
Design and Implementation of a Path Finding Robot Using Flood Fill Algorithm
1. Scopus Index
2. Manuskrip awal
3. Email penerimaan manuskrip
4. Manuskrip perbaikan pertama
5. Email penerimaan dengan perbaikan minor
6. Form hasil Reviewer
7. Email Penerimaan
8. Surat penerimaan
9. Manuskrip akhir

CiteScore

2.8 =

Calculated on 05 May, 2024

CiteScoreTracker 2024

3.1 =

Last updated on 05 March, 2025 • Updated monthly

Source details

International Journal of Mechanical Engineering and Robotics
Research
Years currently covered by Scopus: from 2016 to 2025

Publisher: International Journal of Mechanical Engineering and Robotics Research

E-ISSN: 2278-0149

Subject area: Engineering: Mechanical Engineering Engineering: Control and Systems Engineering

Computer Science: Artificial Intelligence

Source type: Journal

 View all documents ▻ Set document alert  Save to source list

CiteScore 2023

2.8


SJR 2023

0.263 

SNIP 2023

0.473 

CiteScore CiteScore rank & trend Scopus content coverage

2023 

1,433 Citations 2020 - 2023

518 Documents 2020 - 2023



1,065 Citations to date

349 Documents to date

CiteScore rank 2023





Category Rank Percentile

Engineering

#331/672 50th

Engineering

#172/321 46th



Mechanical

Engineering

Control and

Systems

Engineering

 ▻View CiteScore methodology ▻CiteScore FAQ 🔗Add CiteScore to your site

Brought to you by Universiti Teknikal Malaysia Melaka (UTeM)

https://www.scopus.com/source/citedby.uri?sourceId=21100788860&docType=ar,re,cp,dp,ch&citedYear=2024,2023,2022,2021&years=2024,2023,2022,2021&pubstageExclusions=aip
https://www.scopus.com/source/search/docType.uri?sourceId=21100788860&years=2024,2023,2022,2021&docType=ar,re,cp,dp,ch&pubstageExclusions=aip
https://www.scopus.com/standard/help.uri?topic=14880
https://www.scopus.com/home.uri?zone=header&origin=sourceinfo
https://www.scopus.com/home.uri?zone=header&origin=sourceinfo
https://www.scopus.com/pages/home

Terms and conditions Privacy policy Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. , its licensors, and contributors. All rights are reserved, including those for

text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

We use cookies to help provide and enhance our service and tailor content.By continuing, you agree to the use of cookies .

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する
查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/legal/elsevier-website-terms-and-conditions?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/legal/privacy-policy?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.scopus.com/cookies/policy.uri
https://www.scopus.com/cookies/policy.uri
https://www.scopus.com/cookies/policy.uri
http://www.relx.com/
https://www.elsevier.com/products/scopus?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/products/scopus/content?dgcid=RN_AGCM_Sourced_300005030
https://blog.scopus.com/
https://dev.elsevier.com/
https://www.elsevier.com/legal/privacy-policy?dgcid=RN_AGCM_Sourced_300005030
https://www.scopus.com/personalization/switch/Japanese.uri?origin=sourceinfo&zone=footer&locale=ja_JP
https://www.scopus.com/personalization/switch/Chinese.uri?origin=sourceinfo&zone=footer&locale=zh_CN
https://www.scopus.com/personalization/switch/Chinese.uri?origin=sourceinfo&zone=footer&locale=zh_TW
https://www.scopus.com/personalization/switch/Russian.uri?origin=sourceinfo&zone=footer&locale=ru_RU
https://www.scopus.com/standard/contactUs.uri?pageOrigin=footer
https://service.elsevier.com/app/answers/detail/a_id/14799/supporthub/scopus/
https://service.elsevier.com/app/overview/scopus/

Design and Implementation of a Path Finding

Robot using Flood Fill Algorithm

Semuil Tjiharjadi
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia

Email: semuiltj@gmail.com

Erwin Setiawan
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia

Abstract 

Autonomous robot is a robot that can perform certain work

independently without the human help. Autonomous of

navigation is one of the capabilities of autonomous robot to

move from one point to another. Implementation of

Autonomous robot navigation to explore an unknown

environment, requires the robot to explore and map the

environment and seek the path to reach a certain point.

Path Finding Robot is a mobile robot which moves using

wheels with differential steering type. This path finding

robot is designed to solve a maze environment that has a size

of 5 x 5 cells and it is based on the flood-fill algorithm.

Detection of walls and opening in the maze were done using

ultrasonic range-finders. The robot was able to learn the

maze, find all possible routes and solve it using the shortest

one. This robot also use wall follower algorithms to correct

the position of the robot against the side wall maze, so the

robot can move straight. After several experiments, the

robot can explore and map of maze and find the shortest

path to destination point with a success rate of 70%.

Index Terms—flood fill algorithm, path finding, maze, wall

folower algorithm

I. INTRODUCTION

Autonomous navigation is an important feature of
mobile robotics. It allows the robot to independently
move from a place to target location without a tele-
operator. There are several techniques and algorithms
have been developed for this purpose, each of them
having their own merits and shortcomings [1,4-7].

Path Finding robot is using a structured technique and
controlled implementation of autonomous navigation
which is sometimes preferable in studying specific aspect
of the problem [4]. This paper discusses an
implementation of a small size mobile robot designed to
solve a maze based on the flood-fill algorithm.

The path finding task is where robots try to solve a maze

Footnotes: 8-point Times New Roman font;

Manuscript received July 1, 2012; revised August 1, 2012; accepted
September 1, 2012.

Copyright credit, project number, corresponding author, etc.

in the least time possible and using the most efficient
way. A robot must navigate from a corner of a maze to

the center as quickly as possible. It knows where the
starting location is and where the target location is, but it
does not have any information about the obstacles
between the two. The maze is normally composed of 256
square cells, where the size each cell is about 18 cm ×

18cm. The cells are arranged to form a 16 row × 16
column maze. The starting location of the maze is on one
of the cells at its corners, and the target location is formed
by four cells at the center of the maze. Only one cell is

opened for entrance. The requirements of maze walls and
support platform are provided in the IEEE standard .

II. LITERATURE REVIEW

2.1. Breadth First Search

Breadth First Search uses First In First Out queue. It is
used when space is not a problem and few solutions may
exist and at least one has shortest path. It works poorly
when all solutions have long path length or there is some
heuristic function exists. It has large space complexity
[9].

2.2. Depth First Search

Depth First Search uses Last In First out queue and are
recursive in algorithm. It is simple to implement. But
major problem with Depth First Search is it requires large
computing power, for small increase in map size, runtime
increases exponentially [9].

2.3. Heuristic Function

Heuristic function maps problem state descriptor to a
number which represents degree of desirability. Heuristic
function has different errors in different states. It plays
vital role in optimization problem [9].

2.4. Genetic Algorithm

Genetic algorithm is used to find approximate optimal
solution. It is inspired by evolutionary biology such as

inheritance, mutation, crossover and selection [3].
Advantages of this algorithm are it solves problem with
multiple solutions, it is very useful when input is very
large. Disadvantages of Genetic algorithm are certain
optimization problems cannot be solved due to poorly
known fitness function, it cannot assure constant
optimization response times, in Genetic algorithm the
entire population is improving, but this could not be true
for an individual within this population [9].

2.5. A* algorithm

A* combines feature of uniform-cost search and heuristic
search. It is BFS in which cost associated with each node
is calculated using admissible heuristic [1]. For graph
traversal, it follows path with lowest known heuristic
cost. The time complexity of this algorithm depends on
heuristic used. Since it is Breadth First Search drawback
of A* is large memory requirement because entire open-
list is to be saved [9].

2.6. Flood Fill Algorithm

Robot maze problems are an important field of robotics
and it is based on decision making algorithm [10]. It
requires complete analysis of workspace or maze and
proper planning [11]. Flood fill algorithm and modified
flood fill are used widely for robot maze problem [2].
Flood fill algorithm assigns the value to each node which
is represents the distance of that node from centre [9].
The flood fill algorithm floods the the maze when mouse
reaches new cell or node. Thus it requires high cost
updates [5]. These flooding are avoided in modified flood
fill [1].

III. HARDWARE DESIGN

Mobile robot base construction was made using

miniQ 2WD robot chassis. It was a product from

DFRobot as shown in Figure 1. In the product consists of

1 robot chassis with a diameter of 122mm. 2 wheels with

a diameter of 42mm, 1 piece ball caster and 2 DC motors

which have been furnished by the gearbox as well as two

pieces of the DC motor bracket to pair on the chassis.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile Robot from side view.

In this maze solving robot had 2 pieces rotary encoder.

Rotary encoder used is miniQ robot chassis encoder

which is also a product from DFRobot. Rotary encoder is

compatible with 2WD products miniQ robot chassis.

Rotary encoder attached to the DC motor to calculate the

rotation of the wheel as shown in Figure 2.

The whole hardware system of this mobile robot can be

seen in the block diagram at Figure 4 and Figure 5 shows

the main program. Mobile robot used three infrared

sensors to detect maze wall at right, left and front

position. Driver L293D controled the direction of rotation

and speed of a DC motor. Rotary encoder is used to

calculate the rotation of the right and left wheels. Push

button was used to instruct the robot to start. The system

output would drive two DC motors that served as

actuators to move the right and left wheels, so that the

robot can move forward, spun to the right, turned to the

left, and rotates reverse. ATmega324 microcontroller

serves to process the signal-sinyalinput, perform

processing algorithms, and generates output signals to

control a robot. Information about all actions that had

been taken by the robot, would be displayed on the LCD

16 x 2.

Figure 3. Mobile Robot from above view.

Figure 4. Block Diagram of Mobile Robot.

Figure 5. Flowchart of the main program.

Figure 6. Design of the maze.

The maze designed for the robot to solve is of the size of
5×5 cells as shown in Figure 6. The actual maze
constructed, as shown in Figure 7, has a physical size of
about 1.32 m

2
. The maze was designed so that it will have

two paths in order for it to be solved. One of the paths is
longer than the other. The robot (Figure 2) must decide
which one of the paths is shorter and solve the maze
through that path.

Figure 7. The maze.

IV. ALGORITHM

Choosing an algorithm for the maze robot is critical in
solving the maze. In this exercise, flood-fill algorithm
was chosen to solve the maze due to its balance in
efficiency and complexity.

Mapping the maze which has size of 5x5 cells is
accomplished by using two-dimensional memory array
with a size of 5x5. Artificial intelligence program
requires two memory arrays 5x5. The first memory array
is used to store information in each cell walls of the
maze. The second array of memory function is used to
store the cell value information in each cell. The position
of the robot in the program expressed by the coordinates
(row, column). The movement of the robot in the array is
done to position the robot as in Figure 8.

If the robot moves one cell to the south, then the
coordinates of the line increases 1. If the robot moves one
cell to the West, then the coordinates of the column will

be reduced by 1. If the robot moves one cell to the North,
then the coordinates of the line will be reduced by 1. If
the robot move one cell to the East, the coordinates of the
column will increase 1. The initial conditions of the
robot, already has information about the initial position,
the initial orientation, the size of the maze, and the
existence of the outer walls of the maze.

Figure 8. Array of Robot Movement

There are four main steps in the algorithm; wall data

updates, cell value updates, the smallest neigbour cell

calculation, and moving to the smallest neighbour cell.

4.1 Wall data update

If robot decides where it wants to move to, it will check if

it is surrounded by any walls in any of the three

directions: front, right nad left. The robot will read the

distance of any obstacle at each direction and check if the

distance in each is more than 20 cm. The ones that exceed

20 cm are updated as “wall” on their respective side. It

shows by the flowchart in Figure 9. Robot also needs to

know which direction it is facing. There are four

orientations for the robot: north, south, east or west, as

shown in table 1. Initial orientation was set at start and

the robot keeps tracking of any changes.

Table 1. Robot detection when it detect wall.

Robot

Orientation

Detection Sensor

Right Front Left

South West wall South wall East wall

West North wall West wall South wall

North East wall North wall West wall

East South wall East wall North wall

4.2 Cell value update

Update value of the cell (restocked every cell with the

new value) serves to adjust the value in each cell of the

position of the wall that has been updated by the robot.

The value stored in the array 2 dimensions of memory

cell with size 5x5. Update the value of the cell is done by

using the flood fill algorithm.

Figure 9. Flowchart for updating wall location at each cell

Update cell values subroutine works by resetting the

values of the previous cell, then it will give a value of 255

in each cell, then fill in the values of these cells gradually,

start value (level) 0 to all the cells filled grades. The cells

that will be updated is the current_level array while

neighboring cells will be inserted into the next_level

array. After value fill in process is completed, then the

cells are in next_level array will be moved to an array of

fill in current_level to do next value. The update process

will be complete if the value of the cell array next_level

empty.

4.3 The smallest neigbour cell calculation

Subroutine specify the smallest neighboring cells

function to search for a neighboring cell which has the

smallest value. The smallest neighboring cell search is

done on a priority basis, so that if there is more than one

neighboring cell that has the smallest value, then the

selected cells are cells that have a higher priority.

Wall data update

Read front, right and

left sensor

Front

sensor <

20cm

Update wall

front data

Right

sensor <

20cm

Update wall

Right data

Left

sensor <

20cm

Update wall

Left data

Return

Yes

No

Yes

No

Yes

No

Prioritization is based on the movement of the robot is

moving forward one cell has the first priority, move one

cell to the right has a second priority, move one cell to the

left has a third priority, and moving backward one cell

has the fourth priority. For example, if the robot were

facing the South, the South cells have a first priority, the

second priority of the West has a cell, the cell has a third

priority East and North cells have fourth priority as in

Figure 10. If the robot was facing the East, the East cells

have a first priority, South cells have second priority, the

North has a third priority cells, and cells West has fourth

priority.

Figure 10. Priority of Neighbour cell

4.4. Moving to the smallest neighbour cell

Subroutine moves to the smallest neighboring cells

function to move the robot towards neighboring cells

which have the smallest value, after the robot finds the

neighboring cells. To perform movement to the cell, the

robot should know the location of the cell. Furthermore,

the robot will move to the cells by observing the

orientation. For example, if the South cell is the smallest

cell and orientation of the robot was facing west, then to

move to the position of the cell, the robot must be turning

left, then move forward as in Figure 11. If the South cell

is the smallest cell and robot orientation was facing East,

then to move to the position of the cell, the robot must be

spinning right, then move forward.

Figure 11. Moving to smallest neighbour cell.

V. RESULTS AND DISCUSSION

In this experiments, Robot will learn to find the

shortest path from the starting cell (line 4, column 0) to

the destination cell (row 2, column 2) and then back again

to the initial cell. The initial orientation of the robot is

facing the North.

The maze simulator program aims to facilitate the

observation on how the flood fill algorithm. Figure 12 is a

view maze simulator program. Maze blue wall is a wall

that position known to the robot. While the maze walls

are colored orange wall position is not known by the

robot.

Figure 12. Simulation search path to cell (2,2)

Robot will perform a search of the initial cell lines (4.0)

to the destination cell (2, 2). Flood fill algorithm

simulation results when a search of the cell lines (4, 0) to

the cell (2, 2) are shown in Figure 12 to 22.

Figure 13. Simulation search path to cell (2,2)

Figure 14. Simulation search path to cell (2,2)

Figure 15. Simulation search path to cell (2,2)

Figure 16. Simulation search path to cell (2,2)

Figure 17. Simulation search path to cell (2,2)

Figure 18. Simulation search path to cell (2,2)

Figure 19. Simulation search path to cell (2,2)

Figure 20. Simulation search path to cell (2,2)

Figure 21. Simulation search path to cell (2,2)

Figure 22. Simulation search path to cell (2,2)

After robot run the search and update his wall data,

then it knows the shortest path to go to cell (2,2). It is

shown in table 2.

Table 2. First and second routes of robot experiment

 Routes Number

of steps

First
run

(4,0) (3,0)  (2,0)  (1,0)  (2,0)  (3,0)
 (3,1)  (3,2)  (3,3)  (2,3)  (2,2)

10

Return
home

(2,2)  (2,3)  (3,3)  (3,2)  (3,1)  (3,0)
 (4,0)

6

Second

run

(4,0) (3,0)  (3,1)  (3,2)  (3,3)  (2,3)

 (2,2)

6

Wall map data will be updated when the robot go to cells

that have not been visited before. Flood fill algorithm will

update the value of the cell based on the position of the

wall that has been mapped out by the robot.

Robots always perform movement to neighboring cells

which have the smallest value. If there is more than one

neighboring cell that has the smallest value, then the cell

selection will be done on a priority basis. Go foward has

first priority, turn to the right has the second priority, turn

to the left has a third priority, and move backwards has a

fourth priority.

The value is changed in accordance with the position of

the wall that has been mapped out by the robot. Cell

values represent the cell distance to the destination cell.

VI. CONCLUSION

This design and implementation of the robot is a study about the
ability to equip a small mobile robot with the ability to learn
how to navigate in unknown environment based on its own
decisions. The flood-fill algorithm was found to be an effective
tool for maze-solving of a moderate size. For the robot to make
its decisions it relies on inputs from several sensors, namely the
ultrasonic range sensors and wheel rotation decoders.

The robot has successfully able to map the maze in the first,
return home and second runs. In its second run it reaches its
target cell through the shortest route it has mapped in the
previous first run and return home.

Future works may include to studying the robot’s maze solving
capability in a bigger and more complex maze. In order to
improve the quality in wall detection, better object sensor, such
as a laser range finder, is needed. It is much more costly but it
have ability to scan its surrounding at a wirde angle plane, so it
will help a lot in search ability at bigger and more complex
maze.

REFERENCES

[1] Bekti, Samudra Harapan. Pencarian Shortest Path Dinamik

dengan Algoritma Bellman Based Flood Fill dan

Implementasinya pada Robot Micromouse: Institut Teknologi

Bandung. 2009.
[2] Braunl, Thomas. Embedded Robotics. Berlin: Springer. 2006.

[3] Cook, David. Intermediate Robot Building. New York: Apress.

2010.
[4] Elshamarka, Ibrahim danAbu Bakar Sayuti Saman. Design and

Implementation of a Robot for Maze-Solving using Flood-Fill

Algorithm: Universiti Teknologi Petronas. 2012.
[5] Elshamarka, I. And A.B.S. Saman, “Design and Implementation

of a Robot for Maze-Solving Using Flood-Fill Algorithm”, in

International Journal of Computer Applications Volume 56-No.5,
pp.8-13, October 2012.

[6] Ansari, A., M.A. Sayyed, K. Ratlamwala and P. Shaikh, “An

Optimized Hybrid Approach For Path Finding”, in International
Journal in Foundations of Computer Science & Technology

(IJFCST), Vol. 5 No. 2, pp. 47-58, March 2015.

[7] Sharma, K. And C. Munshi, “A Comprehensive and Comparative
Study of Maze-Solving Techniques by Implementing Graph

Theory”, in IOSR Journal of Computer Engineering, Vol. 17,

Issue 1, Ver. IV, pp. 24-29, 2015.
[8] Lucas, G. W. A Tutorial and Elementary Trajectory Model for

the Differential Steering System of Robot Wheel Actuators.

http://rossum.sourceforge.net/

papers/DiffSteer/, dikunjungi Juni 2014.

[9] Sreekanth, R.K., “Artificial Intelligence Algorithms”, IOSR

Journal of Computer Engineering (IOSRJCE), volume 6, issue 3
September-October, 2012.

[10] Magnusson, Per. Design of an H-Bridge.

http://axotron.se/index_en.php?page=34, dikunjungi Juni 2014.
[11] Mazidi, Muhammad Ali, Sarmad Niami, dan Sepehr Niami. The

AVR Microcontroller and Embedded System. New Jersey:

Prentice Hall. 2011.
[12] Rizqiawan, Arwindra. Sekilas Rotary Encoder.

http://konversi.wordpress.com/

2009/06/12/sekilas-rotary-encoder/, dikunjungi Juni 2014.
[13] Scherz, Paul.Practical Electronics for Inventors. New York:

McGraw-Hill. 2000.
[14] Schildt, Hebert. The Complete Reference C++. Osborne:

McGraw-Hill. 2013.

Design and Implementation of a Path Finding

Robot using Flood Fill Algorithm

Semuil Tjiharjadi
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia

Email: semuiltj@gmail.com

Erwin Setiawan
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia

Abstract 

Autonomous robot is a robot that can perform certain work

independently without the human help. Autonomous of

navigation is one of the capabilities of autonomous robot to

move from one point to another. Implementation of

Autonomous robot navigation to explore an unknown

environment, requires the robot to explore and map the

environment and seek the path to reach a certain point.

Path Finding Robot is a mobile robot which moves using

wheels with differential steering type. This path finding

robot is designed to solve a maze environment that has a size

of 5 x 5 cells and it is based on the flood-fill algorithm.

Detection of walls and opening in the maze were done using

ultrasonic range-finders. The robot was able to learn the

maze, find all possible routes and solve it using the shortest

one. This robot also use wall follower algorithms to correct

the position of the robot against the side wall maze, so the

robot can move straight. After several experiments, the

robot can explore and map of maze and find the shortest

path to destination point with a success rate of 70%.

Index Terms—flood fill algorithm, path finding, maze, wall

folower algorithm

I. INTRODUCTION

Autonomous navigation is an important feature of
mobile robotics. It allows the robot to independently
move from a place to target location without a tele-
operator. There are several techniques and algorithms
have been developed for this purpose, each of them
having their own merits and shortcomings [1-5].

Path Finding robot is using a structured technique and
controlled implementation of autonomous navigation
which is sometimes preferable in studying specific aspect
of the problem [2]. This paper discusses an
implementation of a small size mobile robot designed to
solve a maze based on the flood-fill algorithm.

The path finding task is where robots try to solve a maze

Footnotes: 8-point Times New Roman font;

Manuscript received July 1, 2012; revised August 1, 2012; accepted
September 1, 2012.

Copyright credit, project number, corresponding author, etc.

in the least time possible and using the most efficient
way. A robot must navigate from a corner of a maze to

the center as quickly as possible. It knows where the
starting location is and where the target location is, but it
does not have any information about the obstacles
between the two. The maze is normally composed of 256
square cells, where the size each cell is about 18 cm ×

18cm. The cells are arranged to form a 16 row × 16
column maze. The starting location of the maze is on one
of the cells at its corners, and the target location is formed
by four cells at the center of the maze. Only one cell is

opened for entrance. The requirements of maze walls and
support platform are provided in the IEEE standard .

II. LITERATURE REVIEW

2.1. Breadth First Search

Breadth First Search uses First In First Out queue. It is
used when space is not a problem and few solutions may
exist and at least one has shortest path. It works poorly
when all solutions have long path length or there is some
heuristic function exists. It has large space complexity
[6].

2.2. Depth First Search

Depth First Search uses Last In First out queue and are
recursive in algorithm. It is simple to implement. But
major problem with Depth First Search is it requires large
computing power, for small increase in map size, runtime
increases exponentially [6].

2.3. Heuristic Function

Heuristic function maps problem state descriptor to a
number which represents degree of desirability. Heuristic
function has different errors in different states. It plays
vital role in optimization problem [6].

2.4. Genetic Algorithm

Genetic algorithm is used to find approximate optimal
solution. It is inspired by evolutionary biology such as

inheritance, mutation, crossover and selection [7].
Advantages of this algorithm are it solves problem with
multiple solutions, it is very useful when input is very
large. Disadvantages of Genetic algorithm are certain
optimization problems cannot be solved due to poorly
known fitness function, it cannot assure constant
optimization response times, in Genetic algorithm the
entire population is improving, but this could not be true
for an individual within this population [6].

2.5. A* algorithm

A* combines feature of uniform-cost search and heuristic
search. It is BFS in which cost associated with each node
is calculated using admissible heuristic [1]. For graph
traversal, it follows path with lowest known heuristic
cost. The time complexity of this algorithm depends on
heuristic used. Since it is Breadth First Search drawback
of A* is large memory requirement because entire open-
list is to be saved [6].

2.6. Flood Fill Algorithm

Robot maze problems are an important field of robotics
and it is based on decision making algorithm [8]. It
requires complete analysis of workspace or maze and
proper planning [9]. Flood fill algorithm and modified
flood fill are used widely for robot maze problem [10].
Flood fill algorithm assigns the value to each node which
is represents the distance of that node from centre [6].
The flood fill algorithm floods the the maze when mouse
reaches new cell or node. Thus it requires high cost
updates [3]. These flooding are avoided in modified flood
fill [1].

III. HARDWARE DESIGN

Mobile robot base construction was made using

miniQ 2WD robot chassis. It was a product from

DFRobot as shown in Figure 1. In the product consists of

1 robot chassis with a diameter of 122mm. 2 wheels with

a diameter of 42mm, 1 piece ball caster and 2 DC motors

which have been furnished by the gearbox as well as two

pieces of the DC motor bracket to pair on the chassis.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile Robot from side view.

In this maze solving robot had 2 pieces rotary encoder.

Rotary encoder used is miniQ robot chassis encoder

which is also a product from DFRobot. Rotary encoder is

compatible with 2WD products miniQ robot chassis.

Rotary encoder attached to the DC motor to calculate the

rotation of the wheel as shown in Figure 2. [11]

The whole hardware system of this mobile robot can be

seen in the block diagram at Figure 3 and Figure 4 shows

the main program. Mobile robot used three infrared

sensors to detect maze wall at right, left and front

position. Driver L293D controled the direction of rotation

and speed of a DC motor [12]. Rotary encoder is used to

calculate the rotation of the right and left wheels. Push

button was used to instruct the robot to start. The system

output would drive two DC motors that served as

actuators to move the right and left wheels, so that the

robot can move forward, spun to the right, turned to the

left, and rotates reverse [13]. ATmega324 microcontroller

serves to process the signal-sinyalinput, perform

processing algorithms, and generates output signals to

control a robot [9]. Information about all actions that had

been taken by the robot, would be displayed on the LCD

16 x 2 at Figure 5.

Figure 3. Block Diagram of Mobile Robot.

Figure 4. Flowchart of the main program.

Figure 5. Mobile Robot from above view.

Figure 6. Design of the maze.

The maze designed for the robot to solve is of the size of
5×5 cells as shown in Figure 6. The actual maze
constructed, as shown in Figure 7, has a physical size of
about 1.32 m

2
. The maze was designed so that it will have

two paths in order for it to be solved. One of the paths is
longer than the other. The robot (Figure 2) must decide
which one of the paths is shorter and solve the maze
through that path.

Figure 7. The maze.

IV. ALGORITHM

Choosing an algorithm for the maze robot is critical in
solving the maze. In this exercise, flood-fill algorithm
was chosen to solve the maze due to its balance in
efficiency and complexity.

Mapping the maze which has size of 5x5 cells is
accomplished by using two-dimensional memory array
with a size of 5x5. Artificial intelligence program
requires two memory arrays 5x5. The first memory array
is used to store information in each cell walls of the
maze. The second array of memory function is used to
store the cell value information in each cell. The position
of the robot in the program expressed by the coordinates
(row, column). The movement of the robot in the array is
done to position the robot as in Figure 8.

If the robot moves one cell to the south, then the
coordinates of the line increases 1. If the robot moves one
cell to the West, then the coordinates of the column will

be reduced by 1. If the robot moves one cell to the North,
then the coordinates of the line will be reduced by 1. If
the robot move one cell to the East, the coordinates of the
column will increase 1. The initial conditions of the
robot, already has information about the initial position,
the initial orientation, the size of the maze, and the
existence of the outer walls of the maze.

Figure 8. Array of Robot Movement

There are four main steps in the algorithm; wall data

updates, cell value updates, the smallest neigbour cell

calculation, and moving to the smallest neighbour cell.

4.1 Wall data update

If robot decides where it wants to move to, it will check if

it is surrounded by any walls in any of the three

directions: front, right nad left. The robot will read the

distance of any obstacle at each direction and check if the

distance in each is more than 20 cm. The ones that exceed

20 cm are updated as “wall” on their respective side. It

shows by the flowchart in Figure 9. Robot also needs to

know which direction it is facing. There are four

orientations for the robot: north, south, east or west, as

shown in table 1. Initial orientation was set at start and

the robot keeps tracking of any changes.

Table 1. Robot detection when it detect wall.

Robot

Orientation

Detection Sensor

Right Front Left

South West wall South wall East wall

West North wall West wall South wall

North East wall North wall West wall

East South wall East wall North wall

4.2 Cell value update

Update value of the cell (restocked every cell with the

new value) serves to adjust the value in each cell of the

position of the wall that has been updated by the robot.

The value stored in the array 2 dimensions of memory

cell with size 5x5. Update the value of the cell is done by

using the flood fill algorithm.

Figure 9. Flowchart for updating wall location at each cell

Update cell values subroutine works by resetting the

values of the previous cell, then it will give a value of 255

in each cell, then fill in the values of these cells gradually,

start value (level) 0 to all the cells filled grades. The cells

that will be updated is the current_level array while

neighboring cells will be inserted into the next_level

array. After value fill in process is completed, then the

cells are in next_level array will be moved to an array of

fill in current_level to do next value. The update process

will be complete if the value of the cell array next_level

empty.

4.3 The smallest neigbour cell calculation

Subroutine specify the smallest neighboring cells

function to search for a neighboring cell which has the

smallest value. The smallest neighboring cell search is

done on a priority basis, so that if there is more than one

neighboring cell that has the smallest value, then the

selected cells are cells that have a higher priority.

Wall data update

Read front, right and

left sensor

Front

sensor <

20cm

Update wall

front data

Right

sensor <

20cm

Update wall

Right data

Left

sensor <

20cm

Update wall

Left data

Return

Yes

No

Yes

No

Yes

No

Prioritization is based on the movement of the robot is

moving forward one cell has the first priority, move one

cell to the right has a second priority, move one cell to the

left has a third priority, and moving backward one cell

has the fourth priority. For example, if the robot were

facing the South, the South cells have a first priority, the

second priority of the West has a cell, the cell has a third

priority East and North cells have fourth priority as in

Figure 10. If the robot was facing the East, the East cells

have a first priority, South cells have second priority, the

North has a third priority cells, and cells West has fourth

priority.

Figure 10. Priority of Neighbour cell

4.4. Moving to the smallest neighbour cell

Subroutine moves to the smallest neighboring cells

function to move the robot towards neighboring cells

which have the smallest value, after the robot finds the

neighboring cells. To perform movement to the cell, the

robot should know the location of the cell. Furthermore,

the robot will move to the cells by observing the

orientation. For example, if the South cell is the smallest

cell and orientation of the robot was facing west, then to

move to the position of the cell, the robot must be turning

left, then move forward as in Figure 11. If the South cell

is the smallest cell and robot orientation was facing East,

then to move to the position of the cell, the robot must be

spinning right, then move forward.

Figure 11. Moving to smallest neighbour cell.

V. RESULTS AND DISCUSSION

In this experiments, Robot will learn to find the

shortest path from the starting cell (line 4, column 0) to

the destination cell (row 2, column 2) and then back again

to the initial cell. The initial orientation of the robot is

facing the North.

The maze simulator program aims to facilitate the

observation on how the flood fill algorithm. Figure 12 is a

view maze simulator program. Maze blue wall is a wall

that position known to the robot. While the maze walls

are colored orange wall position is not known by the

robot.

Figure 12. Simulation search path to cell (2,2)

Robot will perform a search of the initial cell lines (4.0)

to the destination cell (2, 2). Flood fill algorithm

simulation results when a search of the cell lines (4, 0) to

the cell (2, 2) are shown in Figure 12 to 22.

Figure 13. Simulation search path to cell (2,2)

Figure 14. Simulation search path to cell (2,2)

Figure 15. Simulation search path to cell (2,2)

Figure 16. Simulation search path to cell (2,2)

Figure 17. Simulation search path to cell (2,2)

Figure 18. Simulation search path to cell (2,2)

Figure 19. Simulation search path to cell (2,2)

Figure 20. Simulation search path to cell (2,2)

Figure 21. Simulation search path to cell (2,2)

Figure 22. Simulation search path to cell (2,2)

After robot run the search and update his wall data,

then it knows the shortest path to go to cell (2,2). It is

shown in table 2.

Table 2. First and second routes of robot experiment

 Routes Number

of steps

First
run

(4,0) (3,0)  (2,0)  (1,0)  (2,0)  (3,0)
 (3,1)  (3,2)  (3,3)  (2,3)  (2,2)

10

Return
home

(2,2)  (2,3)  (3,3)  (3,2)  (3,1)  (3,0)
 (4,0)

6

Second

run

(4,0) (3,0)  (3,1)  (3,2)  (3,3)  (2,3)

 (2,2)

6

Wall map data will be updated when the robot go to cells

that have not been visited before. Flood fill algorithm will

update the value of the cell based on the position of the

wall that has been mapped out by the robot.

Robots always perform movement to neighboring cells

which have the smallest value. If there is more than one

neighboring cell that has the smallest value, then the cell

selection will be done on a priority basis. Go foward has

first priority, turn to the right has the second priority, turn

to the left has a third priority, and move backwards has a

fourth priority.

The value is changed in accordance with the position of

the wall that has been mapped out by the robot. Cell

values represent the cell distance to the destination cell.

VI. CONCLUSION

This design and implementation of the robot is a study
about the ability to equip a small mobile robot with the
ability to learn how to navigate in unknown environment
based on its own decisions. The flood-fill algorithm was
found to be an effective tool for maze-solving of a
moderate size. For the robot to make its decisions it relies
on inputs from several sensors, namely the ultrasonic
range sensors and wheel rotation decoders.

The robot has successfully able to map the maze in the
first, return home and second runs. In its second run it
reaches its target cell through the shortest route it has

mapped in the previous first run and return home.

Future works may include to studying the robot’s maze
solving capability in a bigger and more complex maze. In
order to improve the quality in wall detection, better
object sensor, such as a laser range finder, is needed. It is
much more costly but it have ability to scan its
surrounding at a wirde angle plane, so it will help a lot in
search ability at bigger and more complex maze.

REFERENCES

[1] Bekti, Samudra Harapan. Pencarian Shortest Path Dinamik

dengan Algoritma Bellman Based Flood Fill dan
Implementasinya pada Robot Micromouse: Institut Teknologi

Bandung. 2009. 1

[2] Elshamarka, Ibrahim danAbu Bakar Sayuti Saman. Design and
Implementation of a Robot for Maze-Solving using Flood-Fill

Algorithm: Universiti Teknologi Petronas. 2012. 2

[3] Elshamarka, I. And A.B.S. Saman, “Design and
Implementation of a Robot for Maze-Solving Using Flood-Fill

Algorithm”, in International Journal of Computer Applications
Volume 56-No.5, pp.8-13, October 2012. 3

[4] Ansari, A., M.A. Sayyed, K. Ratlamwala and P. Shaikh, “An

Optimized Hybrid Approach For Path Finding”, in
International Journal in Foundations of Computer Science &

Technology (IJFCST), Vol. 5 No. 2, pp. 47-58, March 2015. 4

[5] Sharma, K. And C. Munshi, “A Comprehensive and
Comparative Study of Maze-Solving Techniques by

Implementing Graph Theory”, in IOSR Journal of Computer

Engineering, Vol. 17, Issue 1, Ver. IV, pp. 24-29, 2015. 5
[6] Sreekanth, R.K., “Artificial Intelligence Algorithms”, IOSR

Journal of Computer Engineering (IOSRJCE), volume 6, issue

3 September-October, 2012. 6
[7] Cook, David. Intermediate Robot Building. New York: Apress.

2010. 7

[8] Magnusson, Per. Design of an H-Bridge.
http://axotron.se/index_en.php?page=34, dikunjungi Juni 2014.

8

[9] Mazidi, Muhammad Ali, Sarmad Niami, dan Sepehr Niami.
The AVR Microcontroller and Embedded System. New Jersey:

Prentice Hall. 2011. 9

[10] Braunl, Thomas. Embedded Robotics. Berlin: Springer. 2006.
10

[11] Rizqiawan, Arwindra. Sekilas Rotary Encoder.

http://konversi.wordpress.com/ 2009/06/12/ sekilas-rotary-
encoder/, Juni 2014. 11

[12] Scherz, Paul.Practical Electronics for Inventors. New York:

McGraw-Hill. 2000. 12
[13] Lucas, G. W. A Tutorial and Elementary Trajectory Model for

the Differential Steering System of Robot Wheel Actuators.

http://rossum.sourceforge.net/ papers/DiffSteer/, Juni 2014. 13

Review Form of ICAMD 2016

January 13-14, 2016. Singapore

http://www.icamd.org/

Evaluation:

 Poor Fair Good Very Good Outstanding

Originality ○ ○ √ ○ ○

Innovation ○ √ ○ ○ ○

technical merit ○ ○ √ ○ ○

applicability ○ ○ ○ √ ○

Presentation and English ○ ○ ○ √ ○

Match to Conference Topic ○ ○ ○ √ ○

Recommendation to Editors

 Strongly Reject Reject Marginally Accept Accept Strong Accept

Recommendation ○ ○ ○ √ ○

Paper ID : D05

Paper Title : Design and Implementation of a Path Finding Robot using Flood Fill Algorithm

I. REVIEW

A. Suitability of topic

1. Is the topic appropriate for publication?

√ Yes □ Perhaps □ No

2. Is the topic important to colleagues working in the field?

√ Yes □ Perhaps □ No

B. Contents

1. Is the paper technically sound? If no, why not?

√ Yes □ No

http://www.icamd.org/

2. Is the coverage of the topic sufficiently comprehensive and balanced?

√ Yes

□ Important Information is missing or superficially treated.

□ Treatment somewhat unbalanced, but not seriously so.

□ Certain parts significantly overstressed.

3. How would you describe the technical depth of the paper?

□ Superficial

□ Suitable for the non-specialist

√ Appropriate for the generally knowledgeable individual working in the field

□ Suitable only for an expert

4. How would you rate the technical novelty of the paper?

□ Novel √ Somewhat Novel □ Not Novel

C. Presentation

1. How would you rate the overall organization of the paper?

√ Satisfactory □ Could be improved □ Poor

2. Are the title and abstract satisfactory?

√Yes □ No

3. Is the length of the paper appropriate? If not, recommend how the length of the paper should be amended,

including a possible target length for the final manuscript

√ Yes □ No

4. Are symbols, terms, and concepts adequately defined?

√ Yes □ Not always □ No

5. How do you rate the English usage?

□ Satisfactory √ Needs improvment □ Poor

6. How do you rate the list of references?

√ Satisfactory □ Unsatisfactory

D. Overall rating (circle appropriate rating)

1. How would you rate the technical contents of the paper?

□ Excellent √ Good □ Fair □ Poor

2. How would you rate the novelty of the paper?

□ Highly Novel □ Sufficiently Novel √ Slightly Novel □ Not Novel

3. How would you rate the "literary" presentation of the paper?

√Totally Accessible □Mostly Accessible □Partially Accessible □Inaccessible

4. How would you rate the appropriateness of this paper for publication?

□ Excellent Match √Good Match □ Weak Match □ Poor Match

II. RECOMMENDATION

□ Publish unaltered

√ Publish In Minor, Required Changes

□ Review Again After Major Changes

□ Reject (Paper Is Not Of Sufficient Quality Or Novelty To Be Published In This Journal)

□ Reject (A Major Rewrite Is Required; Encourage Resubmission)

□ Reject (Paper Is Seriously Flawed; Do Not Encourage Resubmission.)

III. COMMENTS

Please state the reason you gave the recommendation above. Please give the author specific guidance

regarding revisions, differentiating between optional and mandatory changes.

This paper, to solve a maze environment, designed a path finding robot using flood fill algorithm. The detection

technology was based on ultrasonic range-finders. Authors also performed several experiments showing that the

robot can explore and map of maze and find the shortest path to destination point with a success rate of 70%. It can

be of interest to people involved in Autonomous robot study. Some minor improvement on this paper can be made

based on the following:

1. Make it clear the time-cost of the robot on the condition of finding the shortest path or reaching the destination.

2. As you mentioned the flood fill algorithm requires high cost updates, and then what is the better methodology to

solve this problem.

3. Please check carefully about your vocabularies and grammars.

4. Pls make sure the format of your paper is totally matched with the journal template.

Attention; Official language is English in paper writing and presenting

American Society for Research

1/ 2

Notification of Acceptance

2016 International Conference on Advanced Mechanical Design

(ICAMD2016)

Singapore, January 13-14, 2016.

http://www.icamd.org/

Dear Semuil Tjiharjadi and Erwin Setiawan,

We are pleased to inform you that the review processes for 2016 International Conference on Advanced in

Mechanical Design (ICAMD 2016) has been completed. The conference received submissions from nearly

7 different countries and regions, which were reviewed by international experts, and about 10 papers have

been selected for presentation and publication. Based on the recommendations of the reviewers and the

Technical Program Committees, we are pleased to inform you that your paper identified above has been

accepted for publication and oral presentation. You are cordially invited to present the paper orally at

ICAMD 2016 to be held during January 13-14, 2016 in Singapore at Quality Hotel. (Click)

Paper ID: D05

Paper Title: Design and Implementation of a Path Finding Robot using Flood Fill Algorithm

After reviewing, your above paper will be published in Conference Proceedings (ISSN: 2261-236X), which

will be indexed by SCOPUS, Ei Compendex and other academic databases; or accepted papers will be

recommended to be published in the IJMERR International Journal of Mechanical Engineering and

Robotics Research (ISSN: 2278-0149) which will be indexed by Index Corpernicus, ProQuest, UDL,

Google Scholar, Open J-Gate; etc.

Publication in both Conference Proceedings and Journal:

Firstly, papers will undergo the peer review system of the conference committee, and accepted papers will be

published into Conference Proceedings after registration. Then the authors are supposed to add at least 30%

new content and resubmit the papers to icamd@asr.org within 30 days after the conference for further peer

review to get published by IJMERR, and no extra fee will be charged for publishing if accepted.

ICAMD Organizing Committees

http://ww.icamd.org/

 Singapore

http://www.icamd.org/
http://www.icamd.org/venue.html
http://www.ijmerr.com/
http://www.ijmerr.com/
mailto:icamd@asr.org
http://ww.icamd.org/

American Society for Research

2/ 2

Registration Instruction

So in order to register the conference and have your paper included in the proceeding

successfully, you must finish following SIX steps

1. Revise your paper according to the Review Comments carefully. (Attached)

2. Format your paper according to the Template carefully.

IJMERR-Template: http://www.etpub.com/down/Journal-template.doc;

Conference Proceeding: http://www.icamd.org/prods_template_A4.doc.

3. Download and complete the Registration Form.

 http://www.icamd.org/reg.docx

4. Finish the payment of Registration fee. (The information can be found in the Registration form)

5. Finish the Copyright Form.

 IJMERR: http://www.ijmerr.com/uploadfile/2015/0326/20150326112301988.pdf

Conference Proceeding: http://www.matec-conferences.org/doc_journal/copyright/matecconf_copyright.pdf

6. Send your final papers (both .doc and .pdf format), filled registration form (.doc format), copyright

form (.jpg format) and the scanned payment (.jpg format) to us at icamd@asr.org. (Before December

20, 2015)

*If you pay by on-line Credit Card Payment, please fill your confirmation number in the registration

form after paying.

*If you pay by bank transfer, please scan the payment slip as the payment proof for checking.

Maybe some unforeseeable events prevents a few authors from attending the event to present their papers,

so if you and your co-author(s) could not attend ICAMD 2016 to present your paper for some reasons,

please inform us. And we will send you the official receipt of registration fee and journal after ICAMD

2016 conference free of charge.

Please strictly adhere to the format specified in the conference template while preparing your final paper. If

you have any problem in preparing the final paper, please feel free to contact us via icamd@asr.org. For

the most updated information on the conference, please check the conference website at

http://www.icamd.org/. The Final Conference Program will be available at the website around December,

2015.

Finally, we would like to further extend our congratulations to you and we are looking forward to meeting

you in Singapore.

http://www.etpub.com/down/Journal-template.doc
http://www.icamd.org/prods_template_A4.doc
http://www.icamd.org/reg.docx
http://www.ijmerr.com/uploadfile/2015/0326/20150326112301988.pdf
http://www.matec-conferences.org/doc_journal/copyright/matecconf_copyright.pdf
mailto:icamd@asr.org
mailto:icamd@asr.org
http://www.icamd.org/

Design and Implementation of a Path Finding

Robot using Flood Fill Algorithm

Semuil Tjiharjadi
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia

Email: semuiltj@gmail.com

Erwin Setiawan
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia

Abstract—Autonomous robot is a robot that can perform

certain work independently without the human help.

Autonomous of navigation is one of the capabilities of

autonomous robot to move from one point to another.

Implementation of Autonomous robot navigation to explore

an unknown environment, requires the robot to explore and

map the environment and seek the path to reach a certain

point.

Path Finding Robot is a mobile robot which moves using

wheels with differential steering type. This path finding

robot is designed to solve a maze environment that has a size

of 5 x 5 cells and it is based on the flood-fill algorithm.

Detection of walls and opening in the maze were done using

ultrasonic range-finders. The robot was able to learn the

maze, find all possible routes and solve it using the shortest

one. This robot also use wall follower algorithms to correct

the position of the robot against the side wall maze, so the

robot can move straight. After several experiments, the

robot can explore and map of maze and find the shortest

path to destination point with a success rate of 70%.

Index Terms—flood fill algorithm, path finding, maze, wall

folower algorithm

I. INTRODUCTION

Autonomous navigation is an important feature of

mobile robotics. It allows the robot to independently

move from a place to target location without a tele-

operator. There are several techniques and algorithms

have been developed for this purpose, each of them

having their own merits and shortcomings [1-5].

Path Finding robot is using a structured technique and

controlled implementation of autonomous navigation

which is sometimes preferable in studying specific aspect

of the problem [2]. This paper discusses an

implementation of a small size mobile robot designed to

solve a maze based on the flood-fill algorithm.

The path finding task is where robots try to solve a

maze in the least time possible and using the most

efficient way. A robot must navigate from a corner of a

maze to the center as quickly as possible. It knows where

the starting location is and where the target location is,

but it does not have any information about the obstacles

between the two. The maze is normally composed of 256

square cells, where the size each cell is about 18 cm ×

18cm. The cells are arranged to form a 16 row × 16

column maze. The starting location of the maze is on one

of the cells at its corners, and the target location is formed

by four cells at the center of the maze. Only one cell is

opened for entrance. The requirements of maze walls and

support platform are provided in the IEEE standard .

II. LITERATURE REVIEW

A. Breadth First Search

Breadth First Search uses First In First Out queue. It is

used when space is not a problem and few solutions may

exist and at least one has shortest path. It works poorly

when all solutions have long path length or there is some

heuristic function exists. It has large space complexity

[6].

B. Depth First Search

Depth First Search uses Last In First out queue and are

recursive in algorithm. It is simple to implement. But

major problem with Depth First Search is it requires large

computing power, for small increase in map size, runtime

increases exponentially [6].

C. Heuristic Function

Heuristic function maps problem state descriptor to a

number which represents degree of desirability. Heuristic

function has different errors in different states. It plays

vital role in optimization problem [6].

D. Genetic Algorithm

Genetic algorithm is used to find approximate optimal

solution. It is inspired by evolutionary biology such as

inheritance, mutation, crossover and selection [7].

Advantages of this algorithm are it solves problem with

multiple solutions, it is very useful when input is very

large. Disadvantages of Genetic algorithm are certain

optimization problems cannot be solved due to poorly

known fitness function, it cannot assure constant

optimization response times, in Genetic algorithm the

entire population is improving, but this could not be true

for an individual within this population [6].

E. A* algorithm

A*combines feature of uniform-cost search and

heuristic search. It is BFS in which cost associated with

each node is calculated using admissible heuristic [1].

For graph traversal, it follows path with lowest known

heuristic cost. The time complexity of this algorithm

depends on heuristic used. Since it is Breadth First

Search drawback of A* is large memory requirement

because entire open-list is to be saved [6].

F. Flood Fill Algorithm

Robot maze problems are an important field of

robotics and it is based on decision making algorithm [8].

It requires complete analysis of workspace or maze and

proper planning [9]. Flood fill algorithm and modified

flood fill are used widely for robot maze problem [10].

Flood fill algorithm assigns the value to each node which

is represents the distance of that node from centre [6].

The flood fill algorithm floods the maze when mouse

reaches new cell or node. Thus it requires high cost

updates [3]. These flooding are avoided in modified flood

fill [1].

III. HARDWARE DESIGN

Mobile robot base construction was made using

miniQ 2WD robot chassis. It was a product from

DFRobot as shown in Figure 1. In the product consists of

1 robot chassis with a diameter of 122mm. 2 wheels with

a diameter of 42mm, 1 piece ball caster and 2 DC motors

which have been furnished by the gearbox as well as two

pieces of the DC motor bracket to pair on the chassis.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile robot from side view.

In this maze solving robot had 2 pieces rotary encoder.

Rotary encoder used is miniQ robot chassis encoder

which is also a product from DFRobot. Rotary encoder is

compatible with 2WD products miniQ robot chassis.

Rotary encoder attached to the DC motor to calculate the

rotation of the wheel as shown in Figure 2. [11]

The whole hardware system of this mobile robot can

be seen in the block diagram at Figure 3 and Figure 4

shows the main program. Mobile robot used three

infrared sensors to detect maze wall at right, left and front

position. Driver L293D controled the direction of rotation

and speed of a DC motor [12]. Rotary encoder is used to

calculate the rotation of the right and left wheels. Push

button was used to instruct the robot to start. The system

output would drive two DC motors that served as

actuators to move the right and left wheels, so that the

robot can move forward, spun to the right, turned to the

left, and rotates reverse [13]. ATmega324 microcontroller

serves to process the signal-sinyalinput, perform

processing algorithms, and generates output signals to

control a robot [9]. Information about all actions that had

been taken by the robot, would be displayed on the LCD

16 x 2 at Figure 5.

Figure 3. Block diagram of mobile robot.

The maze designed for the robot to solve is of the size

of 5×5 cells as shown in Figure 6. The actual maze

constructed, as shown in Figure 7, has a physical size of

about 1.32 m2. The maze was designed so that it will

have two paths in order for it to be solved. One of the

paths is longer than the other. The robot (Figure 2) must

decide which one of the paths is shorter and solve the

maze through that path.

IV. ALGORITHM

Choosing an algorithm for the maze robot is critical in

solving the maze. In this exercise, flood-fill algorithm

was chosen to solve the maze due to its balance in

efficiency and complexity.

Figure 4. Flowchart of the main program.

Figure 5. Mobile robot from above view.

Figure 6. Design of the maze.

Figure 7. The maze.

Mapping the maze which has size of 5x5 cells is

accomplished by using two-dimensional memory array

with a size of 5x5. Artificial intelligence program

requires two memory arrays 5x5. The first memory array

is used to store information in each cell walls of the

maze. The second array of memory function is used to

store the cell value information in each cell. The position

of the robot in the program expressed by the coordinates

(row, column). The movement of the robot in the array is

done to position the robot as in Figure 8.

If the robot moves one cell to the south, then the

coordinates of the line increases 1. If the robot moves one

cell to the West, then the coordinates of the column will

be reduced by 1. If the robot moves one cell to the North,

then the coordinates of the line will be reduced by 1. If

the robot move one cell to the East, the coordinates of the

column will increase 1. The initial conditions of the

robot, already has information about the initial position,

the initial orientation, the size of the maze, and the

existence of the outer walls of the maze.

Figure 8. Array of robot movement

There are four main steps in the algorithm; wall data

updates, cell value updates, the smallest neigbour cell

calculation, and moving to the smallest neighbour cell.

A. Wall Data Update

If robot decides where it wants to move to, it will

check if it is surrounded by any walls in any of the three

directions: front, right nad left. The robot will read the

distance of any obstacle at each direction and check if the

distance in each is more than 20 cm. The ones that exceed

20 cm are updated as “wall” on their respective side. It

shows by the flowchart in Figure 9. Robot also needs to

know which direction it is facing. There are four

orientations for the robot: north, south, east or west, as

shown in table 1. Initial orientation was set at start and

the robot keeps tracking of any changes.

TABLE I. ROBOT DETECTION WHEN IT DETECT WALL.

Robot

Orientation

Detection Sensor

Right Front Left

South West wall South wall East wall

West North wall West wall South wall

North East wall North wall West wall

East South wall East wall North wall

B. Cell Value Update

Update value of the cell (restocked every cell with the

new value) serves to adjust the value in each cell of the

position of the wall that has been updated by the robot.

The value stored in the array 2 dimensions of memory

cell with size 5x5. Update the value of the cell is done by

using the flood fill algorithm.

Update cell values subroutine works by resetting the

values of the previous cell, then it will give a value of 255

in each cell, then fill in the values of these cells gradually,

start value (level) 0 to all the cells filled grades. The cells

that will be updated is the current_level array while

neighboring cells will be inserted into the next_level

array. After value fill in process is completed, then the

cells are in next_level array will be moved to an array of

fill in current_level to do next value. The update process

will be complete if the value of the cell array next_level

empty.

C. The Smallest Neigbour Cell Calculation

Subroutine specify the smallest neighboring cells
function to search for a neighboring cell which has the
smallest value. The smallest neighboring cell search is
done on a priority basis, so that if there is more than one
neighboring cell that has the smallest value, then the
selected cells are cells that have a higher priority.

Prioritization is based on the movement of the robot is

moving forward one cell has the first priority, move one

cell to the right has a second priority, move one cell to the

left has a third priority, and moving backward one cell

has the fourth priority. For example, if the robot were

facing the South, the South cells have a first priority, the

second priority of the West has a cell, the cell has a third

priority East and North cells have fourth priority as in

Figure 10. If the robot was facing the East, the East cells

have a first priority, South cells have second priority, the

North has a third priority cells, and cells West has fourth

priority.

Figure 9. Flowchart for updating wall location at each cell

Figure 10. Priority of Neighbour cell

D. Moving to the Smallest Neighbour Cell

Subroutine moves to the smallest neighboring cells

function to move the robot towards neighboring cells

which have the smallest value, after the robot finds the

neighboring cells. To perform movement to the cell, the

robot should know the location of the cell. Furthermore,

the robot will move to the cells by observing the

orientation. For example, if the South cell is the smallest

cell and orientation of the robot was facing west, then to

move to the position of the cell, the robot must be turning

Wall data update

Read front, right and

left sensor

Front

sensor <

20cm

Update wall

front data

Right

sensor <

20cm

Update wall

Right data

Left

sensor <

20cm

Update wall

Left data

Return

Yes

No

Yes

No

Yes

No

left, then move forward as in Figure 11. If the South cell

is the smallest cell and robot orientation was facing East,

then to move to the position of the cell, the robot must be

spinning right, then move forward.

Figure 11. Moving to smallest neighbour cell.

I. RESULTS AND DISCUSSION

In this experiments, Robot will learn to find the

shortest path from the starting cell (line 4, column 0) to

the destination cell (row 2, column 2) and then back again

to the initial cell. The initial orientation of the robot is

facing the North.

The maze simulator program aims to facilitate the

observation on how the flood fill algorithm. Figure 12 is a

view maze simulator program. Maze blue wall is a wall

that position known to the robot. While the maze walls

are colored orange wall position is not known by the

robot.

Figure 12. Simulation search path to cell (2,2)

Robot will perform a search of the initial cell lines

(4.0) to the destination cell (2, 2). Flood fill algorithm

simulation results when a search of the cell lines (4, 0) to

the cell (2, 2) are shown in Figure 12 to 22.

Figure 13. Simulation search path to cell (2,2)

Figure 14. Simulation search path to cell (2,2)

Figure 15. Simulation search path to cell (2,2)

Figure 16. Simulation search path to cell (2,2)

Figure 17. Simulation search path to cell (2,2)

Figure 18. Simulation search path to cell (2,2)

Figure 19. Simulation search path to cell (2,2)

Figure 20. Simulation search path to cell (2,2)

Figure 21. Simulation search path to cell (2,2)

Figure 22. Simulation search path to cell (2,2)

After robot run the search and update his wall data,

then it knows the shortest path to go to cell (2,2). It is

shown in table 2.

TABLE II. FIRST AND SECOND ROUTES OF ROBOT

EXPERIMENT

 Routes Number

of steps

First
run

(4,0) →(3,0) → (2,0) → (1,0) → (2,0) → (3,0)
→ (3,1) → (3,2) → (3,3) → (2,3) → (2,2)

10

Return

home

(2,2) → (2,3) → (3,3) → (3,2) → (3,1) → (3,0)

→ (4,0)

6

Second
run

(4,0) →(3,0) → (3,1) → (3,2) → (3,3) → (2,3)
→ (2,2)

6

Wall map data will be updated when the robot go to

cells that have not been visited before. Flood fill

algorithm will update the value of the cell based on the

position of the wall that has been mapped out by the

robot.

Robots always perform movement to neighboring cells

which have the smallest value. If there is more than one

neighboring cell that has the smallest value, then the cell

selection will be done on a priority basis. Go foward has

first priority, turn to the right has the second priority, turn

to the left has a third priority, and move backwards has a

fourth priority.

The value is changed in accordance with the position

of the wall that has been mapped out by the robot. Cell

values represent the cell distance to the destination cell.

V. CONCLUSION

This design and implementation of the robot is a study

about the ability to equip a small mobile robot with the

ability to learn how to navigate in unknown environment

based on its own decisions. The flood-fill algorithm was

found to be an effective tool for maze-solving of a

moderate size. For the robot to make its decisions it relies

on inputs from several sensors, namely the ultrasonic

range sensors and wheel rotation decoders.

The robot has successfully able to map the maze in the

first, return home and second runs. In its second run it

reaches its target cell through the shortest route it has

mapped in the previous first run and return home.

Future works may include to studying the robot’s

maze solving capability in a bigger and more complex

maze. In order to improve the quality in wall detection,

better object sensor, such as a laser range finder, is

needed. It is much more costly but it have ability to scan

its surrounding at a wirde angle plane, so it will help a lot

in search ability at bigger and more complex maze.

REFERENCES

[1] Bekti, Samudra Harapan. Pencarian Shortest Path Dinamik
dengan Algoritma Bellman Based Flood Fill dan

Implementasinya pada Robot Micromouse: Institut Teknologi

Bandung. 2009. 1
[2] Elshamarka, Ibrahim danAbu Bakar Sayuti Saman. Design and

Implementation of a Robot for Maze-Solving using Flood-Fill

Algorithm: Universiti Teknologi Petronas. 2012. 2
[3] I. Elshamarka, And A. B. S. Saman, “Design and

Implementation of a Robot for Maze-Solving Using Flood-Fill

Algorithm”, in International Journal of Computer Applications
Volume 56-No.5, pp.8-13, October 2012. 3

[4] A. Ansari, M. A. Sayyed, K. Ratlamwala and P. Shaikh, “An

Optimized Hybrid Approach For Path Finding”, in

International Journal in Foundations of Computer Science &

Technology (IJFCST), Vol. 5 No. 2, pp. 47-58, March 2015. 4

[5] K. Sharma, And C. Munshi, “A Comprehensive and
Comparative Study of Maze-Solving Techniques by

Implementing Graph Theory”, in IOSR Journal of Computer

Engineering, Vol. 17, Issue 1, Ver. IV, pp. 24-29, 2015. 5
[6] R. K. Sreekanth, “Artificial Intelligence Algorithms”, IOSR

Journal of Computer Engineering (IOSRJCE), volume 6, issue

3 September-October, 2012. 6
[7] Cook, David. Intermediate Robot Building. New York: Apress.

2010. 7

[8] Magnusson, Per. Design of an H-Bridge.
http://axotron.se/index_en.php?page=34, dikunjungi Juni 2014.

8

[9] Mazidi, Muhammad Ali, Sarmad Niami, dan Sepehr Niami.
The AVR Microcontroller and Embedded System. New Jersey:

Prentice Hall. 2011. 9

[10] Braunl, Thomas. Embedded Robotics. Berlin: Springer. 2006.
10

[11] Rizqiawan, Arwindra. Sekilas Rotary Encoder.

http://konversi.wordpress.com/ 2009/06/12/ sekilas-rotary-
encoder/, Juni 2014. 11

[12] Scherz, Paul.Practical Electronics for Inventors. New York:

McGraw-Hill. 2000. 12
[13] G. W. Lucas, A Tutorial and Elementary Trajectory Model for

the Differential Steering System of Robot Wheel Actuators.

http://rossum.sourceforge.net/ papers/DiffSteer/, Juni 2014. 13

