
Optimization Maze Robot Using A* and Flood Fill Algorithm 
1. Scopus Index 
2. Manuskrip awal 
3. Email penerimaan manuskrip 
4. Email penerimaan dengan perbaikan minor 
5. Form hasil Reviewer  
6. Notifikasi Penerimaan 
7. Manuskrip Perbaikan 
8. Email Penerimaan revisi dan permintaan penambahan halaman manuskrip 
9. Manuskrip perbaikan kedua 
10. Email permintaan perbaikan ketiga 
11. Manuskrip akhir 

 
 
 
 



CiteScore

2.8 =

Calculated on 05 May, 2024

CiteScoreTracker 2024

3.1 =

Last updated on 05 March, 2025 • Updated monthly

Source details

International Journal of Mechanical Engineering and Robotics
Research
Years currently covered by Scopus: from 2016 to 2025

Publisher: International Journal of Mechanical Engineering and Robotics Research

E-ISSN: 2278-0149

Subject area: Engineering: Mechanical Engineering Engineering: Control and Systems Engineering

Computer Science: Artificial Intelligence

Source type: Journal

 View all documents ▻  Set document alert  Save to source list

CiteScore 2023

2.8


SJR 2023

0.263 

SNIP 2023

0.473 

CiteScore CiteScore rank & trend Scopus content coverage

2023 

1,433 Citations 2020 - 2023

518 Documents 2020 - 2023



1,065 Citations to date

349 Documents to date

CiteScore rank 2023





Category Rank Percentile

Engineering  

#331/672 50th

 

Engineering  

#172/321 46th

 



Mechanical

Engineering

Control and

Systems

Engineering

 ▻View CiteScore methodology  ▻CiteScore FAQ  🔗Add CiteScore to your site

Brought to you by Universiti Teknikal Malaysia Melaka (UTeM)

https://www.scopus.com/source/citedby.uri?sourceId=21100788860&docType=ar,re,cp,dp,ch&citedYear=2024,2023,2022,2021&years=2024,2023,2022,2021&pubstageExclusions=aip
https://www.scopus.com/source/search/docType.uri?sourceId=21100788860&years=2024,2023,2022,2021&docType=ar,re,cp,dp,ch&pubstageExclusions=aip
https://www.scopus.com/standard/help.uri?topic=14880
https://www.scopus.com/home.uri?zone=header&origin=sourceinfo
https://www.scopus.com/home.uri?zone=header&origin=sourceinfo
https://www.scopus.com/pages/home


Terms and conditions Privacy policy Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. , its licensors, and contributors. All rights are reserved, including those for

text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

We use cookies to help provide and enhance our service and tailor content.By continuing, you agree to the use of cookies .

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

⽇本語版を表⽰する
查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/legal/elsevier-website-terms-and-conditions?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/legal/privacy-policy?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.scopus.com/cookies/policy.uri
https://www.scopus.com/cookies/policy.uri
https://www.scopus.com/cookies/policy.uri
http://www.relx.com/
https://www.elsevier.com/products/scopus?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/products/scopus/content?dgcid=RN_AGCM_Sourced_300005030
https://blog.scopus.com/
https://dev.elsevier.com/
https://www.elsevier.com/legal/privacy-policy?dgcid=RN_AGCM_Sourced_300005030
https://www.scopus.com/personalization/switch/Japanese.uri?origin=sourceinfo&zone=footer&locale=ja_JP
https://www.scopus.com/personalization/switch/Chinese.uri?origin=sourceinfo&zone=footer&locale=zh_CN
https://www.scopus.com/personalization/switch/Chinese.uri?origin=sourceinfo&zone=footer&locale=zh_TW
https://www.scopus.com/personalization/switch/Russian.uri?origin=sourceinfo&zone=footer&locale=ru_RU
https://www.scopus.com/standard/contactUs.uri?pageOrigin=footer
https://service.elsevier.com/app/answers/detail/a_id/14799/supporthub/scopus/
https://service.elsevier.com/app/overview/scopus/


Design and Implementation of Flood Fill and 

Pledge Algorithm For Maze Robot 
 

Semuil Tjiharjadi 
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia 

Email: semuiltj@gmail.com 

 

 

 
Abstract 

 

Maze Robot is a path finding autonomous mobile robot 

which can reach a certain point. One of its capabilities is 

move from one point to another autonomously. Maze Robot 

able to explore an unknown environment. Mapping the 

environment and seek good path to reach a certain point. 

This Maze Robot is a mobile robot which moves using 

wheels with differential steering type. It is designed to solve 

a maze environment that has a size of 5 x 5 cells and it is 

used to implement the flood-fill algorithm and the pledge 

algorithm. It is using ultrasonic range finders to detect walls 

and opening in the maze. The robot has ability to use pledge 

algorithm to collect the information and learn the maze, it 

finds all possible routes and solve the problem using the 

shortest one. Result of experiments show the robot can 

explore the maze and map it, Robot also can find the 

shortest path to destination point with 80% success rate. 

 

Index Terms—flood fill algorithm, pledge algorithm, path 

finding, maze, wall follower algorithm 

I. INTRODUCTION 

One of important features of mobile robotics is 

autonomous navigation. It is the ability of the robot to 

independently move to target location without being 

controlled. There are many algorithms have been 

developed for this purpose, each of them is having their 

own strengths and weaknesses. 

Autonomous navigation is an important feature of 

mobile robotics. It allows the robot to independently 

move from a place to target location without a tele-

operator. There are several techniques and algorithms 

have been developed for this purpose, each of them 

having their own advantages and disadvantages [1-7]. 

As an autonomous robot, Path Finding Robot uses 

structured techniques and controlled implementation of 

autonomous navigation which is preferable in studying 

specific aspect of Flood Fill Algorithm and Pledge 

Algorithm [1]. This research discusses implementation of 

a small size mobile robot designed to solve a maze based 

on the both algorithms.  

Robot maze problems is based on decision making 

algorithm that is very important field of robotics. Mobile 

robot has path finding task to solve a maze in the least 

time possible and using the shortest way. [2] It must 

navigate from a corner of a maze to the center as fast as 

possible [3].  

The robot knows where the starting and target location, 

but it must look all information about the obstacles to 

achieve target location. The maze is composed of 25 

square cells, where the size of each cell is about 18 cm x 

18 cm. The cells are arranged to form a 5 rows x 5 

columns maze. One cell at its corners is a starting 

location and the target location is at the center of the 

maze. Only one cell is opened for passing. Maze walls 

and support platform‟s requirements are provided in the 

IEEE standard. 

 

II. LITERATURE REVIEW 

2.1. Breadth First Search 

 

 Breadth First Searchis a search algorithm that begins 

at the root node and explores all the neighboring nodes 

until it finds the goal. It needs large memory space. It 

discovers few solutions and at least one has shortest path. 

All nodes obtained by expanding a nearest neighbor node 

in First In First Out queue. Breadth First Search works 

poorly when the solutions have long path. It has large 

space complexity. 

 

2.2. Depth First Search 

 

 Depth First Search is an algorithm for searching a 

graph or tree data structure uses Last In First Out queue. 

It is simple to implement, starting at the root node and 

goes as far as it can down in path, and then backtracks 

until it finds an unexplored path, and then explores the 

new one, until it finds the target. Depth First Search‟s 

problem it requires large computing power, for small 

increase in map size, runtime increases exponentially [7]. 

 

2.3. Heuristic Function 

 

 Heuristic function is a function that is using all 

mapping information to inform the search about the right 

direction to a goal. It maps problem state descriptor to a 

number which represents degree of desirability. It plays 

vital role in optimization problem [8]. 

 

2.4. Genetic Algorithm 

 

 Genetic algorithm is inspired by natural evolution to 

find approximate optimal solution. Advantages of 

Genetic algorithm are it solves problem with multiple 



solutions. But it needs very large input and data. 

Problems of Genetic algorithm are certain optimization 

cases cannot be solved due to poorly known fitness 

function. It is not able to assure constant optimization 

response times because of the entire population is 

improving [9]. 

 

2.5. A* algorithm 

 

 A* is one of most popular methods for finding the 

shortest path in a maze area. It is developed as 

combination heuristic approaches like Best-First-Search 

(BFS) and formal approaches like Dijkstra‟s algorithm. It 

is an algorithm which cost associated with each node is 

calculated using admissible heuristic likes BFS. It follows 

its path with lowest known heuristic cost. Likes BFS that 

needs large memory requirement to store its drawback 

information, A* also needs the large memory too for the 

same reason because entire open-list is to be saved [4]. 

 

2.6. Flood Fill Algorithm 

 

 Flood fill algorithm that also known as seed fill 

algorithm, is an algorithm that determines the area 

connected to a given node in a multi-dimensional array. 

This algorithm needs all information of maze and proper 

planning [3]. It used widely for robot maze problem.  

 The Flood fill algorithm gives values to each node 

that represents the distance of the node from the center. It 

floods the labyrinth when it reaches a new cell or node. 

This algorithm requires continue update [11].  

 

2.7. Wall Follower Algorithm 

 

 Wall follower algorithm is used left or right-hand 

rule. Robot detect its left or right side on the wall at the 

start of the maze, and then start moving. Never lose left 

or right-side detection. It works for a simply connected 

maze. 

 

2.8. Pledge Algorithm 

 

 Flood fill algorithm that also known as seed fill 

algorithm, is an algorithm that determines the area 

connected to a given node in a multi-dimensional array. 

This algorithm needs all information of maze and proper 

planning [3]. It used widely for robot maze problem.  

 The Flood fill algorithm gives values to each node 

that represents the distance of the node from the center 

[8]. It floods the labyrinth when it reaches a new cell or 

node. This algorithm requires large memory to keep 

updating its moves.  

 

III. HARDWARE DESIGN 

This research is using miniQ 2WD robot chassis as 

robot base construction. Figure 1 is the chassis of the 

robot. It consists of a robot chassis with 122mm diameter, 

a couple wheels, a piece of ball caster and a couple DC 

motors which have gear box and also DC motor bracket.  

 

 

Figure 1.  12WD miniQ robot chassis. 

 

Figure 2.  Mobile Robot from side view. 

 

 

Figure 3.  Maze Robot‟s Block Diagram. 

 This maze robot also has a couple pieces rotary 

encoder. Rotary encoder attached to the DC motor to 

calculate the rotation of the wheels. It is shown in Figure 

2 [12]. Figure 3 is shown the block diagram of design of 

whole hardware system and the flowchart of main 

program can be seen at Figure 4.  



 

Figure 4.  Flowchart of the main program. 

 It has three infrared sensors to detect front, right and 

left position of the maze wall. This maze robot uses 

driver L293D to control the speed and rotation of a DC 

Motor [13]. It also has rotary encoder that has a job to 

calculate the rotation of both wheels. Push button is used 

to start the robot.  

 Robot system would drive DC motors to move the 

wheels. It would control the robot to move forward, turn 

to the left or right, and rotates reverse [14]. This maze 

robot has a AT Mega 324 microcontroller to respond the 

input signal and run the actuator based on processing 

algorithms [10]. All status and information are displayed 

on the LCD 16 x 2 at Figure 5. 

 

Figure 5.  Mobile Robot from above view. 

 

Figure 6.  The layout of maze. 

 The maze designed for the robot to solve is of the 

size of 5×5 cells as shown in Figure 6. The actual maze 

constructed, as shown in Figure 7, has a physical size of 

about 1.32 m
2
. The maze was designed so that it will have 

two paths in order for it to be solved. One of the paths is 

longer than the other. The robot (Figure 2) must decide 

which one of the paths is shorter and solve the maze 

through that path. 

 

 

Figure 7.  The maze arena. 

IV. ALGORITHM 

 There are several algorithms that can be 

implemented to solve the maze cases. One of the suitable 

algorithms to search goal in the middle of the maze is 

Flood-fill algorithm. In this case, flood-fill algorithm was 

chosen to solve the maze due to its simplicity but 

efficient [3].  



 Together with the flood-fill algorithm that is used to 

find the fastest way to reach the destination, a pledge 

algorithm is used to determine the priority of the direction 

taken when the robot finds the same priority value based 

on the flood-fill algorithm. The pledge algorithm will 

give the +1 value to the „Turn‟ variable every time you 

turn right and -1 value every time you turn left. The goal 

is to achieve the goal by prioritizing the smallest possible 

„Turn‟ variable value. So that every time the pledge 

algorithm finds an intersection, the turn decision that is 

taken is to reduce the „Turn‟ variable value of the 

rotation. This pledge algorithm is used to help flood-fill 

algorithms so that they have smarter decisions [5]. 

 Artificial Intelligence program has two-dimensional 

memory array to map the maze‟s arena which has size of 

5x5. The memory array is used to store information in 

each cell walls of the maze and each cell value 

information. The robot‟s positions in the program are 

expressed by the coordinates (row, column). The 

movement of the robot in the array is done to position the 

robot as in Figure 8. 

 The coordinates of the line will increase 1 when the 

robot moves one cell to the South. On the other hand, it 

will be reduced by 1 when the robot moves to the North. 

The column will be reduced by 1 when robot moves to 

the West, and it will be increased by 1 when robot moves 

to the East. Robot has already information about the 

initial orientation, the initial position, the size of the maze 

and the location of the maze‟s outer walls. 

 

Figure 8.  Robot‟s Array Movement 

The Flood fill algorithm has four main steps: the first is 

wall data updates, second is cell value updates, the third 

is the smallest neigbour cell calculation, and the last is 

moving to the smallest neighbour cell. 

 

4.1 Wall data update 

 

 Robot will check its environment, any walls in its 

three directions: right, left and front directions. The robot 

will also detect the distance of any obstacle of its three 

directions. Anyone exceed 20 cm is updated as “wall” on 

its respective side. Flowchart in the Figure 9 describes the 

wall data update mechanism. 

 The maze robot also needs to know which direction 

it is facing so it knows where to go: north, east, west or 

south. Table 1 describe the relation of robot orientation 

and wall sensor detection. The robot has an initial 

orientation when it starts at the beginning and will 

continue to track changes in direction.  

 

Table 1. Robot orientation and wall detection  

Robot 

Orientation 

Wall Sensor Detection 

Right Front Left 

South West wall South wall East wall 

West North wall West wall South wall 

North East wall North wall West wall 

East South wall East wall North wall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Flowchart for updating wall location at each cell 

4.2 Cell value update 

 

 Update cell values (refill each cell with a new value) 

serves to adjust the value in each cell wall position that 

has been updated by the robot. Values stored in a 2-

dimensional array of 5x5 memory cells. Update cell 

values is done using the flood fill algorithm. 

Wall data update 

Read front, right and 

left sensor 

Front 

sensor < 

20cm 

Update wall 

front data 

Right 

sensor < 

20cm 

Update wall 

Right data 

Leftsens

or < 

20cm 

Update wall 

Left data 

Return 

Yes 

No 

Yes 

No 

Yes 

No 



 Updating the cell value subroutine to function by 

resetting the previous cell value, then giving a value of 

255 in each cell, then filling in the values of these cells in 

stages, the initial value 0 to all cells filled in with the 

value. The cells that will be updated are the current_level 

array while the neighboring cells will be entered in the 

next_level array. After the value filling process is 

complete, the cells in array next_level will be moved to 

the current_level array to do the next value. The update 

process will be complete if the array cell next_level is 

empty. 

 

4.3 The smallest neigbour cell calculation 

  

 Subroutine determines the smallest neighbor cell that 

functions to find neighboring cells that have the smallest 

value. The search for the smallest neighbor cell is done 

based on priority, so that if there is more than one 

neighbor cell that has the smallest value, then the cell 

selected is a cell that has a higher priority. 

 Prioritization is arranged based on the movement of 

the robot moving forward one cell has the first priority, 

the second priority is to move one cell to the right, while 

the third priority is to move one cell to the left, and the 

fourth or last priority is to move one cell backwards. For 

example, if a robot faces the East, then the East cell has 

the first priority, the two South has the priority cell, the 

cell has the third priority North and the Western cell has 

the fourth priority as in Figure 10. If the robot faces the 

East, the East cells have the first priority, South cells 

have a second priority, North has third priority cells, and 

Western cells have a fourth priority. 

  

 

 

Figure 10.  Priority of Neighbour cell  

4.4. Moving to the smallest neighbour cell 

 

 Program subroutines move the robot to the smallest 

neighboring cells, after the robot finds neighboring cells. 

To move to a cell, the robot must know the location of the 

cell. Next, the robot will move to the cell by observing 

orientation. For example, if the South cell is the smallest 

cell and the orientation of the robot is facing west, then 

moves to the position of the cell, the robot must turn left, 

then move forward as in Figure 11. If the South cell is the 

smallest cell and the orientation of the robot is facing 

east, then moving to the position of the cell, the robot 

must rotate to the right, then move forward. 

 

 

Figure 11.  Moving to smallest neighbour cell. 

V. RESULTS AND DISCUSSION 

In this experiments, Robot will learn to find the 

shortest path from the starting cell (line 4, column 0) to 

the destination cell (row 2, column 2) and then back again 

to the initial cell. The initial orientation of the robot is 

facing the North. 

The maze simulator program aims to facilitate the 

observation on how the flood fill algorithm. Figure 12 is a 

view maze simulator program. Maze blue wall is a wall 

that position known to the robot. While the maze walls 

are colored orange wall position is not known by the 

robot. 

 

Figure 12.  Simulation search path to cell (2,2), Turn = 0 

First experiment, Robot will perform a search of the 

initial cell lines (4.0) to the destination cell (2, 2). Flood 

fill algorithm simulation results when a search of the cell 

lines (4, 0) to the cell (2, 2) are shown in Figure 12 to 22. 

 

Figure 13.  Simulation search path to cell (2,2) ), Turn = 0 



 

Figure 14.  Simulation search path to cell (2,2) ), Turn = 0 

 

 

Figure 15.  Simulation search path to cell (2,2) ), Turn = 0 

 

 

Figure 16.  Simulation search path to cell (2,2) ), Turn = 0 

 

Figure 17.  Simulation search path to cell (2,2) ), Turn = 1 

 

 

Figure 18.  Simulation search path to cell (2,2) ), Turn = 1 

 

 

Figure 19.  Simulation search path to cell (2,2) ), Turn = 2 

 

 

Figure 20.  Simulation search path to cell (2,2) ), Turn = 1 

 

Figure 21.  Simulation search path to cell (2,2) ), Turn = 2 

 



 

Figure 22.  Simulation search path to cell (2,2) ), Turn = 3 

 

The second experiment is an attempt to find the path 

of the robot to the starting point of the experiment 1. The 

robot spins to look for the direction of the starting 

position. If the robot gets more than one possible initial 

direction, then the south direction will be set as the first 

direction. If there is only one choice then the initial 

direction of the robot position is directed at the open wall. 

In this second experiment, the robot gets East as the 

starting direction. This robot trip can be seen in Figures 

23 to 28. 

 

Figure 23.  Simulation search path to cell (2,2) ), Turn = 0 
 

 

Figure 24.  Simulation search path to cell (2,2) ), Turn = 1 

 

 

Figure 25.  Simulation search path to cell (2,2) ), Turn = 2 

 

 

Figure 26.  Simulation search path to cell (2,2) , Turn = 2 

 

 

Figure 27.  Simulation search path to cell (2,2) , Turn = 2 

 

Figure 28.  Simulation search path to cell (2,2) , Turn = 1 



 After the robot updates the wall data while running a 

search on the first experiment and travels home in the 

second experiment, the robot has enough data to find the 

fastest path to the destination in the cell (2,2). All robot 

search and back home information make the robot can 

find the shortest path the cell (2.2) on third experiment. It 

can be seen in table 2. 

Table 2. All Robot experiments 

 Routes Number 

of steps 

First 
run 

(4,0) (3,0)  (2,0)  (1,0)  (2,0)  (3,0) 
 (3,1)  (3,2)  (3,3)  (2,3)  (2,2) 

10 

Return 

home 

(2,2)  (2,3)  (3,3)  (3,2)  (3,1)  (3,0) 

 (4,0) 

6 

Second 

run 

(4,0) (3,0)  (3,1)  (3,2)  (3,3)  (2,3) 

 (2,2) 

6 

Wall map data will be updated when the robot go to 

cells that have not been visited before. Flood fill 

algorithm will update the value of the cell based on the 

position of the wall that has been mapped out by the 

robot. 

 Robots always perform movement to neighboring 

cells which have the smallest value. If there is more than 

one neighboring cell that has the smallest value, then the 

cell selection will be done on a priority basis. Go foward 

has first priority, turn to the right has the second priority, 

turn to the left has a third priority, and move backwards 

has a fourth priority. 

 The value is changed in accordance with the 

position of the wall that has been mapped out by the 

robot. Cell values represent the cell distance to the 

destination cell. 

VI. CONCLUSION 

 

This design and implementation of the robot is a 

study about the ability to equip a small mobile robot with 

the ability to learn how to navigate in unknown 

environment based on its own decisions. The flood-fill 

algorithm was found to be an effective tool for maze-

solving of a moderate size. For the robot to make its 

decisions it relies on inputs from several sensors, namely 

the ultrasonic range sensors and wheel rotation decoders.  

 

The robot has successfully able to map the maze in 

the first, return home and second runs. In its second run it 

reaches its target cell through the shortest route it has 

mapped in the previous first run and return home. 

 

Future works may include to studying the robot‟s 

maze solving capability in a bigger and more complex 

maze. In order to improve the quality in wall detection, 

better object sensor, such as a laser range finder, is 

needed. It is much more costly but it have ability to scan 

its surrounding at a wirde angle plane, so it will help a lot 

in search ability at bigger and more complex maze. 

REFERENCES 

[1] Bekti, Samudra Harapan, “Pencarian Shortest Path Dinamik 
dengan Algoritma Bellman Based Flood Fill dan 

Implementasinya pada Robot Micromouse”, Institut Teknologi 

Bandung, 2009.  
[2] Elshamarka, Ibrahim and Abu Bakar Sayuti Saman, “Design 

and Implementation of a Robot for Maze-Solving using Flood-

Fill Algorithm”,  Universiti Teknologi Petronas, 2012.  
[3] Tjiharjadi, Semuil and Erwin Setiawan, “Design and 

Implementation of Path Finding Robot Using Flood Fill 

Algorithm”, International Journal of Mechanical Engineering 
and Robotics Research, Volume 5, No. 3, July 2016, pp 180-

185. 
[4] Tjiharjadi, Semuil, Marvin Chandra Wijaya and Erwin 

Setiawan, “Optimization Maze Robot Using A* and Flood Fill 

Algorithm”, International Journal of Mechanical Engineering 

and Robotics Research, Volume 6, No. 5, September 2017, pp 

366-372. 

[5] Elshamarka, I. and A.B.S. Saman, “Design and Implementation 
of a Robot for Maze-Solving Using Flood-Fill Algorithm”, in 

International Journal of Computer Applications Volume 56-

No.5, pp.8-13, October 2012.  
[6] Ansari, A., M.A. Sayyed, K. Ratlamwala and P. Shaikh, “An 

Optimized Hybrid Approach For Path Finding”, in 

International Journal in Foundations of Computer Science & 
Technology (IJFCST), Vol. 5 No. 2, pp. 47-58, March 2015.  

[7] Sharma, K. And C. Munshi, “A Comprehensive and 

Comparative Study of Maze-Solving Techniques by 
Implementing Graph Theory”, in IOSR Journal of Computer 

Engineering, Vol. 17, Issue 1, Ver. IV, pp. 24-29, 2015.  

[8] Sreekanth, R.K., “Artificial Intelligence Algorithms”, IOSR 
Journal of Computer Engineering (IOSRJCE), volume 6, issue 

3 September-October, 2012.  

[9] Cook, David. Intermediate Robot Building. New York: Apress. 

2010.  

[10] Mazidi, Muhammad Ali, Sarmad Niami, dan SepehrNiami. The 

AVR Microcontroller and Embedded System. New Jersey: 
Prentice Hall. 2011.  

[11] Braunl, Thomas, Embedded Robotics. Berlin: Springer. 2006.  

[12] Rizqiawan, Arwindra, Sekilas Rotary Encoder. 
http://konversi.wordpress.com/2009/06/12/sekilas-rotary-

encoder/, Juni 2014.  

[13] Scherz, Paul, Practical Electronics for Inventors. New York: 
McGraw-Hill. 2000.  

[14] Lucas, G. W., A Tutorial and Elementary Trajectory Model for 

the Differential Steering System of Robot Wheel Actuators. 
http://rossum.sourceforge.net/papers/DiffSteer/, Juni 2014.  

 

 
Semuil Tjiharjadi is currently serves as vice 
rector of capital human management, assets and 

development. He is also Lectures in Computer 

Engineering Department. His major research on 
Robotics, Computer automation, control and 

security. He has written several books, To Be a 

Great Effective Leader (Jogjakarta, Indonesia: 
Andi Offset, 2012), Multimedia Programming by 

SMIL (Jogjakarta, Indonesia: Andi Offset, 2008), 

Computer Business Application (Bandung, 
Indonesia: Informatics, 2006) and so on.  

 The various academic bodies on which he contributed as: 

Head of Computer Engineering Department, Member: Senate of 
University, Member: APTIKOM, Member: MSDN Connection, 

Member: AAJI.  
 

 

 
 

Author‟s formal 

photo 



 
 
 



 
 
 



 
 

 



 

 

Review Form of ICAME 2018 

http://www.icame.org/  

Paper Title:  Design and Implementation of Flood Fill and Pledge Algorithm For Maze Robot 

Evaluation( X where appropriate) 

 Exceptional  Very Good Good Fair Poor 

Originality   X   

Innovation   X   

Technical Merit   X   

Applicability    X  

Presentation     X  

Relevance to the Conference   X   

Recommendation to Editors( X where appropriate) 

 Strongly 

Accept 

Accept Marginally 

Accept 

Reject Strongly 

Reject  

Recommendation   X   

Comments and Instructions (no less than 100 words): 

In this paper, the authors present the design and Implementation of flood fill and pledge algorithm 

for maze robot. We suggest this paper should be marginally accepted. The weaknesses of the 

paper are as follows: 

1) In Subsection 2.8, there must be something wrong with the introduction of Pledge Algorithm. 

It seems like the copy of the Subsection 2.6 for introduction of the Flood fill algorithm. 

2) The term such as DC and LCD, although well known, should only be spelled out at the first 

occurrence. 

3) Section 1 Paragraph 4 Line 4：Please correct “. [2]” into “[2].”. Please check the format of 

references carefully. 

4) There are some grammatical errors that need to be fixed. For example, in the second sentence 

of the Abstract, “is move from” => “is moving from”. In the third sentence of the Subsection 2.6, 

“It used for” => “It is used for”. Overall, the paper still needs to be proofread more carefully. 

 

 

 

http://www.icame.org/


 

 

 

Please provide detailed comments to the authors, including at least a few sentences justifying your 

recommendation. The following points are suggested for your comments: 

➢ Does the introduction state the purpose of the paper? 

Answer: Yes, it does. 

➢ Are the references relevant and complete? Supply missing references (please specify). 

Answer: Yes, they are. 

➢ Is the paper clearly written and well organized? 

Answer: Yes, it is. 

➢ Does the author explain the significance of this paper? 

Answer: Yes, the author does. 

➢ What is the contribution of the paper? Are the research contributions clear?  

Answer: In this paper, the authors present the design and Implementation of flood fill and pledge algorithm for 

maze robot. Also, the research contributions are clear. 

➢ If the paper is not technically sound, why not? How to improve it? 

Answer: Yes, it is almost technically sound. However, in Subsection 2.8, there must be something wrong with the 

introduction of Pledge Algorithm. It seems like the copy of the Subsection 2.6 for introduction of the Flood fill 

algorithm. Also, the paper still needs to be proofread more carefully. 

➢ If the paper is too long for its category, how can it be shortened? Which part is not necessary? 

Answer: No, it isn’t. 

 

 

 



2018 the 2nd International Conference on Automation and Mechatronics Engineering 

- 1 - 

Notification of Acceptance of ICAME 2018 

November 9-11, 2018; Singapore 

http://www.icame.org/  

 

Role: Author (oral presentation and publication) 

Paper ID: RM1029 

Paper Title: Design and Implementation of Flood Fill and Pledge Algorithm For Maze Robot 

 

Dear SEMUIL TJIHARJADI, 

Congratulations!  

The review processes for 2018 the 2nd International Conference on Automation and Mechatronics 

Engineering (ICAME 2018) has been completed. Based on the recommendations of the reviewers and 

the technical committees, we are pleased to inform you that your paper identified above has been 

accepted for publication and oral presentation. You are cordially invited to present your paper orally 

at ICAME 2018, during Nov.9- 11, 2018, in Singapore. 

Your paper after proper registration and presentation, will be included in International Journal 

of Mechanical Engineering and Robotics Research (ISSN: 2278-0149), which will be indexed 

by Index Corpernicus, ProQuest, UDL, Google Scholar, Open J-Gate, Scopus (since 2016) etc.                                                                                   

Please follow the five steps to finish registration.  

i. Format your paper according to Review Form and Template carefully. 

http://www.ijmerr.com/uploadfile/2015/0819/20150819064635301.doc 

ii. Finish the Copyright Form.  

http://www.ijmerr.com/uploadfile/2015/0326/20150326112301988.pdf  

iii. Download and complete the Registration Form.  

iv. http://www.icame.org/author_reg.doc  

v. Finish the payment of Registration fee by Credit Card. (The detailed information can be found 

in the Registration form)  

vi. Check list 

□Formatted Papers (doc and pdf ) 

□Scanned and Signed ICAME Copyright Form (.pdf) 

□Filled Registration Form (.doc format) 

□Payment Proof (.pdf) 

Please send above documents to icameconf@zhconf.ac.cn BEFORE Oct. 5, 2018. 

 

http://www.icame.org/
mailto:icameconf@zhconf.ac.cn


2018 the 2nd International Conference on Automation and Mechatronics Engineering 

- 2 - 

For the most updated information on the conference, please check the conference website at 

http://www.icame.org/. The Conference schedule will be available in late October, 2018. Please 

e-mail icameconf@zhconf.ac.cn for any queries concerning ICAME 2018.  

Finally, we would like to further extend our congratulations to you and we are looking forward to 

meeting you in Singapore! 

ICAME 2018 Organizing Committees 

http://www.icame.org/ 

Singapore 

http://www.icame.org/
mailto:icameconf@zhconf.ac.cn
http://www.icame.org/


Design and Implementation of Flood Fill and 

Pledge Algorithm For Maze Robot 
 

Semuil Tjiharjadi 
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia 

Email: semuiltj@gmail.com 

 

 

 
Abstract 

 

Maze Robot is a path finding autonomous mobile robot 

which can reach a certain point. One of its capabilities is 

moving from one point to another autonomously. Maze 

Robot able to explore an unknown environment. Mapping 

the environment and seek good path to reach a certain 

point. This Maze Robot is a mobile robot which moves using 

wheels with differential steering type. It is designed to solve 

a maze environment that has a size of 5 x 5 cells and it is 

used to implement the flood-fill algorithm and the pledge 

algorithm. It is using ultrasonic range finders to detect walls 

and opening in the maze. The robot has ability to use pledge 

algorithm to collect the information and learn the maze, it 

finds all possible routes and solve the problem using the 

shortest one. Result of experiments show the robot can 

explore the maze and map it, Robot also can find the 

shortest path to destination point with 80% success rate. 

 

Index Terms—flood fill algorithm, pledge algorithm, path 

finding, maze, wall follower algorithm 

I. INTRODUCTION 

One of important features of mobile robotics is 

autonomous navigation. It is the ability of the robot to 

independently move to target location without being 

controlled. There are many algorithms have been 

developed for this purpose, each of them is having their 

own strengths and weaknesses. 

Autonomous navigation is an important feature of 

mobile robotics. It allows the robot to independently 

move from a place to target location without a tele-

operator. There are several techniques and algorithms 

have been developed for this purpose, each of them 

having their own advantages and disadvantages [1-7]. 

As an autonomous robot, Path Finding Robot uses 

structured techniques and controlled implementation of 

autonomous navigation which is preferable in studying 

specific aspect of Flood Fill Algorithm and Pledge 

Algorithm [1]. This research discusses implementation of 

a small size mobile robot designed to solve a maze based 

on the both algorithms.  

Robot maze problems are based on decision making 

algorithm that is very important field of robotics. Mobile 

robot has path finding task to solve a maze in the least 

time possible and using the shortest way [2]. It must 

navigate from a corner of a maze to the center as fast as 

possible [3].  

The robot knows where the starting and target location, 

but it must look all information about the obstacles to 

achieve target location. The maze is composed of 25 

square cells, where the size of each cell is about 18 cm x 

18 cm. The cells are arranged to form a 5 rows x 5 

columns maze. One cell at its corners is a starting 

location and the target location is at the center of the 

maze. Only one cell is opened for passing. Maze walls 

and support platform‟s requirements are provided in the 

IEEE standard. 

II. LITERATURE REVIEW 

2.1. Breadth First Search 
 
 Breadth First Searchis a search algorithm that begins 

at the root node and explores all the neighboring nodes 

until it finds the goal. It needs large memory space. It 

discovers few solutions and at least one has shortest path. 

All nodes obtained by expanding a nearest neighbor node 

in First In First Out queue. Breadth First Search works 

poorly when the solutions have long path. It has large 

space complexity. 

 

2.2. Depth First Search 
 
 Depth First Search is an algorithm for searching a 

graph or tree data structure uses Last In First Out queue. 

It is simple to implement, starting at the root node and 

goes as far as it can down in path, and then backtracks 

until it finds an unexplored path, and then explores the 

new one, until it finds the target. Depth First Search‟s 

problem it requires large computing power, for small 

increase in map size, runtime increases exponentially [7]. 

 

2.3. Heuristic Function 
 
 Heuristic function is a function that is using all 

mapping information to inform the search about the right 

direction to a goal. It maps problem state descriptor to a 

number which represents degree of desirability. It plays 

vital role in optimization problem [8]. 

 

2.4. Genetic Algorithm 
 
 Genetic algorithm is inspired by natural evolution to 

find approximate optimal solution. Advantages of 

Genetic algorithm are it solves problem with multiple 

solutions. But it needs very large input and data. 

Problems of Genetic algorithm are certain optimization 

cases cannot be solved due to poorly known fitness 



function. It is not able to assure constant optimization 

response times because of the entire population are 

improving [9]. 

 

2.5. A* algorithm 
 
 A* is one of most popular methods for finding the 

shortest path in a maze area. It is developed as 

combination heuristic approaches like Best-First-Search 

(BFS) and formal approaches like Dijkstra‟s algorithm. It 

is an algorithm which cost associated with each node is 

calculated using admissible heuristic likes BFS. It follows 

its path with lowest known heuristic cost. Likes BFS that 

needs large memory requirement to store its drawback 

information, A* also needs the large memory too for the 

same reason because entire open-list is to be saved [4]. 

 

2.6. Flood Fill Algorithm 
 
 Flood fill algorithm that also known as seed fill 

algorithm, is an algorithm that determines the area 

connected to a given node in a multi-dimensional array. 

This algorithm needs all information of maze and proper 

planning [3]. It is used widely for robot maze problem.  

 The Flood fill algorithm gives values to each node 

that represents the distance of the node from the center. It 

floods the labyrinth when it reaches a new cell or node. 

This algorithm requires continue update [11].  

 

2.7. Wall Follower Algorithm 
 
 Wall follower algorithm is used left or right-hand 

rule. Robot detects its left or right side on the wall at the 

start of the maze, and then starts moving. Never lose left 

or right-side detection. It works for a simply connected 

maze. 

 

2.8. Pledge Algorithm 
 
 The pledge algorithm is designed for circular 

obstacles and has an initial direction to move forward. 

The robot will run in the main direction until it finds 

obstacles. When the robot finds an obstacle, the robot will 

use a wall follower search method and will avoid 

obstacles by prioritizing the right or left side. It will 

calculate total turn, and try to return to initial direction 

(total turn count is “0”) [8]. 

III. HARDWARE DESIGN 

This research is using miniQ 2WD robot chassis as 

robot base construction. Figure 1 is the chassis of the 

robot. It consists of a robot chassis with 122mm diameter, 

a couple wheels, a piece of ball caster and a couple Direct 

Current (DC) motors which have gear box and also DC 

motor bracket.  

This maze robot also has a couple pieces rotary 

encoder. Rotary encoder attached to the DC motor to 

calculate the rotation of the wheels. It is shown in Figure 

2 [12]. Figure 3 is shown the block diagram of design of 

whole hardware system and the flowchart of main 

program can be seen at Figure 4. 

 

Figure 1.  12WD miniQ robot chassis. 

 

Figure 2.  Mobile Robot from side view. 

  

Figure 3.  Maze Robot‟s Block Diagram. 

   It has three infrared sensors to detect front, right 

and left position of the maze wall. This maze robot uses 

driver L293D to control the speed and rotation of a DC 

Motor [13]. It also has rotary encoder that has a job to 

calculate the rotation of both wheels. Push button is used 

to start the robot.  

 Robot system would drive DC motors to move the 

wheels. It would control the robot to move forward, turn 

to the left or right, and rotates reverse [14]. This maze 

robot has an AT Mega 324 microcontroller to respond the 

input signal and run the actuator based on processing 

algorithms [10]. All status and information are displayed 

on the Liquid Crystal Display (LCD) 16 x 2 at Figure 5. 

The maze designed for the robot to solve is of 

the size of 5×5 cells as shown in Figure 6. The actual 

maze constructed, as shown in Figure 7, has a physical 

size of about 1.32 m
2
. The maze was designed so that it 

will have two paths in order for it to be solved. One of the 

paths is longer than the other. The robot (Figure 2) must 

decide which one of the paths is shorter and solve the 

maze through that path. 



 

Figure 4.  Flowchart of the main program. 

 

Figure 5.  Mobile Robot from above view. 

IV. ALGORITHM 

 There are several algorithms that can be 

implemented to solve the maze cases. One of the suitable 

algorithms to search goal in the middle of the maze is 

Flood-fill algorithm. In this case, flood-fill algorithm was 

chosen to solve the maze due to its simplicity but 

efficient [3].  

 

Figure 6.  The layout of maze. 

  

Figure 7.  The maze arena. 

 Together with the flood-fill algorithm that is used to 

find the fastest way to reach the destination, a pledge 

algorithm is used to determine the priority of the direction 

taken when the robot finds the same priority value based 

on the flood-fill algorithm. The pledge algorithm will 

give the +1 value to the „Turn‟ variable every time you 

turn right and -1 value every time you turn left. The goal 

is to achieve the goal by prioritizing the smallest possible 

„Turn‟ variable value. So that every time the pledge 

algorithm finds an intersection, the turn decision that is 

taken is to reduce the „Turn‟ variable value of the 

rotation. This pledge algorithm is used to help flood-fill 

algorithms so that they have smarter decisions [5]. 

 Artificial Intelligence program has two-dimensional 

memory array to map the maze‟s arena which has size of 

5x5. The memory array is used to store information in 

each cell walls of the maze and each cell value 

information. The robot‟s positions in the program are 

expressed by the coordinates (row, column). The 

movement of the robot in the array is done to position the 

robot as in Figure 8. 

 The coordinates of the line will increase 1 when the 

robot moves one cell to the South. On the other hand, it 

will be reduced by 1 when the robot moves to the North. 

The column will be reduced by 1 when robot moves to 

the West, and it will be increased by 1 when robot moves 

to the East. Robot has already information about the 

initial orientation, the initial position, the size of the maze 

and the location of the maze‟s outer walls. 

The Flood fill algorithm has four main steps: the 

first is wall data updates, second is cell value updates, the 

third is the smallest neigbour cell calculation, and the last 

is moving to the smallest neighbour cell. 



 
Figure 8.  Robot‟s Array Movement 

4.1 Wall data update 
 
 Robot will check its environment, any walls in its 

three directions: right, left and front directions. The robot 

will also detect the distance of any obstacle of its three 

directions. Anyone exceed 20 cm is updated as “wall” on 

its respective side. Flowchart in the Figure 9 describes the 

wall data update mechanism. 

 The maze robot also needs to know which direction 

it is facing so it knows where to go: north, east, west or 

south. Table 1 describes the relation of robot orientation 

and wall sensor detection. The robot has an initial 

orientation when it starts at the beginning and will 

continue to track changes in direction.  

 

Table 1. Robot orientation and wall detection  

Robot 

Orientation 

Wall Sensor Detection 

Right Front Left 

South West wall South wall East wall 

West North wall West wall South wall 

North East wall North wall West wall 

East South wall East wall North wall 

 

4.2 Cell value update 
 
 Update cell values (refill each cell with a new value) 

serves to adjust the value in each cell wall position that 

has been updated by the robot. Values stored in a 2-

dimensional array of 5x5 memory cells. Update cell 

values is done using the flood fill algorithm. 

 Updating the cell value subroutine to function by 

resetting the previous cell value, then giving a value of 

255 in each cell, then filling in the values of these cells in 

stages, the initial value 0 to all cells filled in with the 

value. The cells that will be updated are the current_level 

array while the neighboring cells will be entered in the 

next_level array. After the value filling process is 

complete, the cells in array next_level will be moved to 

the current_level array to do the next value. The update 

process will be complete if the array cell next_level is 

empty. 

 

4.3 The smallest neigbour cell calculation 
 
 Subroutine determines the smallest neighbor cell that 

functions to find neighboring cells that have the smallest 

value. The search for the smallest neighbor cell is done 

based on priority, so that if there is more than one 

neighbor cell that has the smallest value, then the cell 

selected is a cell that has a higher priority. 

 

Figure 9.  Flowchart for updating wall location at each cell 

 Prioritization is arranged based on the movement of 

the robot moving forward one cell has the first priority, 

the second priority is to move one cell to the right, while 

the third priority is to move one cell to the left, and the 

fourth or last priority is to move one cell backwards. For 

example, if a robot faces the East, then the East cell has 

the first priority, the two South has the priority cell, the 

cell has the third priority North and the Western cell has 

the fourth priority as in Figure 10. If the robot faces the 

East, the East cells have the first priority, South cells 

have a second priority, North has third priority cells, and 

Western cells have a fourth priority. 

  

 
Figure 10.  Priority of Neighbour cell  

4.4. Moving to the smallest neighbour cell 
 
 Program subroutines move the robot to the smallest 

neighboring cells, after the robot finds neighboring cells. 

To move to a cell, the robot must know the location of the 

cell. Next, the robot will move to the cell by observing 

orientation. For example, if the South cell is the smallest 

cell and the orientation of the robot is facing west, then 

moves to the position of the cell, the robot must turn left, 

then move forward as in Figure 11. If the South cell is the 

smallest cell and the orientation of the robot is facing 

east, then moving to the position of the cell, the robot 

must rotate to the right, then move forward. 



 

Figure 11.  Moving to smallest neighbour cell. 

V. RESULTS AND DISCUSSION 

In this experiments, Robot will learn to find the 

shortest path from the starting cell (line 4, column 0) to 

the destination cell (row 2, column 2) and then back again 

to the initial cell. The initial orientation of the robot is 

facing the North. 

The maze simulator program aims to facilitate the 

observation on how the flood fill algorithm. Figure 12 is a 

view maze simulator program. Maze blue wall is a wall 

that position known to the robot. While the maze walls 

are colored orange wall position is not known by the 

robot. 

 

Figure 12.  Simulation search path to cell (2,2), Turn = 0 

First experiment, Robot will perform a search of the 

initial cell lines (4.0) to the destination cell (2, 2). Flood 

fill algorithm simulation results when a search of the cell 

lines (4, 0) to the cell (2, 2) are shown in Figure 12 to 22. 

 

Figure 13.  Simulation search path to cell (2,2), Turn = 0 

 

Figure 14.  Simulation search path to cell (2,2), Turn = 0 

 

Figure 15.  Simulation search path to cell (2,2), Turn = 0 

 

Figure 16.  Simulation search path to cell (2,2), Turn = 0 

 

Figure 17.  Simulation search path to cell (2,2), Turn = 1 

 
Figure 18.  Simulation search path to cell (2,2), Turn = 1 

 

Figure 19.  Simulation search path to cell (2,2), Turn = 2 



 

Figure 20.  Simulation search path to cell (2,2) ), Turn = 1 

 

Figure 21.  Simulation search path to cell (2,2) ), Turn = 2 

 

Figure 22.  Simulation search path to cell (2,2) ), Turn = 3 

The second experiment is an attempt to find the path 

of the robot to the starting point of the experiment 1. The 

robot spins to look for the direction of the starting 

position. If the robot gets more than one possible initial 

direction, then the south direction will be set as the first 

direction. If there is only one choice then the initial 

direction of the robot position is directed at the open wall. 

In this second experiment, the robot gets East as the 

starting direction. This robot trip can be seen in Figures 

23 to 28. 

 

Figure 23.  Simulation search path to cell (2,2) ), Turn = 0 

 

 

Figure 24.  Simulation search path to cell (2,2) ), Turn = 1 

 

Figure 25.  Simulation search path to cell (2,2) ), Turn = 2 

 

Figure 26.  Simulation search path to cell (2,2) , Turn = 2 

 

Figure 27.  Simulation search path to cell (2,2) , Turn = 2 

 

Figure 28.  Simulation search path to cell (2,2) , Turn = 1 



 After the robot updates the wall data while running a 

search on the first experiment and travels home in the 

second experiment, the robot has enough data to find the 

fastest path to the destination in the cell (2,2). All robot 

search and back home information make the robot can 

find the shortest path the cell (2.2) on third experiment. It 

can be seen in table 2. 

Table 2. All Robot experiments 

 Routes Number 

of steps 

First 
run 

(4,0) (3,0)  (2,0)  (1,0)  (2,0)  (3,0) 
 (3,1)  (3,2)  (3,3)  (2,3)  (2,2) 

10 

Return 

home 

(2,2)  (2,3)  (3,3)  (3,2)  (3,1)  (3,0) 

 (4,0) 

6 

Second 

run 

(4,0) (3,0)  (3,1)  (3,2)  (3,3)  (2,3) 

 (2,2) 

6 

Wall map data will be updated when the robot go to 

cells that have not been visited before. Flood fill 

algorithm will update the value of the cell based on the 

position of the wall that has been mapped out by the 

robot. 

 Robots always perform movement to neighboring 

cells which have the smallest value. If there is more than 

one neighboring cell that has the smallest value, then the 

cell selection will be done on a priority basis. Go foward 

has first priority, turn to the right has the second priority, 

turn to the left has a third priority, and move backwards 

has a fourth priority. 

 The value is changed in accordance with the 

position of the wall that has been mapped out by the 

robot. Cell values represent the cell distance to the 

destination cell. 

VI. CONCLUSION 

This design and implementation of the robot is a 

study about the ability to equip a small mobile robot with 

the ability to learn how to navigate in unknown 

environment based on its own decisions. The flood-fill 

algorithm was found to be an effective tool for maze-

solving of a moderate size. For the robot to make its 

decisions it relies on inputs from several sensors, namely 

the ultrasonic range sensors and wheel rotation decoders.  

The robot has successfully able to map the maze in 

the first, return home and second runs. In its second run it 

reaches its target cell through the shortest route it has 

mapped in the previous first run and return home. 

Future works may include to studying the robot‟s 

maze solving capability in a bigger and more complex 

maze. In order to improve the quality in wall detection, 

better object sensor, such as a laser range finder, is 

needed. It is much more costly but it have ability to scan 

its surrounding at a wirde angle plane, so it will help a lot 

in search ability at bigger and more complex maze. 

 

 

 

REFERENCES 

[1] Bekti, Samudra Harapan, “Pencarian Shortest Path Dinamik 
dengan Algoritma Bellman Based Flood Fill dan 

Implementasinya pada Robot Micromouse”, Institut Teknologi 

Bandung, 2009.  
[2] Elshamarka, Ibrahim and Abu Bakar Sayuti Saman, “Design 

and Implementation of a Robot for Maze-Solving using Flood-

Fill Algorithm”,  Universiti Teknologi Petronas, 2012.  
[3] Tjiharjadi, Semuil and Erwin Setiawan, “Design and 

Implementation of Path Finding Robot Using Flood Fill 

Algorithm”, International Journal of Mechanical Engineering 
and Robotics Research, Volume 5, No. 3, July 2016, pp 180-

185. 
[4] Tjiharjadi, Semuil, Marvin Chandra Wijaya and Erwin 

Setiawan, “Optimization Maze Robot Using A* and Flood Fill 

Algorithm”, International Journal of Mechanical Engineering 
and Robotics Research, Volume 6, No. 5, September 2017, pp 

366-372. 

[5] Elshamarka, I. and A.B.S. Saman, “Design and Implementation 

of a Robot for Maze-Solving Using Flood-Fill Algorithm”, in 

International Journal of Computer Applications Volume 56-

No.5, pp.8-13, October 2012.  
[6] Ansari, A., M.A. Sayyed, K. Ratlamwala and P. Shaikh, “An 

Optimized Hybrid Approach For Path Finding”, in 

International Journal in Foundations of Computer Science & 
Technology (IJFCST), Vol. 5 No. 2, pp. 47-58, March 2015.  

[7] Sharma, K. And C. Munshi, “A Comprehensive and 

Comparative Study of Maze-Solving Techniques by 
Implementing Graph Theory”, in IOSR Journal of Computer 

Engineering, Vol. 17, Issue 1, Ver. IV, pp. 24-29, 2015.  

[8] Sreekanth, R.K., “Artificial Intelligence Algorithms”, IOSR 
Journal of Computer Engineering (IOSRJCE), volume 6, issue 

3 September-October, 2012.  

[9] Cook, David. Intermediate Robot Building. New York: Apress. 
2010.  

[10] Mazidi, Muhammad Ali, Sarmad Niami, dan SepehrNiami. The 

AVR Microcontroller and Embedded System. New Jersey: 
Prentice Hall. 2011.  

[11] Braunl, Thomas, Embedded Robotics. Berlin: Springer. 2006.  

[12] Rizqiawan, Arwindra, Sekilas Rotary Encoder. 
http://konversi.wordpress.com/2009/06/12/sekilas-rotary-

encoder/, Juni 2014.  

[13] Scherz, Paul, Practical Electronics for Inventors. New York: 
McGraw-Hill. 2000.  

[14] Lucas, G. W., A Tutorial and Elementary Trajectory Model for 

the Differential Steering System of Robot Wheel Actuators. 
http://rossum.sourceforge.net/papers/DiffSteer/, Juni 2014.  

 

Semuil Tjiharjadi is currently serves as vice rector 
of capital human management, assets and 

development. He is also Lectures in Computer 

Engineering Department. His major research on 
Robotics, Computer automation, control and 

security. He has written several books, To Be a 

Great Effective Leader (Jogjakarta, Indonesia: Andi 
Offset, 2012), Multimedia Programming by SMIL 

(Jogjakarta, Indonesia: Andi Offset, 2008), 

Computer Business Application (Bandung, Indonesia: Informatics, 
2006) and so on.  The various academic bodies on which he contributed 

as: Head of Computer Engineering Department, Member: Senate of 

University, Member: APTIKOM, Member: MSDN Connection, 
Member: AAJI.  

 

 

 
 

Author‟s formal 

photo 



 



Design and Implementation of Flood Fill and 

PledgeAlgorithm For Maze Robot 
 

Semuil Tjiharjadi 
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia 

Email: semuiltj@gmail.com 

 

 
Abstract—Maze Robot is a path finding autonomous mobile 

robot which can reach a certain point. One of its capabilities 

is moving from one point to another autonomously. Maze 

Robot is able to explore an unknown environment. Map the 

environment and seeking good path to reach a certain point. 

This MazeRobot is a mobile robot which moves using wheels 

with differential steering type. It is designed to solve a maze 

environment that has a size of 5 x 5 cells and it is used to 

implement the flood-fill algorithm and the pledge algorithm. 

It is using ultrasonic range finders to detect walls and 

opening in the maze. The robot has ability to use pledge 

algorithm to collect the information and learn the maze, it 

finds all possible routes and solve the problem using the 

shortest one. Result of experiments show the robot can 

explore the maze and map it, Robot also can find the 

shortest path to destination point with 80% success rate. 

 

Index Terms—flood fill algorithm, pledge algorithm, path 

finding, maze, wall follower algorithm 

I. INTRODUCTION 

One of important features of mobile robotics is 

autonomous navigation. It is the ability of the robot to 

independently move to target location without being 

controlled. There are many algorithms have been 

developed for this purpose, each of them is having their 

own strengths and weaknesses. 

Autonomous navigation is an important feature of 

mobile robotics. It allows the robot to independently 

move from a place to target location without a tele-

operator. There are several techniques and algorithms 

have been developed for this purpose, each of them 

having their own advantages and disadvantages [1-7]. 

As an autonomous robot, Path Finding Robot uses 

structured techniques and controlled implementation of 

autonomous navigation which is preferable in studying 

specific aspect of Flood Fill Algorithm and Pledge 

Algorithm [1]. This research discusses implementation of 

a small size mobile robot designed to solve a maze based 

on the both algorithms.  

Robot maze problems are based on decision making 

algorithm that is very important field of robotics. Mobile 

robot has path finding task to solve a maze in the least 

time possible and using the shortest way [2]. It must 

navigate from a corner of a maze to the center as fast as 

possible [3].  

The robot knows where the starting and target location, 

but it must look all information about the obstacles to 

achieve target location. The maze is composed of 25 

square cells, where the size of each cell is about 18 cm x 

18 cm. The cells are arranged to form a 5 rows x 5 

columns maze. One cell at its corners is a starting 

location and the target location is at the center of the 

maze. Only one cell is opened for passing. Maze walls 

and support platform’s requirements are provided in the 

IEEE standard. 

II. LITERATURE REVIEW 

A. Breadth First Search 
 

Breadth First Searchis a search algorithm that begins at 

the root node and explores all the neighboring nodes until 

it finds the goal. It needs large memory space. It 

discovers few solutions and at least one has shortest path. 

All nodes obtained by expanding a nearest neighbor node 

in First In First Out queue. Breadth First Search works 

poorly when the solutions have long path. It has large 

space complexity. 

B. Depth First Search 
 

Depth First Searchis an algorithm for searching a 

graph or tree data structure usesLastInFirstOutqueue. It is 

simple to implement, starting at the root node and goes as 

far as it can down in path, and then backtracks until it 

finds an unexplored path, and then explores the new one, 

until it finds the target. Depth First Search’s problem it 

requires large computing power, for small increase in 

map size, runtime increases exponentially [7]. 

C. Heuristic Function 
 

Heuristic function is a function that is using all 

mapping information to inform the search about the right 

direction to a goal. It maps problem state descriptor to a 

number which represents degree of desirability. It plays 

vital role in optimization problem [8]. 

D. Genetic Algorithm 
 

Genetic algorithm is inspired by natural evolution to 

find approximate optimal solution. Advantages of 

Genetic algorithm are it solves problem with multiple 

solutions. But it needs very large input and data. 

Problems of Genetic algorithm are certain optimization 

cases cannot be solved due to poorly known fitness 

function.It is not able to assure constant optimization 

response times because of the entire population are 

improving [9]. 



E. A* algorithm 
 

A* is one of most popular methods for finding the 

shortest path in a maze area. It is developed as 

combination heuristic approaches like Best-First-Search 

(BFS) and formal approaches like Dijkstra’s algorithm. It 

is an algorithm which cost associated with each node is 

calculated using admissible heuristic likes BFS. It follows 

its path with lowest known heuristic cost. Likes BFS that 

needs large memory requirement to store its drawback 

information, A* also needs the large memory too for the 

same reason because entire open-list is to be saved [4]. 

F. Flood Fill Algorithm 
 

Flood fill algorithm that also known as seed fill 

algorithm, is an algorithm that determines the area 

connected to a given node in a multi-dimensional 

array.This algorithm needs all information of maze and 

proper planning [3]. It is used widely for robot maze 

problem.  

The Flood fill algorithm gives values to each node that 

represents the distance of the node from the center. It 

floods the labyrinth when it reaches a new cell or node. 

This algorithm requires continue update [11].  

G. Wall Follower Algorithm 
 

Wall follower algorithm is used left or right-hand rule. 

Robot detects its left or right side on the wall at the start 

of the maze, and then starts moving. Never lose left or 

right-side detection. It works for a simply connected 

maze. 

H. Pledge Algorithm 
 

The pledge algorithm is designed for circular obstacles 

and has an initial direction to move forward. The robot 

will run in the main direction until it finds obstacles. 

When the robot finds an obstacle, the robot will use a 

wall follower search method and will avoid obstacles by 

prioritizing the right or left side. It will calculate total 

turn, and try to return to initial direction (total turn count 

is “0”) [8]. 

III. HARDWARE DESIGN 

This research is using miniQ 2WD robot chassis as 

robot base construction. Figure 1 is the chassis of the 

robot. It consists of a robot chassis with 122mm diameter, 

a couple wheels, a piece of ball caster and a couple Direct 

Current (DC) motors which have gearbox and also DC 

motor bracket.  

This maze robot also has a couple pieces rotary 

encoder. Rotary encoder attached to the DC motor to 

calculate the rotation of the wheels. It is shown in Figure 

2 [12]. Figure 3 is shown the block diagram of design of 

whole hardware system and the flowchart of main 

program can be seen at Figure 4. 

 

Figure 1.  12WD miniQ robot chassis. 

 

Figure 2.  Mobile Robot from side view. 

  

Figure 3.  Maze Robot’s Block Diagram. 

It has three infrared sensors to detect front, right and 

left position of the maze wall. This maze robot uses 

driver L293D to control the speed and rotation of a DC 

Motor [13]. It also has rotary encoder that has a job to 

calculate the rotation of both wheels. Push button is used 

to start the robot.  

Robot system would drive DC motors to move the 

wheels. It would control the robot to move forward, turn 

to the left or right, and rotates reverse [14]. This maze 

robot has an AT Mega 324 microcontroller to respond the 

input signal and run the actuator based on processing 

algorithms [10]. All status and information are displayed 

on the Liquid Crystal Display(LCD) 16 x 2 at Figure 5. 

The maze designed for the robot to solve is of the size 

of 5×5 cells as shown in Figure 6. The actual maze 

constructed, as shown in Figure 7, has a physical size of 

about 1.32 m2. The maze was designed so that it will have 

two paths in order for it to be solved. One of the paths is 

longer than the other. The robot (Figure 2) must decide 

which one of the paths is shorter and solve the maze 

through that path. 



 

Figure 4.  Flowchart of the main program. 

 

Figure 5.  Mobile Robot from above view. 

IV. ALGORITHM 

 There are several algorithms that can be 

implemented to solve the maze cases. One of the suitable 

algorithms to search goal in the middle of the maze is 

Flood-fill algorithm. In this case, flood-fill algorithm was 

chosen to solve the maze due to its simplicity but 

efficient [3].  

 

Figure 6.  The layout of maze. 

  

Figure 7.  The maze arena. 

 Together with the flood-fill algorithm that is used to 

find the fastest way to reach the destination, a pledge 

algorithm is used to determine the priority of the direction 

taken when the robot finds the same priority value based 

on the flood-fill algorithm. The pledge algorithm will 

give the +1 value to the ‘Turn’ variable every time you 

turn right and -1 value every time you turn left. The goal 

is to achieve the goal by prioritizing the smallest possible 

‘Turn’ variable value. So that every time the pledge 

algorithm finds an intersection, the turn decision that is 

taken is to reduce the ‘Turn’ variable value of the 

rotation. This pledge algorithm is used to help flood-fill 

algorithms so that they have smarter decisions [5]. 

 Artificial Intelligence program has two-dimensional 

memory array to map the maze’s arena which has size of 

5x5. The memory array is used to store information in 

each cell walls of the maze and each cell value 

information. The robot’s positions in the program are 

expressed by the coordinates (row, column). The 

movement of the robot in the array is done to position the 

robot as in Figure 8. 

 The coordinates of the line will increase 1 when the 

robot moves one cell to the South. On the other hand, it 

will be reduced by 1 when the robot moves to the North. 

The column will be reduced by 1 when robot moves to 

the West, and it will be increased by 1 when robot moves 

to the East. Robot has already information about the 

initial orientation, the initial position, the size of the maze 

and the location of the maze’s outer walls. 

The Flood fill algorithm has four main steps: the 

first is wall data updates, second is cell value updates, the 

third is the smallest neigbour cell calculation, and the last 

is moving to the smallest neighbour cell. 



 
Figure 8.  Robot’s Array Movement 

A. Wall data update 
 
 Robot will check its environment, any walls in its 

three directions: right, left and front directions. The robot 

will also detect the distance of any obstacle of its three 

directions. Anyone exceed 20 cm is updated as “wall” on 

its respective side. Flowchart in the Figure 9 describes the 

wall data update mechanism. 

 The maze robot also needs to know which direction 

it is facing so it knows where to go: north, east, west or 

south. Table 1 describes the relation of robot orientation 

and wall sensor detection. The robot has an initial 

orientation when it starts at the beginning and will 

continue to track changes in direction.  

 

Table 1. Robot orientation and wall detection  
Robot 

Orientation 

Wall Sensor Detection 

Right Front Left 

South West wall South wall East wall 

West North wall West wall South wall 

North East wall North wall West wall 

East South wall East wall North wall 

 

B. Cell value update 
 
 Update cell values (refill each cell with a new value) 

serves to adjust the value in each cell wall position that 

has been updated by the robot. Values stored in a 2-

dimensional array of 5x5 memory cells. Update cell 

values is done using the flood fill algorithm. 

 Updating the cell value subroutine to function by 

resetting the previous cell value, then giving a value of 

255 in each cell, then filling in the values of these cells in 

stages, the initial value 0 to all cells filled in with the 

value. The cells that will be updated are the current_level 

array while the neighboring cells will be entered in the 

next_level array. After the value filling process is 

complete, the cells in array next_level will be moved to 

the current_level array to do the next value. The update 

process will be complete if the array cell next_level is 

empty. 

 

C. The smallest neigbour cell calculation 
 
 Subroutine determines the smallest neighbor cell that 

functions to find neighboring cells that have the smallest 

value. The search for the smallest neighbor cell is done 

based on priority, so that if there is more than one 

neighbor cell that has the smallest value, then the cell 

selected is a cell that has a higher priority. 

 

Figure 9.  Flowchart for updating wall location at each cell 

 Prioritization is arranged based on the movement of 

the robot moving forward one cell has the first priority, 

the second priority is to move one cell to the right, while 

the third priority is to move one cell to the left, and the 

fourth or last priority is to move one cell backwards. For 

example, if a robot faces the East, then the East cell has 

the first priority, the two South has the priority cell, the 

cell has the third priority North and the Western cell has 

the fourth priority as in Figure 10. If the robot faces the 

East, the East cells have the first priority, South cells 

have a second priority, North has third priority cells, and 

Western cells have a fourth priority. 

  

 
Figure 10.  Priority of Neighbour cell  

D. Moving to the smallest neighbour cell 
 
 Program subroutines move the robot to the smallest 

neighboring cells, after the robot finds neighboring cells. 

To move to a cell, the robot must know the location of the 

cell. Next, the robot will move to the cell by observing 

orientation. For example, if the South cell is the smallest 

cell and the orientation of the robot is facing west, then 

moves to the position of the cell, the robot must turn left, 

then move forward as in Figure 11. If the South cell is the 



smallest cell and the orientation of the robot is facing 

east, then moving to the position of the cell, the robot 

must rotate to the right, then move forward. 

 

Figure 11.  Moving to smallest neighbour cell. 

V. RESULTS AND DISCUSSION 

In this experiments, Robot will learn to find the 

shortest path from the starting cell (line 4, column 0) to 

the destination cell (row 2, column 2) and then back again 

to the initial cell. The initial orientation of the robot is 

facing the North. 

The maze simulator program aims to facilitate the 

observation on how the flood fill algorithm. Figure 12 is a 

view maze simulator program. Maze blue wall is a wall 

that position known to the robot. While the maze walls 

are colored orange wall position is not known by the 

robot. 

 

Figure 12.  Simulation search path to cell (2,2), Turn = 0 

First experiment, Robot will perform a search of the 

initial cell lines (4.0) to the destination cell (2, 2). Flood 

fill algorithm simulation results when a search of the cell 

lines (4, 0) to the cell (2, 2) are shown in Figure 12to 22. 

 

Figure 13.  Simulation search path to cell (2,2), Turn = 0 

 

Figure 14.  Simulation search path to cell (2,2), Turn = 0 

 

Figure 15.  Simulation search path to cell (2,2), Turn = 0 

 

Figure 16.  Simulation search path to cell (2,2), Turn = 0 

 

Figure 17.  Simulation search path to cell (2,2), Turn = 1 

 
Figure 18.  Simulation search path to cell (2,2), Turn = 1 



 

Figure 19.  Simulation search path to cell (2,2), Turn = 2 

 

Figure 20.  Simulation search path to cell (2,2)), Turn = 1 

 

Figure 21.  Simulation search path to cell (2,2)), Turn = 2 

 

Figure 22.  Simulation search path to cell (2,2)), Turn = 3 

The second experiment is an attempt to find the path 

of the robot to the starting point of the experiment 1. The 

robot spins to look for the direction of the starting 

position. If the robot gets more than one possible initial 

direction, then the south direction will be set as the first 

direction. If there is only one choice then the initial 

direction of the robot position is directed at the open wall. 

In this second experiment, the robot gets East as the 

starting direction. This robot trip can be seen in Figures 

23 to 28. 

 

Figure 23.  Simulation search path to cell (2,2)), Turn = 0 

 

 

Figure 24.  Simulation search path to cell (2,2)), Turn = 1 

 

Figure 25.  Simulation search path to cell (2,2)), Turn = 2 

 

Figure 26.  Simulation search path to cell (2,2), Turn = 2 

 

Figure 27.  Simulation search path to cell (2,2), Turn = 2 



 

Figure 28.  Simulation search path to cell (2,2), Turn = 1 

 After the robot updates the wall data while running a 

search on the first experiment and travels home in the 

second experiment, the robot has enough data to find the 

fastest path to the destination in the cell (2,2). All robot 

search and back home information make the robot can 

find the shortest path the cell (2.2) on third experiment. It 

can be seen in table 2. 

TABLE 2. ALL ROBOT EXPERIMENTS 

 Routes Number 

of steps 

First 

run 

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0) 

→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2) 

10 

Return 

home 

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) → (3,0) 

→ (4,0) 

6 

Second 

run 

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3) 

→ (2,2) 

6 

Wall map data will be updated when the robot go to 

cells that have not been visited before. Flood fill 

algorithm will update the value of the cell based on the 

position of the wall that has been mapped out by the 

robot. 

 Robots always perform movement to neighboring 

cells which have the smallest value. If there is more than 

one neighboring cell that has the smallest value, then the 

cell selection will be done on a priority basis. Go foward 

has first priority, turn to the right has the second priority, 

turn to the left has a third priority, and move backwards 

has a fourth priority. 

 The value is changed in accordance with the 

position of the wall that has been mapped out by the 

robot. Cell values represent the cell distance to the 

destination cell. 

VI. CONCLUSION 

This design and implementation of the robot is a 

study about the ability to equip a small mobile robot with 

the ability to learn how to navigate in unknown 

environment based on its own decisions. The flood-fill 

algorithm was found to be an effective tool for maze-

solving of a moderate size. For the robot to make its 

decisions it relies on inputs from several sensors, namely 

the ultrasonic range sensors and wheel rotation decoders.  

The robot has successfully able to map the maze in 

the first, return home and second runs. In its second run it 

reaches its target cell through the shortest route it has 

mapped in the previous first run and return home. 

Future works may include to studying the robot’s 

maze solving capability in a bigger and more complex 

maze. In order to improve the quality in wall detection, 

better object sensor, such as a laser range finder, is 

needed. It is much more costly but it have ability to scan 

its surrounding at a wirde angle plane, so it will help a lot 

in search ability at bigger and more complex maze. 

REFERENCES 

[1] Bekti, Samudra Harapan,“Pencarian Shortest Path 

DinamikdenganAlgoritma Bellman Based Flood Fill dan 
Implementasinya pada Robot Micromouse”, Institut Teknologi 

Bandung, 2009. 

[2] Elshamarka, Ibrahim and Abu Bakar SayutiSaman,“Design and 
Implementation of a Robot for Maze-Solving using Flood-Fill 

Algorithm”, Universiti Teknologi Petronas, 2012. 

[3] Tjiharjadi, Semuil and Erwin Setiawan, “Design and 
Implementation of Path Finding Robot Using Flood Fill 

Algorithm”, International Journal of Mechanical Engineering 

and Robotics Research, Volume 5, No. 3, July 2016, pp 180-
185. 

[4] Tjiharjadi, Semuil, Marvin Chandra Wijaya and Erwin 

Setiawan, “Optimization Maze Robot Using A* and Flood Fill 
Algorithm”, International Journal of Mechanical Engineering 

and Robotics Research, Volume 6, No. 5, September 2017, pp 

366-372. 
[5] Elshamarka, I. and A.B.S. Saman, “Design and Implementation 

of a Robot for Maze-Solving Using Flood-Fill Algorithm”, in 

International Journal of Computer Applications Volume 56-
No.5, pp.8-13, October 2012. 

[6] Ansari, A., M.A. Sayyed, K. Ratlamwala and P. Shaikh, “An 

Optimized Hybrid Approach For Path Finding”, in 
International Journal in Foundations of Computer Science & 

Technology (IJFCST), Vol. 5 No. 2, pp. 47-58, March 2015. 

[7] Sharma, K. And C. Munshi, “A Comprehensive and 
Comparative Study of Maze-Solving Techniques by 

Implementing Graph Theory”, in IOSR Journal of Computer 
Engineering, Vol. 17, Issue 1, Ver. IV, pp. 24-29, 2015. 

[8] Sreekanth, R.K., “Artificial Intelligence Algorithms”, IOSR 

Journal of Computer Engineering (IOSRJCE), volume 6, issue 
3 September-October, 2012.  

[9] Cook, David. Intermediate Robot Building. New York: Apress. 

2010. 
[10] Mazidi, Muhammad Ali, Sarmad Niami, dan SepehrNiami. The 

AVR Microcontroller and Embedded System. New Jersey: 

Prentice Hall. 2011. 
[11] Braunl, Thomas,Embedded Robotics. Berlin: Springer. 2006. 

[12] Rizqiawan, Arwindra,Sekilas Rotary Encoder. 

http://konversi.wordpress.com/2009/06/12/sekilas-rotary-
encoder/, Juni 2014. 

[13] Scherz, Paul, Practical Electronics for Inventors. New York: 

McGraw-Hill. 2000. 
[14] Lucas, G. W.,A Tutorial and Elementary Trajectory Model for 

the Differential Steering System of Robot Wheel Actuators. 

http://rossum.sourceforge.net/papers/DiffSteer/, Juni 2014. 

 

Semuil Tjiharjadi is currently serves as vice rector 

of capital human management, assets and 
development. He is also Lectures in Computer 

Engineering Department. His major research on 

Robotics, Computer automation, control and 
security. He has written several books, To Be a 

Great Effective Leader (Jogjakarta, Indonesia: Andi 

Offset, 2012), Multimedia Programming by SMIL 
(Jogjakarta, Indonesia: Andi Offset, 2008), 

Computer Business Application (Bandung, Indonesia: Informatics, 

2006) and so on. The various academic bodies on which he contributed 
as: Head of Computer Engineering Department, Member: Senate of 

University, Member: APTIKOM, Member: MSDN Connection, 

Member: AAJI.  

 
 

Author’s formal 

photo 



 


	Notification of Acceptance of ICAME 2018

