahan Dan

Artikel Yang Disubmit Ulang

(26 Juni 2019)

Performance Comparison Robot Path Finding

uses Flood Fill - Wall Follower Algorithm and

Flood Fill - Pledge Algorithm

Semuil Tjiharjadi
Maranatha Christian University, Bandung, Indonesia

Email: semuiltj@gmail.com

Abstract — As a path-finding robot in the labyrinth, the robot

must have ability to decide the direction taken at the

intersection inside the labyrinth. Robot will map route and

try to reach the destination in the fastest time and shortest

distance. Robot will use two algorithms for path finding

process, the wall follower algorithm and the pledge

algorithm. Both algorithms can determine the direction in the

process of achieving the expected target location. After the

robot reach the destination, the robot will return to its

starting position. Robot can easily reach its destination by

using the flood fill method to decide the fastest and shortest

route to reach that position now. This research is an analysis

of the combination of the Flood fill method with the Wall

Follower algorithm compared to the Flood Fill method with

the Pledge algorithm, based on a series of experiments

conducted on various maze patterns in the labyrinth. The

experimental results show that robots can explore the maze

and map it using the wall follower algorithm, pledge

algorithm and a combination of both with the Flood Fill

algorithm. Based on the analysis, it was found that the use of

the Flood Fill algorithm that works in synergy with the Wall

Follower algorithm and the Pledge algorithm, can

dramatically increase the effectiveness of target point

searches.

Index Terms — path finding, flood fill, wall follower, pledge

I. INTRODUCTION

Robot Maze is a robot that is a search robot that can find

directions in the maze. Its ability to determine direction

independently is the advantage of this robot. The way the

robot automatically determines the direction, performs a

route mapping, and finally finds the shortest and fastest

distance is the goal of applying the search algorithm to the

labyrinth robot [1]. There are several algorithms that have

been developed for this purpose and each algorithm has its

own advantages and disadvantages [2].

As part of its autonomous ability, the Path Finding

Robot uses structured algorithms to control the

autonomous navigation it has [3]. In this study two

combinations of algorithms were used to achieve the

shortest and fastest target. The two combination

algorithms are Flood fill algorithm - Wall follower

algorithm as the first combination, while the second

combination is Flood Fill algorithm - Pledge algorithm.

Both combinations of algorithms are compared to get the

best method and are expected to find new proposals for the

development of better search techniques. It is hoped that

this comparison will get the best method for autonomous

robots to explore the labyrinth. The main task is to find a

path to complete the labyrinth in the shortest possible time

and use the shortest way. The robot must start navigation

from the corner of the labyrinth to the target as quickly as

possible [4].

The information that the robot has is the location of the

search and target. The initial task is to collect all

information about obstacles to reach the target location. In

this study the labyrinth was designed consisting of 25

square cells, with the size of each cell about 18 cm x 18

cm. The cells are designed to form a labyrinth of 5 rows x

5 columns. The initial search position is set in one cell

from its angle and the target location is in the middle of the

labyrinth. The search terms are only one cell that is opened

to pass. The design of the labyrinth wall size and

supporting platforms uses the IEEE standard.

II. LITERATURE REVIEW

2.1. Breadth First Search

 Breadth First Search is a search algorithm that tries all

the possibilities available. Starting from the root node,

Breadth First Search explores all neighboring nodes to

find the target node. Breadth First Search tests all available

nodes, so it requires large memory space to store node

information and routes that have been made. This

algorithm can find a few solutions for the route so that the

shortest route can be found. This algorithm is using First

In First Out queue and it will work poorly and consume a

lot of memory when finding target that has a long path.

 Although Zhou has shown Breadth First Search

modifications when using the divide-and-conquer solution

reconstruction, it can reduce search memory needs. The

result is Breadth-First Search to be more efficient than

Best-First Search because it requires less memory to

prevent regeneration of closed nodes [5].

2.2. Depth First Search

 The Depth First Search is an algorithm for searching

based on tree data structures that uses the Last In First Out

queue method. This algorithm is easy to implement. It

starts from the root node and tries each path to the end, and

then backtracks until it finds an unexplored path, and then

re-explores the new path, until it finds a target. The search

principle that uses this depth, requires large computing

power. A small increase in a path can result in a runtime

increasing exponentially [6].

2.3. Heuristic Function

 Heuristic Function plays vital role in optimization

problem. It is a function that uses all mapping information

to help the search process towards the right direction to

achieve goals effectively [5].

2.4. Genetic Algorithm

 Genetic algorithm is a machine-learning

technique loosely based on the principles of genetic

variation and inspired by natural evolution to find

approximate optimal solution. Advantages of Genetic

algorithm are it solves problem with multiple solutions.

But it needs very large input and data. Problems of Genetic

algorithm are certain optimization cases cannot be solved

due to poorly known fitness function. It is not able to

assure constant optimization response times because of the

entire population are improving [7].

2.5. A* algorithm

 As one of the most popular methods for finding the

shortest path in the labyrinth area, A* develops a

combination heuristic approach. This approach is also used

by the Best-First-Search (BFS) algorithm and the Dijkstra

algorithm. Algorithm A* calculate the costs that associated

with each used node. Such as the application of BFS, A*

will follow its path with the lowest heuristic cost. Both

them require large memory to store information, because

all nodes that have been tested must be stored [8].

 The A* algorithms can, during searching, judge the

movement of target point by referring heuristic

information, it does not need to thumb through the map, so

that the calculating complexity is relative simple, and

effective fast searching can be achieved [9].

2.6. Flood Fill Algorithm

 Flood fill algorithm that also known as seed fill

algorithm, is an algorithm that determines the area

connected to a given node in a multi-dimensional array.

This algorithm needs all information of maze and proper

planning. It is used widely for robot maze problem [10].

 The Flood fill algorithm gives values to each node that

represents the distance of the node from the center. It

floods the labyrinth when it reaches a new cell or node.

This algorithm requires continue update [11].

2.7. Wall Follower Algorithm

 Wall follower algorithm is one of the best known and

one of the simplest mazes solving algorithms. It starts

following passages, and whenever it reaches a junction

always uses the righthand rule or the left-hand rule. It will

turn right or left at every junction base on the right- or left-

hand rule. Wall Follower is fast algorithm and uses no

extra memory. But this method will not necessarily find

the shortest solution, and this algorithm has weakness

when the labyrinth is not connected, it can back at the start

point of the labyrinth [12].

2.8. Pledge Algorithm

 The Pledge algorithm is designed to solve wall follower

weakness. It can avoid obstacles and requires an arbitrarily

chosen direction to go toward. At the beginning of

algorithm, Pledge algorithm sets up direction and follows

this direction. When an obstacle is met, one hand rule is

kept along the obstacle while the angles turned are counted.

When the object is facing the original direction again, the

solver leaves the obstacle and continues moving in its

original direction [13].

I. HARDWARE DESIGN

This research is tested using mobile robot. It has robot

base construction by miniQ 2WD robot chassis, it is shown

at Figure 1. It has a 122 mm diameter robot chassis, a

couple wheels, a piece of ball caster and a couple Direct

Current (DC) motors which have gear box and DC motor

bracket.

Figure 2 is shown a couple pieces rotary encoder that

attached to the DC motor to calculate the rotation of the

wheels.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile Robot from side view.

The robot has three infrared sensors to detect the front,

right and left positions of the labyrinth wall. It uses the

L293D driver to control the speed and rotation of a DC

motor, a rotary encoder that has the task of calculating the

rotation of both wheels, and a button to start the robot.

The robotic system will drive a DC motor to drive the

wheel. It will control the robot to move forward, turn left

or right, and turn backwards. This labyrinth robot has an

AT Mega 324 microcontroller to respond to input signals

and run actuators based on processing algorithms. All

statuses and information are displayed on Liquid Crystal

Display (LCD) 16 x 2 in Figure 3.

Figure 3. Mobile Robot from above view.

 The block diagram of design of whole hardware

system and the flowchart of main program can be seen at

Figure 4 and Figure 5 [14].
 The labyrinth designed to be solved by robots is 5 × 5

cells as shown in Figure 6. The actual labyrinth that was

built, as shown in Figure 7, has a physical size of about

1.32 m2. The labyrinth is designed so that it will have two

paths to complete. A path can be longer than the other and

the robot must decide which path is shorter and complete

the labyrinth through that path [15].

Figure 4. Maze Robot’s Block Diagram.

II. ALGORITHM

 In this study, three types of algorithms were used.

Wall follower algorithm, Pledge algorithm and Flood Fill

algorithm. The results obtained from the Wall Follower

algorithm, Pledge algorithm, Wall Follower combination

method - Flood Fill and Pledge - Flood Fill will then be

compared.

Figure 5. Flowchart of the main program.

Figure 6. The layout of labyrinth.

Figure 7. The labyrinth arena.

 Together with the Flood Fill algorithm, they are used

to find the fastest way to achieve the objectives. Results of

Wall Follower algorithm and Pledge algorithm were

compared, when determining the priority of directions

taken when the robot finds the same priority value based

on the Flood Fill algorithm [11]. The Wall Follower

algorithm will use the right- or left-hand method in

determining the direction to be taken at each intersection.

While the Pledge algorithm will assign +1 value to the

'Play' variable every time the robot turns right and the

value -1 every time the robot turns left, the goal is to

achieve the goal by prioritizing the smallest possible 'Turn'

variable value. Every time the Pledge algorithm finds an

intersection, the turn decision taken is to reduce the value

of the 'Play' variable from rotation. The Wall Follower

algorithm and the Pledge algorithm are used to help the

Flood Fill algorithm so that collaboration will produce

smarter decisions [16].

 The Artificial Intelligence program has a two-

dimensional array of memory to map the 5x5 labyrinth

arena. Memory arrays are used to store information on

each maze cell wall and every cell value information. The

position of the robot in the program is expressed by

coordinates (rows, columns). The movement of the robot

in the array is done to position the robot as shown in Figure

8.

 The line coordinates will increase 1 when the robot

moves one cell to the South. On the other hand, it will

decrease by 1 when the robot moves north. The column

will decrease by 1 when the robot moves to the West, and

it will increase by 1 when the robot moves to the East.

Robots already have information about the initial

orientation, initial position, labyrinth size, and location of

the outer wall of the labyrinth [17].

Flood fill algorithm has four main steps: the first is

updating wall data, the second is updating cell values, the

third is calculating the smallest neighbor cell, and the last

is moving to the smallest neighbor cell.

Figure 8. Robot’s Array Movement

4.1 Wall data update

 Robot will check its environment, any walls in its

three directions: right, left and front directions. The robot

will also detect the distance of any obstacle of its three

directions. Anyone exceed 20 cm is updated as “wall” on

its respective side. Flowchart in the Figure 9 describes the

wall data update mechanism.

 The robot will check the environment, each wall in

three directions: right, left and front. Any obstacles

detected exceeding 20 cm will be updated as "walls" on

each side. The flow chart in Figure 9 explains the

mechanism for updating wall data.

 The maze robot also needs to know which direction it

is facing so it knows where to go. Table 1 describes the

relation of robot orientation and wall sensor detection. The

robot has an initial orientation when it starts at the

beginning and will continue to track changes in direction.

The robot orientation also determines the left, front and

right positions of the robot as described in table 1.

Table 1. Robot orientation and wall detection

Robot

Orientation

Wall Sensor Detection

Right Front Left

South West wall South wall East wall

West North wall West wall South wall

North East wall North wall West wall

East South wall East wall North wall

4.2 Cell value update

 The update value of cell wall is stored in a 2-

dimensional array of 5x5 memory cells. Renewing cell

values is done using a flood filling algorithm. The cells that

will be updated are the current level array while the

neighboring cells will be entered in the next level array.

After the value filling process is complete, the cells in the

next level array will be moved to the current level array to

do the next value. The update process will be completed if

the next level array cell is empty.

4.3 The smallest neigbour cell calculation

 Searching for the smallest neighbor cell is done by

priority, so if there are more than one neighboring cell that

has the smallest value, then that cell is chosen based on

priority.

Figure 9. Flowchart for updating wall location at each cell

 Priority is set based on the movement of robots that

move forward one cell has priority, the second priority is

to move one cell to the right, while the third priority is to

move one cell to the left, and the fourth or final priority is

to move one cell back. For example, if the robot faces the

East, then the East cell has priority, the two South have

priority cells, the cell has the priority third North and the

West cell has the fourth priority as in Figure 10. If the robot

faces the East, the East cell has priority, the South cell has

priority second, North has the third priority cell, and the

West cell has a fourth priority.

Figure 10. Priority of Neighbour cell

4.4. Moving to the smallest neighbour cell

 Program subroutines move the robot to the smallest

neighboring cells, then the robot will move to the cell by

observing orientation. For example, if the South cell is the

smallest cell and the orientation of the robot is facing west,

then moves to the position of the cell, the robot must turn

left, then move forward as in Figure 11.

Figure 11. Moving to smallest neighbour cell.

III. RESULTS AND DISCUSSION

In this experiment, the Robot will learn to find the

shortest path from the initial cell (row 4, column 0) to the

destination cell (row 2, column 2) and then return to the

initial cell. The robot's initial orientation faces North. The

robot will learn to find the shortest path from the initial cell

(row 4, column 0) to the destination cell (row 2, column 2)

and then return to the initial cell [1].

The maze program aims to facilitate observations about

how the flood filling algorithm is. Figure 12 is a maze

display simulator program. The labyrinth blue wall is a

wall whose position is known by robots. Whereas the wall

of the labyrinth is colored in an orange wall where the

robot is unknown.

3.1 First Experiment

The first experiment, the Robot will look for the initial

cell line (4.0) to the destination cell (2, 2). The results of

the wall follower algorithm and pledge algorithm are

shown in table 2 and 3. The results of combination method

of Wall Follower - Flood Fill algorithm when cell line

search (4, 0) to cell (2, 2) is shown in table 4, and the

simulation results of Pledge - Flood Fill algorithm is

shown in table 5.

Figure 12. Simulation search path to cell (2,2), Turn = 0

Table 2. First Experiment result using Wall Follower

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,1) → (2,1) →

(1,1) →(1,2) → (1,3) → (1,4) → (2,4) →
(3,4) → (4,4) → (4,3) → (4,2) → (4,1) →

(3,1) →(3,2) → (3,3) → (2,3) → (2,2)

24

Return
home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,1) → (2,1) →
(1,1) →(1,2) → (1,3) → (1,4) → (2,4) →

(3,4) → (4,4) → (4,3) → (4,2) → (4,1) →

(3,1) →(3,2) → (3,3) → (2,3) → (2,2)

24

Table 3. First Experiment result using Pledge

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,3) → (0,3) →
(0,4) →(0,3) → (1,3) → (2,3) → (2,2)

14

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →
(0,1) → (0,2) → (1,2) → (1,3) → (0,3) →

(0,4) →(0,3) → (1,3) → (2,3) → (2,2)

14

Table 4. First Experiment result using Wall Follower – Flood Fill

Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return
home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)

→ (2,2)

6

Table 5. First Experiment result using Pledge – Flood Fill Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →

(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →
(2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) →
(2,3) → (2,2)

6

The first run in the first experiment shows us that

pledge algorithm has better steps than wall follower

algorithm to achieve target point. But it also shows that

synergistic Wall follower – Flood Fill algorithm or Pledge

– Flood Fill algorithm have better results than search

applied only by using a wall follower algorithm or just a

pledge algorithm.

This experiment also shows that in second run, the

method that uses a combination of Wall Follower - Flood

Fill Algorithm or a combination of Pledge - Flood Fill

Algorithm has fewer steps than their first run. While the

second run of wall follower algorithm or second run of

pledge algorithm still have the same steps as first run,

because they do not record their experience in first run.

After the robot updates the wall data while running a

search on the first run in the first experiment and travels

home in the second run, the robot that using combination

algorithm, has enough data to find the fastest path to the

destination in the cell (2,2). That's the reason why the trip

back to the starting point and the second run has the same

number of steps for both combination algorithm.

3.2 Second Experiment

 The second experiment was carried out using a new

maze which can be seen in figures 13 and 14. The results

of this second experiment can be seen in tables 6 to 9.

Figure 13. Simulation search path to cell (2,2) for second experiment

Figure 14. The maze for second experiment.

Table 6. Second Experiment result using Wall Follower Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Table 7. Second Experiment result using Pledge Algorithm

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(4,1) → (3,1) → (3,0) → (4,0)

8

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Table 8. Second Experiment result using Wall Follower – Flood Fill

Algorithm

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)

→ (2,2)

6

Table 9. Second Experiment result using Pledge – Flood Fill Algorithm

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(4,1) → (3,1) → (3,0) → (4,0)

8

Second
run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)
→ (2,2)

6

 The results of the second experiment for all test have

same results. But for second run, all tests of the

combination methods still have better results than the wall

follower algorithm or the pledge algorithm.

3.3 Third Experiment

 The third experiment was carried out using a new

maze which can be seen in figures 15 and 16. The results

of this second experiment can be seen in tables 10 to 13.

Figure 15. Simulation search path to cell (2,2) for third experiment

Figure 16. The maze for third experiment.

Table 10. Third Experiment result using Wall Follower Algorithm

 Routes Steps

First

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (1,4) → (2,4) → (3,4) →

(4,4) → (4,3) → (3,3) → (3,2) → (2,2)

14

Return
home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (1,4) → (2,4) → (3,4) →
(4,4) → (4,3) → (3,3) → (3,2) → (2,2)

14

Table 11. Third Experiment result using Pledge Algorithm

 Routes Steps

First
run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →
(1,2) → (0,2) → (0,1) → (0,0) → (0,1) →

(0,2) → (1,2) → (1,3) → (2,3) → (2,2)

14

Return
home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (0,2) → (0,1) → (0,0) → (0,1) →

(0,2) → (1,2) → (1,3) → (2,3) → (2,2)

14

Table 12. Third Experiment result using Wall Follower – Flood Fill

Algorithm

 Routes Steps

First

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (2,3) → (2,2)

8

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (4,1) → (4,2) → (3,2)

→ (2,2)

6

Table 13. Third Experiment result using Pledge – Flood Fill Algorithm

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (4,1) → (4,2) → (3,2)
→ (2,2)

6

In the first run of the third experiment, it was found

that the Wall Follower - Flood Fill algorithm turned out to

have better results than the Pledge - Flood Fill algorithm,

with a difference of 2 steps faster. While the return trip and

second run have the same results.

The results of the Wall Follower combination method

test - Flood Fill algorithm and Pledge - Flood Fill

algorithm still have better results than the Wall Follower

algorithm or the Pledge algorithm only.

In all experiments, wall map data will be updated

when the robot enters a cell that has never been visited

before. The Flood Fill algorithm will update cell values

based on the position of the wall that the robot has mapped.

 Robots always move to neighboring cells that have

the smallest value. If there are more than one neighboring

cell that has the smallest value, then cell selection will be

based on priority. Go foward has the first priority, turn

right has the second priority, turn left has the third priority,

and move backwards has the fourth priority.

 This value is changed according to the position of the

wall that has been mapped by the robot. The cell value

represents the distance of the cell to the destination cell.

IV. CONCLUSION

The testing of mobile robots is done with the ability to

learn how to navigate in unknown environments based on

their own decisions. Algorithm Flood Fill is an effective

algorithm as a combination of Wall Follower and Pledge

algorithms for the completion of a medium sized maze.

This mobile robot has managed to map the maze at

first, return home and run the second. In the second run, it

reaches the target cell through the shortest route that was

mapped in the first run before and returns home.

Based on three experiments that have been conducted,

it was found that the use of the Flood Fill algorithm is able

to increase the effectiveness of the Wall Follower

algorithm or the Pledge algorithm only. The results of the

Wall Follower - Flood Fill combination algorithm and the

Pledge - Flood Fill combination algorithm get almost the

same results for these two algorithm combinations.

In order to develop a method of searching the maze

that is more effective and faster, it is necessary to research

various combinations of existing maze methods. Future

works might include developing 3D maze research and

also the robot’s ability to complete in a bigger and more

complex maze [18].

REFERENCES

[1] K. Collins and K. Borowski, "Experimental Game Interactions in
a Cave Automatic Virtual Environment," in 2018 IEEE Games,

Entertainment, Media Conference (GEM), 2018.

[2] G. Dudek, M. Jenkin, E. Milios, D. Wilkes, "Robotic Exploration
as Graph Construction," IEEE Transactions on Robotics and

Automation, vol. 7, no. 6, pp. 859-865, December 1991.

[3] E. &. C. K. Kivelevitch, "Multi-Agent Maze Exploration," Journal
of Aerospace Computing, Information, and Communication, vol.

7, no. 12, pp. 391-405, 2010.

[4] S. Vignesh and et al., "Cave Exploration of Mobile Robots using
Soft Computing Algorithms," International Journal of Computer

Application, vol. 71, no. 22, pp. 14-18, 2013.

[5] R. &. H. E. Zhou, "Breadth-First Heuristic Search," Journal
Artificial Intelligence, vol. 170, no. 4-5, pp. 385-408, April 2006.

[6] S. &. M. S. Khan, "Depth First Search in the Semi-streaming

Model," The Computing Research Repository (CoRR), January
2019.

[7] S. &. M. M. Forrest, "What Makes a Problem Hard for a Genetic

Algorithm? Some Anomalous Results and Their Explanation,"
Machine Learning, vol. 13, no. 2-3, pp. 285-319, November 1993.

[8] A. &. R. K. Kumaravel, "Algorithm for Automaton Specification

for Exploring Dynamic Labyrinths," Indian Journal of Science and
Technology, vol. 6, no. 5, pp. 4554-4559, 2013.

[9] &. G. D. X. Liu, "A Comparative Study of A-star Algorithms for

Search and Rescue in Perfect Maze," in International Conference
on Electric Information and Control Engineering, 2011.

[10] Elshamarka, I. & Saman, A.B.S, "Design and Implementation of a

Robot for Maze-Solving using Flood-Fill Algorithm,"
International Journal of Computer Application, vol. 56, no. 5, pp.

8-13, October 2012.

[11] Tjiharjadi, S. & Setiawan, S., "Design and Implementation of Path
Finding Robot Using Flood Fill Algorithm," International Journal

of Mechanical Engineering and Robotic Research, vol. 5, no. 3,
pp. 180-185, July 2016.

[12] J. R. B. D. Rosario and et al., "Modelling and Characterization of

a Maze-Solving Mobile Robot Using Wall Follower Algorithm,"
Applied Mechanics and Materials, Vols. 446-447, pp. 1245-1249,

2014.

[13] Babula, M., "Simulated Maze Solving Algorithms through
Unknown Mazes," in XVIIIth Concurrency, Specification and

Programming (CS&P) Workshop, Krakow-Przegorzaly, 2009.

[14] Tjiharjadi, S., Wijaya, M. C., and Wijaya, E., "Optimization Maze
Robot Using A* and Flood Fill Algorithm," International Journal

of Mechanical Engineering and Robotics Research, vol. 6, no. 5,

pp. 366-372, September 2017.

[15] N. K. S. S. W. I. S. Rao, "Robot Navigation in Unknown Terrains:

Introductory Survey of Non-Heuristic Algorithms," Oak Ridge

National Laboratory, Oak Ridge, 1993.

[16] A. B. S. Saman and I. Abdramane, "Solving a Reconfigurable

Maze using Hybrid Wall Follower Algorithm," International

Journal of Computer Application, vol. 82, no. 3, pp. 22-26, 2013.

[17] Z. Cai, L. Ye and A. Yang, "FloodFill Maze Solving with Expected

Toll of Penetrating Unknown Walls," in 2012 IEEE 14th
International Conference on High Performance Computing and

Communication, 2012.

[18] H. K. Wazir and F. Annaz, "Using unity for 3D object orientation
in a virtual environment," in 5th Brunei International Conference

on Engineering and Technology, 2014.

Semuil Tjiharjadi is currently serves as vice

rector of capital human management, assets and
development. He is also Lectures in Computer

Engineering Department. His major research on

Robotics, Computer automation, control and
security. He has written several books, To Be a

Great Effective Leader (Jogjakarta, Indonesia:

Andi Offset, 2012), Multimedia Programming by
SMIL (Jogjakarta, Indonesia: Andi Offset, 2008),

Computer Business Application (Bandung, Indonesia: Informatics,

2006) and so on. The various academic bodies on which he
contributed as: Head of Computer Engineering Department, Member:

Senate of University, Member: APTIKOM, Member: MSDN

Connection, Member: AAJI.

Author’s formal
photo

7. Bukti Korespondensi Artikel Akan Segera

Diterbitkan Dan Butuh Konfirmasi Terakhir,

Submit Artikel Terakhir Dan Perbaikannya

(7 Nopember 2019)

Semuil Tjiharjadi <semuiltj@gmail.com>

ICAME 2019-final paper confirmation before publication-IJMERR-E009
icameconf <icameconf@zhconf.ac.cn> Thu, Nov 7, 2019 at 1:27 PM
To: semuiltj <semuiltj@gmail.com>

Dear Semuil Tjiharjadi,
Greetings from Rachel and ICAME 2019.
We have revised your paper （E009） format with the IJMERR template as the press demand. Please confirm whether the
content is wrong or not and whether the information and order of authors are wrong or not. If yes, please revise your paper
based on the attached version I sent to you and then send it back to us before Nov. 15, 2019 . （both doc and pdf version
needed）
Please also add the highnighted part as below mentioned.

 Please open it with "office" only.
 Thanks for your cooperation.
 Looking forward to your reply.

Thanks & Best Regards

Ms. Rachel Cao | Conference Secretary

E-mail: icameconf@zhconf.ac.cn | Web: http://www.icame.org/

2019 3rd International Conference on Automation and Mechatronics Engineering ICAME 2019

P Please consider the environment before printing this email.

3 attachments

E009-IJMERR.doc
3657K

E009-IJMERR.pdf
589K

IJMERR.doc
104K

mailto:icacer@zhconf.ac.cn
mailto:icacer@zhconf.ac.cn
http://www.icacer.com/
https://mail.google.com/mail/u/0/?ui=2&ik=93cfa92c1d&view=att&th=16e448cb8eb9b78e&attid=0.1&disp=attd&safe=1&zw
https://mail.google.com/mail/u/0/?ui=2&ik=93cfa92c1d&view=att&th=16e448cb8eb9b78e&attid=0.1&disp=attd&safe=1&zw
https://mail.google.com/mail/u/0/?ui=2&ik=93cfa92c1d&view=att&th=16e448cb8eb9b78e&attid=0.2&disp=attd&safe=1&zw
https://mail.google.com/mail/u/0/?ui=2&ik=93cfa92c1d&view=att&th=16e448cb8eb9b78e&attid=0.2&disp=attd&safe=1&zw
https://mail.google.com/mail/u/0/?ui=2&ik=93cfa92c1d&view=att&th=16e448cb8eb9b78e&attid=0.3&disp=attd&safe=1&zw
https://mail.google.com/mail/u/0/?ui=2&ik=93cfa92c1d&view=att&th=16e448cb8eb9b78e&attid=0.3&disp=attd&safe=1&zw

Performance Comparison Robot Path Finding

uses Flood Fill - Wall Follower Algorithm and

Flood Fill - Pledge Algorithm

Semuil Tjiharjadi
Maranatha Christian University, Bandung, Indonesia

Email: semuiltj@gmail.com

Abstract—As a path-finding robot in the maze, the robot

must have the ability to decide the direction taken at the

intersection inside the maze. Robot will map route and try

to reach the destination in the fastest time and shortest

distance. Robot will use two algorithms for the pathfinding

process, the Wall Follower algorithm, and the Pledge

algorithm. Both algorithms can determine the direction in

the process of achieving the expected target location. After

the robot reach the destination, the robot will return to its

starting position. Robot can easily reach its goal by using the

Flood Fill method to decide the fastest and shortest route to

reach that position now. This research is an analysis of the

combination of the Flood Fill method with the Wall

Follower algorithm compared to the Flood Fill method with

the Pledge algorithm, based on a series of experiments

conducted on various maze patterns in the maze. The

experimental results show that robots can explore the maze

and map it using the Wall Follower algorithm, Pledge

algorithm, and a combination of both with the Flood Fill

algorithm. Based on the analysis, it was found that the use of

the Flood Fill algorithm that works in synergy with the Wall

Follower algorithm and the Pledge algorithm, can

dramatically increase the effectiveness of target point

searches.1

Index Terms—pathfinding, Flood Fill, Wall Follower, Pledge

I. INTRODUCTION

Robot Maze is a robot that is a search robot that can

find directions in the maze. Its ability to determine

direction independently is the advantage of this robot.

The way the robot automatically determines the direction,

performs a route mapping, and finally finds the shortest

and fastest distance is the goal of applying the search

algorithm to the maze robot [1]. Several algorithms have

been developed for this purpose, and each algorithm has

its advantages and disadvantages [2].

As part of its autonomous ability, the Path Finding

Robot uses structured algorithms to control the

autonomous navigation it has [3]. In this study, two

combinations of algorithms were used to achieve the

shortest and fastest target. The two combination

algorithms are the Flood Fill algorithm - Wall Follower

Manuscript received May 22, 2019; revised June 14, 2019; accepted

June 28, 2019.

corresponding author: Semuil Tjiharjadi, semuiltj@gmail.com

algorithm as the first combination, while the second

combination is the Flood Fill algorithm - Pledge

algorithm. Both combinations of algorithms are compared

to get the best method and are expected to find new

proposals for the development of better search

techniques. It is hoped that this comparison will get the

best method for autonomous robots to explore the maze.

The main task is to find a path to complete the maze in

the shortest possible time and use the shortest way. The

robot must start navigation from the corner of the maze to

the target as quickly as possible [4].

The information that the robot has is the location of the

search and target. The initial task is to collect all

information about obstacles to reach the target location.

In this study, the maze was designed consisting of 25

square cells, with the size of each cell about 18 cm x 18

cm. The cells are designed to form a maze of 5 rows x 5

columns. The initial search position is set in one cell from

its angle, and the target location is in the middle of the

maze. The search terms are only one cell that is opened to

pass. The design of the maze wall size and supporting

platforms use the IEEE standard.

II. LITERATURE REVIEW

A. Breadth-First Search

Breadth-First Search is a search algorithm that tries all

the possibilities available. Starting from the root node,

Breadth-First Search explores all neighboring nodes to

find the target node. Breadth-First Search tests all

available nodes, so it requires large memory space to

store node information and routes that have been made.

This algorithm can find a few solutions for the route so

that the shortest route can be found. This algorithm is

using First In First Out queue, and it will work poorly and

consume a lot of memory when finding a target that has a

long path.

Although Zhou has shown Breadth-First Search

modifications when using the divide-and-conquer

solution reconstruction, it can reduce search memory

needs. The result is Breadth-First Search to be more

efficient than Best-First Search because it requires less

memory to prevent regeneration of closed nodes [5].

B. Depth First Search

The Depth First Search is an algorithm for searching

based on tree data structures that use the Last In First Out

queue method. This algorithm is easy to implement. It

starts from the root node and tries each path to the end,

and then backtracks until it finds an unexplored path, and

then re-explores the new path until it finds a target. The

search principle that uses this depth requires high

computing power. A small increase in a path can result in

a runtime increasing exponentially [6].

C. Heuristic Function

Heuristic Function plays a vital role in the optimization

problem. It is a function that uses all mapping

information to help the search process in the right

direction to achieve goals effectively [5].

D. Genetic Algorithm

Genetic algorithm is a machine-learning technique

loosely based on the principles of genetic variation and

inspired by natural evolution to find approximate optimal

solution. Advantages of Genetic algorithm are it solves

problem with multiple solutions. But it needs huge input

and data. Problems of Genetic algorithm are certain

optimization cases cannot be solved due to poorly known

fitness function. It is not able to assure constant

optimization response times because the entire population

is improving [7].

E. A* algorithm

A* is one of the most popular methods for finding the

shortest path in the maze area. It develops a combination

heuristic approach. This approach is also used by the

Best-First-Search (BFS) algorithm and the Dijkstra

algorithm. Algorithm A* calculates the costs associated

with each used node. Such as the application of BFS, A*

will follow its path with the lowest heuristic cost. Both of

them require large memory to store information, because

all nodes that have been tested must be stored [8].

The A* algorithms can, during searching, judge the

movement of the target point by referring heuristic

information, it does not need to thumb through the map,

so that the calculating complexity is relative simple and

effective fast searching can be achieved [9].

F. Flood Fill Algorithm

Flood Fill algorithm that also known as the seed fill

algorithm, is an algorithm that determines the area

connected to a given node in a multi-dimensional array.

This algorithm needs all information of maze and proper

planning. It is used widely for robot maze problem [10].

The Flood Fill algorithm offers values to every node

that represents the distance of the node from the center. It

floods the maze when it reaches a new cell or node. This

algorithm requires continue update [11].

G. Wall Follower Algorithm

Wall Follower algorithm is one of the best known and

one of the simplest mazes solving algorithms. It starts

following passages, and whenever it reaches a junction,

always uses the righthand rule or the left-hand rule. It will

turn right or left at every junction base on the right- or

left-hand rule. Wall Follower is a fast algorithm and uses

no extra memory. But this method will not necessarily

find the shortest solution, and this algorithm has

weakness when the maze is not connected, it can back at

the start point of the maze [12].

H. Pledge Algorithm

The Pledge algorithm is designed to solve Wall

Follower weakness. It can avoid obstacles and requires an

arbitrarily chosen direction to go forward. At the

beginning of the algorithm, the Pledge algorithm sets up

direction and follows this direction [13]. When an

obstacle is met, one hand rule is kept along the obstacle

while the angles turned are counted. When the object is

facing the original direction again, the solver leaves the

obstacle and continues moving in its first direction [14].

III. HARDWARE DESIGN

This research is tested using a mobile robot. It has

robot base construction by miniQ 2WD robot chassis. It

is shown in Figure 1. It has a 122 mm diameter robot

chassis, two wheels, a ball caster, and two Direct Current

(DC) motors which have gearbox and DC motor bracket.

Figure 2 is shown a couple of pieces of rotary encoder

attached to the DC motor to calculate the rotation of the

wheels.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile Robot from side view.

The robot has three infrared sensors to detect the front,

right, and left positions of the maze wall. It uses the

L293D driver to control the speed and rotation of a DC

motor, a rotary encoder that has the task of calculating the

rotation of both wheels, and a button to start the robot.

The robotic system will drive a DC motor to drive the

wheel. It will control the robot to move forward, turn left

or right, and turn backward. AT Mega 324

microcontroller is used to respond to input signals and

run actuators based on processing algorithms. All statuses

and information are displayed on Liquid Crystal Display

(LCD) 16 x 2 in Figure 3.

Figure 3. Display of Mobile Robot from the above.

The block diagram of the design of the whole hardware

system and the flowchart of the main program can be

seen in Figure 4 and Figure 5 [15].

The maze designed to be solved by robots is 5 × 5

cells, as shown in Figure 6. The actual maze that was

built, as shown in Figure 7, has a physical size of about

1.32 m2. The maze is designed so that it will have two

paths to complete. A path can be longer than the other,

and the robot must decide which path is shorter and

complete the maze through that path [16].

Figure 4. Maze Robot’s Block Diagram.

IV. ALGORITHM

Three types of algorithms were used in this paper.

Wall Follower algorithm, Pledge algorithm, and Flood

Fill algorithm. The results obtained from the Wall

Follower algorithm, Pledge algorithm, Wall Follower

combination method - Flood Fill, and Pledge - Flood Fill

will then be compared.

Figure 5. Flowchart of the main program.

Figure 6. The layout of the maze.

Figure 7. The maze arena.

Together with the Flood Fill algorithm, they are used

to find the fastest way to achieve the objectives. Results

of Wall Follower algorithm and Pledge algorithm were

compared when determining the priority of directions

taken when the robot finds the same value of priority

based on the Flood Fill algorithm [11]. The Wall

Follower algorithm will use the right- or left-hand

method in determining the direction to be taken at each

intersection. While the Pledge algorithm will assign +1

value to the 'Play' variable every time the robot turns right

and the value -1 every time the robot turns left, the goal is

to achieve the target by prioritizing the smallest possible

'Turn' variable value. When the Pledge algorithm finds an

intersection, the turn decision taken is to reduce the value

of the 'Play' variable from rotation. The Wall Follower

algorithm and the Pledge algorithm are used to help the

Flood Fill algorithm so that collaboration will produce

smarter decisions [17].

The Artificial Intelligence program has a two-

dimensional array of memory to map the 5x5 maze arena.

Memory arrays are used to store information on each

maze cell wall and every cell value information. The

position of the robot in the program is expressed by

coordinates (rows, columns). The robot moves in the

array to the location of the robot, as shown in Figure 8.

The line coordinates will increase 1 when the robot

moves one cell to the South. On the other hand, it will

decrease by 1 when the robot moves north. The column

will reduce by 1 when the robot moves to the West, and it

will increase by 1 when the robot moves to the East.

Robots already have information about the initial

orientation, initial position, maze size, and location of the

outer wall of the maze [18].

There are four main steps in Flood Fill algorithm: the

first is updating wall data, the second is updating cell

values, the third is calculating the smallest neighbor cell,

and the last is moving to the smallest neighbor cell.

Figure 8. Robot’s Array Movement

A. Updating Wall Data

Robot will test its environment, any partitions in its

three directions: right, left, and forward instructions. The

robot will additionally observe the distance of any

obstacles of its three courses. Anything exceed 20 cm is

updated as “wall” on its respective side. Flowchart in

Figure 9 describes the wall data update mechanism.

The robot will check the environment, each wall in

three directions: right, left, and front. Any obstacles

detected exceeding 20 cm will be updated as "walls" on

each side. The flow chart in Figure 9 explains the

mechanism for updating wall data.

The maze robot always needs to know the way its

faces, so it knows where to go. Table 1 details the

relationship between robot orientation and detection of

wall sensors. When it begins at the start, the robot has an

initial orientation and will continue to track changes in

direction. The robot orientation also determines the left,

front, and right positions of the robot, as described in

table 1.

TABLE I. ROBOT ORIENTATION AND WALL DETECTION

Robot

Orientation

Wall Sensor Detection

Right Front Left

South West wall South wall East wall

West North wall West wall South wall

North East wall North wall West wall

East South wall East wall North wall

B. Cell Value Update

The update value of cell wall is stored in a 2-

dimensional array of 5x5 memory cells. Renewing cell

values is done using a Flood Filling algorithm. At the

current level array, the cell will be updated. In the next

level array, the neighboring cells will be calculated.

When the value filling process is complete, the cells in

the next level array will be copied to the current level

array to do the future value. The update process will be

completed if the next level array cell is empty.

C. The Smallest Neighbor Cell Calculation

Searching for the smallest neighbor cell is done by

priority, so if there are two or more neighboring cell that

has the smallest value, then that cell is chosen based on

priority.

Figure 9. Wall location update flowchart.

Priority is set based on the movement of robots that

move forward one cell has the highest priority, move one

cell to the right is the second, while move one cell to the

left is the third priority, and the fourth or final priority is

to move one cell back. For example, if the robot faces the

East, then the East cell has priority, the two South have

priority cells, the cell has the third priority North, and the

fourth priority is at the west, as in Figure 10. When the

robot faces the East, the East cell has priority, the South

cell has priority second, North has the third priority cell,

and the West cell has a fourth priority.

Figure 10. Priority of Neighbour cell

D. Moving to the Smallest Neighbour Cell.

Robot move to the smallest neighboring cells, and then

the robot will move to the cell by observing orientation.

When the smallest cell in the south cell and the robot is

facing west, then it will move to the position of the cell,

the robot must turn left, then move forward, as in Figure

11.

Figure 11. Moving to the smallest neighbor cell.

V. RESULTS AND DISCUSSION

In this experiment, the Robot will learn to find the

shortest path from the first cell (row 4, column 0) to the

destination cell (row 2, column 2) and then return to the

first cell. The robot's initial orientation faces North. The

robot will learn to find the shortest path from the first cell

at (row 4, column 0) to the destination cell at (row 2,

column 2) and then return to the first cell [1].

The maze program aims to facilitate observations

about how the Flood Filling algorithm is. Figure 12 is a

maze display simulator program. The maze blue wall is a

wall whose position is known by robots, whereas the wall

of the maze is colored in an orange wall where the robot

is unknown.

A. First Experiment

In the first experiment, the Robot will look for the first

cell line (4.0) to the destination cell (2, 2). The results of

the Wall Follower algorithm and Pledge algorithm are

shown in Tables 2 and 3. The results of the combination

method of Wall Follower - Flood Fill algorithm when cell

line search (4, 0) to cell (2, 2) is shown in table 4, and the

simulation results of the Pledge - Flood Fill algorithm is

shown in table 5.

Figure 12. Simulation search route to cell (2,2), Turn = 0

TABLE II. FIRST EXPERIMENT RESULT USING WALL
FOLLOWER

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,1) → (2,1) →

(1,1) →(1,2) → (1,3) → (1,4) → (2,4) →
(3,4) → (4,4) → (4,3) → (4,2) → (4,1) →

(3,1) →(3,2) → (3,3) → (2,3) → (2,2)

24

Return
home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,1) → (2,1) →

(1,1) →(1,2) → (1,3) → (1,4) → (2,4) →
(3,4) → (4,4) → (4,3) → (4,2) → (4,1) →

(3,1) →(3,2) → (3,3) → (2,3) → (2,2)

24

TABLE III. FIRST EXPERIMENT RESULT USING PLEDGE

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →
(0,1) → (0,2) → (1,2) → (1,3) → (0,3) →

(0,4) →(0,3) → (1,3) → (2,3) → (2,2)

14

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (2,0) → (1,0) → (0,0) →

(0,1) → (0,2) → (1,2) → (1,3) → (0,3) →

(0,4) →(0,3) → (1,3) → (2,3) → (2,2)

14

TABLE IV. FIRST EXPERIMENT RESULT USING WALL
FOLLOWER – FLOOD FILL ALGORITHM

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →

(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →
(2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) →
(2,3) → (2,2)

6

TABLE V. FIRST EXPERIMENT RESULT USING PLEDGE –
FLOOD FILL ALGORITHM

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →
(3,0) → (3,1) → (3,2) → (3,3) → (2,3)

→ (2,2)

10

Return
home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1)
→ (3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) →

(2,3) → (2,2)

6

The first run in the first experiment shows us that

Pledge algorithm has better steps than the Wall Follower

algorithm to achieve the target point. But it also indicates

that the synergistic Wall Follower – Flood Fill algorithm

or Pledge – Flood Fill algorithm has better results than

search applied only by using a Wall Follower algorithm

or just a Pledge algorithm.

This experiment also shows that in the second run, the

method that uses a combination of Wall Follower - Flood

Fill Algorithm or a combination of Pledge - Flood Fill

Algorithm has fewer steps than their first run. While the

second run of the Wall Follower algorithm or second run

of the Pledge algorithm still has the same steps as the first

run because they do not record their experience in the

first run.

In the first experiment, the robot updates the wall data

while searching on the first run and go back home in the

second run, the robot that using combination algorithm,

has enough data to choose the fastest path to the

destination in the cell (2,2). That's the reason why the trip

back to the starting point and the second run has the same

number of steps for both combination algorithm.

B. Second Experiment

The second experiment was carried out using a new

maze, which can be seen in figures 13 and 14. The results

of this second experiment can be seen in tables 6 to 9.

Figure 13. Simulation search path to cell (2,2) for the second
experiment

Figure 14. The maze for the second experiment.

TABLE VI. SECOND EXPERIMENT RESULT USING WALL
FOLLOWER ALGORITHM

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →

(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →

(2,2)

10

Return
home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →

(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →
(2,2)

10

TABLE VII. SECOND EXPERIMENT RESULT USING PLEDGE
ALGORITHM

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →

(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →
(2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(4,1) → (3,1) → (3,0) → (4,0)

8

Second
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →
(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →

(2,2)

10

TABLE VIII. SECOND EXPERIMENT RESULT USING WALL
FOLLOWER – FLOOD FILL ALGORITHM

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →

(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →
(2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) →
(2,3) → (2,2)

6

TABLE IX. SECOND EXPERIMENT RESULT USING PLEDGE –
FLOOD FILL ALGORITHM

 Routes Steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →
(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →

(2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) →

(4,1) → (3,1) → (3,0) → (4,0)

8

Second

run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) →

(2,3) → (2,2)

6

The results of the second experiment for all tests have

the same results. But for the second run, all tests of the

combination methods still have better results than the

Wall Follower algorithm or the Pledge algorithm.

C. Third Experiment

The third experiment was carried out using a new

maze, which can be seen in figures 15 and 16. The results

of this second experiment can be seen in tables 10 to 13.

Figure 15. Simulation search path to cell (2,2) for the third experiment

Figure 16. The maze for the third experiment.

TABLE X. THIRD EXPERIMENT RESULT USING WALL
FOLLOWER ALGORITHM

 Routes Steps

First

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (1,4) → (2,4) → (3,4) →
(4,4) → (4,3) → (3,3) → (3,2) → (2,2)

14

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →
(1,2) → (1,3) → (1,4) → (2,4) → (3,4) →

(4,4) → (4,3) → (3,3) → (3,2) → (2,2)

14

TABLE XI. THIRD EXPERIMENT RESULT USING PLEDGE
ALGORITHM

 Routes Steps

First

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (0,2) → (0,1) → (0,0) → (0,1) →
(0,2) → (1,2) → (1,3) → (2,3) → (2,2)

14

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →
(1,2) → (0,2) → (0,1) → (0,0) → (0,1) →

(0,2) → (1,2) → (1,3) → (2,3) → (2,2)

14

TABLE XII. THIRD EXPERIMENT RESULT USING WALL
FOLLOWER – FLOOD FILL ALGORITHM

 Routes Steps

First

run

(4,0) → (3,0) → (2,0) → (1,0) → (1,1) →

(1,2) → (1,3) → (2,3) → (2,2)

8

Return
home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →
(3,0) → (4,0)

6

Second

run

(4,0) →(3,0) → (3,1) → (4,1) → (4,2) →

(3,2) → (2,2)

6

TABLE XIII. THIRD EXPERIMENT RESULT USING PLEDGE –
FLOOD FILL ALGORITHM

 Routes Steps

First

run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) →

(3,0) → (3,1) → (3,2) → (3,3) → (2,3) →
(2,2)

10

Return

home

(2,2) → (3,2) → (4,2) → (4,1) → (3,1) →

(3,0) → (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (4,1) → (4,2) →
(3,2) → (2,2)

6

In the first run of the third experiment, it was found

that the Wall Follower - Flood Fill algorithm turned out

to have better results than the Pledge - Flood Fill

algorithm, with a difference of 2 steps faster while the

return trip and second run have the same results.

The results of the Wall Follower combination method

test - Flood Fill algorithm and Pledge - Flood Fill

algorithm still have better results than the Wall Follower

algorithm or the Pledge algorithm only.

In all experiments, wall map data will be updated when

the robot enters a cell that has never been visited before.

The Flood Fill algorithm will update cell values based on

the position of the wall that the robot has mapped.

Robots always move to neighboring cells that have the

smallest value. When there is more than one neighboring

cell that has the smallest amount, then cell selection will

be based on priority. Go forward has the priority, turn

right has the second priority, turn left has the third

priority, and move backward has the fourth priority.

This value is changed according to the position of the

wall that has been mapped by the robot. The cell value

represents the distance of the cell to the destination cell.

VI. CONCLUSION

The testing of mobile robots is done with the ability to

learn how to navigate in unknown environments based on

their own decisions. Algorithm Flood Fill is an effective

algorithm as a combination of Wall Follower and Pledge

algorithms for the completion of a medium-sized maze.

This mobile robot has managed to map the maze at

first, return home, and run the second. In the second run,

it reaches the target cell through the shortest route that

was planned in the first run before and returns home.

Based on three experiments that have been conducted,

it was found that the use of the Flood Fill algorithm can

increase the effectiveness of the Wall Follower algorithm

or the Pledge algorithm only. The results of the Wall

Follower - Flood Fill combination algorithm and the

Pledge - Flood Fill combination algorithm get almost the

same results for these two algorithm combinations.

In order to develop a method of searching the maze

that is more effective and faster, it is necessary to

research various combinations of existing maze methods.

Future works might include developing 3D maze research

and also the robot’s ability to compete in a bigger and

more complex maze [19].

CONFLICT OF INTEREST

The author declare no conflict of interest.

AUTHOR CONTRIBUTIONS

This paper is a continuation of a series of studies on

mazes that have been conducted previously. The first

study using the Flood Fill algorithm and Wall Followers

was a joint study between Semuil Tjiharjadi and Erwin

Setiawan, where Semuil Tjiharjadi wrote the paper and

led of the research, while Erwin Setiawan made the

Robot and maze fields [11]. In the second study in 2017,

the investigation continued with trying to optimize using

A* and Flood Fill conducted by Semuil Tjiharjadi as a

paper writer, research leader, including experiment and

design; Marvin Chandra Wijaya compiled a research

proposal and presentation; while the robot still uses a

design made by Erwin Setiawan [15]. In the third study in

2019 [13], Semuil Tjiharjadi continued his research to

implement the Flood Fill and Pledge methods in the robot

maze, both of which have now been tested for their

performance by combining the Flood Fill-Wall Follower

algorithm with the Pledge-Wall Follower algorithm.

ACKNOWLEDGMENT

The author would like to thank the Computer

Engineering Department of Maranatha Christian

University for providing both financial assistance and the

opportunity to research so that the series of research in

the maze field can continue.

REFERENCES

[1] K. Collins and K. Borowski, "Experimental Game Interactions in a

Cave Automatic Virtual Environment," in 2018 IEEE Games,
Entertainment, Media Conference (GEM), 2018.

[2] G. Dudek, M. Jenkin, E. Milios, D. Wilkes, "Robotic Exploration

as Graph Construction," IEEE Transactions on Robotics and
Automation, vol. 7, no. 6, pp. 859-865, December 1991.

[3] E. &. C. K. Kivelevitch, "Multi-Agent Maze Exploration," Journal

of Aerospace Computing, Information, and Communication, vol. 7,
no. 12, pp. 391-405, 2010.

[4] S. Vignesh and et al., "Cave Exploration of Mobile Robots using

Soft Computing Algorithms," International Journal of Computer
Application, vol. 71, no. 22, pp. 14-18, 2013.

[5] R. &. H. E. Zhou, "Breadth-First Heuristic Search," Journal

Artificial Intelligence, vol. 170, no. 4-5, pp. 385-408, April 2006.

[6] S. &. M. S. Khan, "Depth First Search in the Semi-streaming

Model," The Computing Research Repository (CoRR), January

2019.

[7] S. &. M. M. Forrest, "What Makes a Problem Hard for a Genetic

Algorithm? Some Anomalous Results and Their Explanation,"

Machine Learning, vol. 13, no. 2-3, pp. 285-319, November 1993.

[8] A. &. R. K. Kumaravel, "Algorithm for Automaton Specification

for Exploring Dynamic Mazes," Indian Journal of Science and

Technology, vol. 6, no. 5, pp. 4554-4559, 2013.

[9] &. G. D. X. Liu, "A Comparative Study of A-star Algorithms for

Search and Rescue in Perfect Maze," in International Conference
on Electric Information and Control Engineering, 2011.

[10] Elshamarka, I. & Saman, A.B.S, "Design and Implementation of a

Robot for Maze-Solving using Flood-Fill Algorithm,"

International Journal of Computer Application, vol. 56, no. 5, pp.

8-13, October 2012.

[11] Tjiharjadi, S. & Setiawan, S., "Design and Implementation of Path
Finding Robot Using Flood Fill Algorithm," International Journal

of Mechanical Engineering and Robotic Research, vol. 5, no. 3,

pp. 180-185, July 2016.

[12] J. R. B. D. Rosario and et al., "Modelling and Characterization of a

Maze-Solving Mobile Robot Using Wall Follower Algorithm,"

Applied Mechanics and Materials, Vols. 446-447, pp. 1245-1249,
2014.

[13] Tjiharjadi, S., "Design and Implementation of Flood Fill and

Pledge Algorithm For Maze Robot," International Journal of
Mechanical Engineering and Robotics Research, vol. 8, no. 4, pp.

632-638, July 2019.

[14] Babula, M., "Simulated Maze Solving Algorithms through
Unknown Mazes," in XVIIIth Concurrency, Specification and

Programming (CS&P) Workshop, Krakow-Przegorzaly, 2009.

[15] Tjiharjadi, S., Wijaya, M. C., and Wijaya, E., "Optimization Maze
Robot Using A* and Flood Fill Algorithm," International Journal

of Mechanical Engineering and Robotics Research, vol. 6, no. 5,

pp. 366-372, September 2017.

[16] N. K. S. S. W. I. S. Rao, "Robot Navigation in Unknown Terrains:

Introductory Survey of Non-Heuristic Algorithms," Oak Ridge

National Laboratory, Oak Ridge, 1993.

[17] A. B. S. Saman and I. Abdramane, "Solving a Reconfigurable

Maze using Hybrid Wall Follower Algorithm," International

Journal of Computer Application, vol. 82, no. 3, pp. 22-26, 2013.

[18] Z. Cai, L. Ye, and A. Yang, "FloodFill Maze Solving with

Expected Toll of Penetrating Unknown Walls," in 2012 IEEE 14th

International Conference on High Performance Computing and
Communication, 2012.

[19] H. K. Wazir and F. Annaz, "Using unity for 3D object orientation

in a virtual environment," in 5th Brunei International Conference
on Engineering and Technology, 2014.

Copyright © 2020 by the authors. This is an open-access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution, and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial, and no modifications or adaptations are made.

Semuil Tjiharjadi currently serves as vice-
rector of capital human management, assets, and

development. He is also Lectures in Computer

Engineering Department. His primary research
on Robotics, Computer automation, control, and

security. He has written several books, To Be a

Great Effective Leader (Jogjakarta, Indonesia:
Andi Offset, 2012), Multimedia Programming

by SMIL (Jogjakarta, Indonesia: Andi Offset,

2008), Computer Business Application (Bandung, Indonesia:
Informatics, 2006) and so on. The various academic bodies on

which he contributed as Head of Computer Engineering Department,

Member: Senate of University, Member: APTIKOM, Member:

MSDN Connection, Member: AAJI, Member: Fischertechnik Fan

Club, Member: Asia Society of Researchers.

Author’s formal

photo

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

8. Bukti Konfirmasi Artikel Published Online

(19 Mei 2020)

	f569aa6fd01f7101b4347a23b851b6a8d3f2b1bec0d5ecd9c96636bedd2d50a9.pdf
	9322f845c33c7f6af2e6e3ff3aa54cbe0b898531904db25d5b9bf142ffaf25d0.pdf
	27b67616976f33df2094f0b3532e4173b00e21bc8377ef74a7a73968afcfaa49.pdf

	Microsoft Word - Bukti Korespondensi Performance Robot FF-WF vs FF-Pledge.docx
	f569aa6fd01f7101b4347a23b851b6a8d3f2b1bec0d5ecd9c96636bedd2d50a9.pdf
	f569aa6fd01f7101b4347a23b851b6a8d3f2b1bec0d5ecd9c96636bedd2d50a9.pdf
	9322f845c33c7f6af2e6e3ff3aa54cbe0b898531904db25d5b9bf142ffaf25d0.pdf
	27b67616976f33df2094f0b3532e4173b00e21bc8377ef74a7a73968afcfaa49.pdf

	f569aa6fd01f7101b4347a23b851b6a8d3f2b1bec0d5ecd9c96636bedd2d50a9.pdf
	Gmail - ICAME 2019-final paper confirmation before publication-IJMERR-E009
	Performance Comparison Robot Path Finding uses Flood Fill - Wall Follower Algorithm and Flood Fill - Pledge Algorithm

	f569aa6fd01f7101b4347a23b851b6a8d3f2b1bec0d5ecd9c96636bedd2d50a9.pdf
	f569aa6fd01f7101b4347a23b851b6a8d3f2b1bec0d5ecd9c96636bedd2d50a9.pdf
	11349916237682b96b68cd7f51f528e94d2a96a6e85b7154683bed2a51e16e19.pdf

