No	Tanggal	Keterangan
1	21 Desember 2023	Penulis korespondensi mengirimkan naskah publikasi ke
		organizing committee.
2	25 Desember 2023	Redaksi memberikan naskah, dan meminta penulis
		melengkapi form Authors Information.
		Penulis mengirimkan form Authors Information.
3	16 Januari 2024	Redaksi memberikan informasi naskah lolos preliminary
		review.
4	25 Januari 2024	Naskah dalam proses review.
5	4 Februari 2024	Naskah dinyatakan Diterima dengan Revisi.
6	26 Februari 2024	Penulis bertanya proses pembayaran dan revisi.
	26 Februari 2024	Conference Committee menjelaskan proses pembayaran dan
		revisi.
7	28 Februari 2024	Penulis menyatakan akan presentasi secara daring.
8	29 Februari 2024	Conference Committee menjelaskan proses pembayaran.
9	1 Maret 2024	Penulis menyelesaikan kewajiban pembayaran dan
		mengirimkan revisi naskah.
10	3 Maret 2024	Conference Committee mengirimkan bukti pembayaran.
11	15 Maret 2024	Conference Committee mengirimkan informasi conference
		program.
		Conference Committee mengundang penulis untuk menjadi
		Session Chair of Session 7.
		Penulis konfirmasi kesiapan presentasi pada Session 7.
12	19 Maret 2024	Conference Committee mengirimkan reminder terkait
		conference program.
13	26 Maret 2024	Penulis menanyakan proses kelanjutan publikasi dalam
		bentuk Proceeding Book.
14	27 Maret 2024	Conference Committee memberikan informasi proses
		kelanjutan Proceeding Book
15	28 April 2024	Conference Committee memberikan informasi Revisi untuk
		Naskah.
16	29 April 2024	Penulis mengirimkan revisi perbaikan naskah
17	28 Juli 2024	Redaksi Lecturer Notes In Civil Engineering memberitahukan
		bahwa proses final proof telah selesai dilakukan oleh penulis
		dan editor.
18	16 September 2024	Conference Committee mengirimkan informasi kepada
		penulis untuk memeriksa final proof naskah.
19	1 Oktober 2024	Naskah sudah terbit pada Lecturer Notes in Civil
		Engineering, prosiding terindeks SCOPUS.

Thank you for your support to ICOCE 2024 !

Your submission has been received by the system. The conference specialist will check the submission and send you feedback within 3 working days. Please check your email later. If you have any question, please contact the conference specialist for help.

< >

8 C

☺ ← :

Best wishes

iConf Conference Management System

This is an auto message from iConf conference system, please do not reply.

Submission ConfirmationXJ0041 🔉 🔤		×	¢	Z
ICOCE <icoce@etpub.com></icoce@etpub.com>	(3	¢	:

Dear Yosafat Aji Pranata, Novi, Deni Setiawan, Vivi Arisandhy, Hendry Wong, Sof-hie Angela Hagiyanto,

Thank you for your interests to our conference ICOCE 2024. Your submission has been received. The paper title is Shear Strength of Red Meranti (Shorea spp.) Timber at An Angle to The Grain and given Paper ID is XJ0041.

Your paper will enter the review process of the conference committee and you'll be informed of the final review result around January 25th, 2024. Please fill in the attached author information form and send it back to me in three days.

Have a nice day!

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

paper statusXJ0041 🔉 Inbox ×				¢	Ø
ICOCE <icoce@etpub.com> to me, novi, deni.setiawan, vivi.arisandhy, hendry.w, 2021002 ▼</icoce@etpub.com>	Tue, Jan 16, 2024, 3:25 PM	☆	٢	¢	÷

Dear Yosafat Aji Pranata, Novi, Deni Setiawan, Vivi Arisandhy, Hendry Wong, Sof-hie Angela Hagiyanto,

I'm writing to inform you that your paper has passed the preliminary review and will enter the further round review. Please wait for my notification around January 25th, 2024.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

paper status--XJ0041 > Inbox × A 2 Thu, Jan 25, 2024, 9:47 PM ICOCE <icoce@etpub.com> 3 : to me, novi, deni.setiawan, vivi.arisandhy, hendry.w, 2021002 👻 Dear Yosafat Aji Pranata, Novi, Deni Setiawan, Vivi Arisandhy, Hendry Wong, Sof-hie Angela Hagiyanto, Your paper XJ0041 is still in the process of review and it will take another several days. Please wait for my notification around February 5. Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

Notification of ICOCE2024--XJ0041 > Inbox ×

ICOCE <icoce@etpub.com>

Z © Sun, Feb 4, 2024, 10:12 PM ☆ ٢ 5 :

A

to me, novi, deni.setiawan, vivi.arisandhy, hendry.w, 2021002 💌

Dear Yosafat Aji Pranata, Novi, Deni Setiawan, Vivi Arisandhy, Hendry Wong, Sof-hie Angela Hagiyanto,

Congratulations!Thanks very much for your concern. ICOCE 2024 reviewing procedure of your paper has finished.

We are glad to tell you that your paper (Paper ID: XJ0041) entitled in "Shear Strength of Red Meranti (Shorea spp.) Timber at An Angle to The Grain" is accepted for presentation with publication by the conference committee.

Attachment is the Notification of Acceptance. Please finish the registration as soon as possible. (Registration deadline: February 25, 2024)

We are waiting for your attendance! If you have any question, please don't hesitate to contact me.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

yosafat ap <yosafat.ap@gmail.com> to ICOCE 👻 ear ICOCE 2024 Organizing Committee

٢

: 5

Mon, Feb 26, 2024, 6:05 AM 🛛 🕁

Let me know how to complete Registration and Payment for my papers (Paper ID: XJ0042 and XJ0041).

Thank you. Authors of Paper ID: XJ0042 and XJ0041. •••

Dear Yosafat Aji Pranata,

Please finish the registration and payment through http://confsys.iconf.org/register/icoce2024.

You will present for the 2 papers?Do you plan to attend ICOCE 2024 virtually or physically?

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

发件人: yosafat ap <<u>yosafat.ap@gmail.com</u>> 发送日期: 2024-02-26 07:05:44 收件人: ICOCE <<u>icoce@etpub.com</u>> 主题: Re: Notification of ICOCE2024--XJ0041

yosafat ap <yosafat.ap@gmail.com> to ICOCE ▼

Dear ICOCE committee

Thank you for your information, i will complete the registration as soon as possible. Is it mean that i must register for 2 (two) papers sir?

Let me present for the 2 papers virtually (online), Sir/Madam. Thank you.

Regards, Yosafat First and Corresponding Author Paper ID: XJ0042 and XJ0041

ICOCE <icoce@etpub.com> to me

Dear Yosafat,

Yes, you need to register for 2 papers if you want to publish 2 papers.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

发件人: yosafat ap <<u>yosafat.ap@gmail.com</u>> 发送日期: 2024-02-28 12:00:08 收件人: ICOCE <<u>icoce@etpub.com</u>> 主题: Re: Re: Notification of ICOCE2024--XJ0041 Feb 28, 2024, 11:00 AM 🙀 🙂 🕤 🚦

Feb 29, 2024, 2:14 PM 🙀 🙂 🕤 🚦

у	to ICOCE Dear ICO Thank you	 CE committe u for your inf 	ormation, i will complete the registration for Pa			D) today.	I, 2024, 8:45 AM	☆	٢	Ļ	:
	Let me pr Thank you Regards,		2 papers virtually (online) and publish on Spri	nger book series:	Lecture Notes in Civil Engineer	ring.					
	Yosafat First and	Correspondi	ng Author Paper ID: XJ0042 and XJ0041								
у	to ICOCE	•	ap@gmail.com>			Mar 1	, 2024, 11:19 AM	☆	٢	¢	:
	l finished Civil Engi	neering).	and submit final papers (Paper ID XJ0042 and			hors, publication o	n Springer book	series:	Lecture	e Notes	in
			papers Virtually (Online Presentation) accordir								
	Thank yo	u.									
	Regards, Yosafat A First and		ng Author Paper ID: XJ0042 and XJ0041								
			•								
					Account	Overview My	Submission	My	Regis	tratior	1
				Have	made the submission in other w	rays and need to re	gister alone?	New	registe		
										Total:	2
	Registratio	on informati	ion needs to be submitted								
	Conferen	ce		Titl	e	Action					
	Registere	d informatio	on that has been submitted								
	Conferen	ce	Total	Paper ID	Payment	Final Paper					
	ICOCE 20)24	560.00 USD / 4010.00 CNY	XJ0042	Completed	Completed	🕼 Update				
	ICOCE 20	24	560.00 USD / 4010.00 CNY	XJ0041	S completed	C completed	🕼 Update				
ICO	CE 2024	42	Flexural Behavior of Indonesian Berua Ti Experimental Test and Numerical Analysi		Full Paper (Presentation and Publication)	Accept	ළ Upd	ate	ט פ	Vithdra	w
ICO	CE 2024	41	Shear Strength of Red Meranti (Shorea s An Angle to The Grain	pp.) Timber at	Full Paper (Presentation and Publication)	Accept	ල් Upd	late	ีย ง	Vithdra	w

	Re:Re: Re: successful regsitrationXJ0041&XJ0042 🔉 Inbox 🗙				₽	Ø
D	ICOCE <icoce@etpub.com> to me</icoce@etpub.com>	C Sun, Mar 3, 2024, 6:13 PM	☆	٢	←	:
-	Dear Yosafat Aji Pranata,					
	The registration for XJ0041 and XJ0042 are successful. Please find the attached receipts for you.					
	The detailed conference program will be finished and send to you in the middle of March, 2024.					
	Thanks & Regards,					
	Ms. Iris Tang					
	ICOCE 2024 Conference Secretary					
	Email: icoce@etpub.com Tel.: +86-18117808141					
	ICOCE Website: http://www.icoce.org/					

	Urgent Sincere session chair invitation from ICOCE 2024 🔉 🗈 🗠			×	¢	Ø
D	ICOCE <icoce@etpub.com> to me</icoce@etpub.com>	Fri, Mar 15, 2024, 3:21 PM	☆	٢	¢	:

Dear Assoc. Prof. Yosafat Aji Pranata,

Warm greetings from ICOCE 2024. Thank you for your great support to ICOCE 2024.

We are now preparing the detailed conference program. Your 2 online oral presentations XJ0041&XJ0042 will be in session 7 on March 24, 2024. Session 7 will be 10:00--12:00(GMT+8) on March 24, 2024.

We sincerely invite you to be the session chair of session 7. The topic of session 7 is Engineering Vibration and Mechanical Properties of Building Structures. May I know is it available for you to be the session chair of session 7? Hope to receive your early and positive reply.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

yosafat ap <yosafat.ap@gmail.com> to ICOCE ▼ Fri, Mar 15, 2024, 3:27 PM 🙀 🙂 🕤 🗄

Dear ICOCE 2024 Organizing Committee

Thank you for the information about online oral presentations. I will presents Papers ID XJ0041 and XJ0042 in Session 7, on March 24, 10:00-12:00 GMT+8. Let me know if the detailed conference program will be released, soon.

Thank you Sir/Madam.

Regards, Yosafat Aji Pranata Presenter of Papers ID XJ0041 and XJ0042

•••

Re:Re: conference program-- ICOCE 2024 > Inbox ×

ICOCE <icoce@etpub.com> to me 👻

Dear Yosafat Aji Pranata,

Thank you all the same. Please find the attached conference program for you.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

ICOCE2024 Conference program > Inbox ×

二日 19, 2024, 10:24 PM ☆ ② ∽ :

Dear ICOCE 2024 online participants,

ICOCE <icoce@etpub.com>

to me 👻

Warm greetings! There are some changes about online test time and online sessions time. Please find the attached detailed conference program. You can search your paper ID and find your session. Each presenter has 15 minutes in total, including 12 minutes' presentation and 3 minutes' Q&A.

We'll have an online test on March 22 and March 24 will be for online presentations.

Please join the online test on time on March 22(14:00-16:00 GMT+8) through the link <u>https://us02web.zoom.us/j/89086968540</u>.Room ID: 890 8696 8540 Online session 7 will be 13:30-16:15(GMT+8) on March 24. Online session 8 will be 16:30-18:30(GMT+8) on March 24,2024.

Please join the session 15-20 minutes in advance on March 24, 2024 through the link https://us02web.zoom.us/j/89086968540. Room ID: 890 8696 8540

We are looking forward to your participation.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/ 8 C

yosafat ap <yosafat.ap@gmail.com> to ICOCE 👻

Dear ICOCE 2024 Organizing Committee

Thank you for the conference and online session during March 22-24. Let me know when the proceeding book (Lecturer Notes in Civil Engineering, Springer) will be release?

Regards, Yosafat A.P. Paper ID XJ0041 and XJ0042 •••

Dear Yosafat A.P.,

Wed, Mar 27, 2024, 10:20 AM 🕁 🙂 🕤 🚦

Usually the accepted papers will be published 3-6 months after the conference. Please keep in touch in case the paper need to e modified.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

yosafat ap <yosafat.ap@gmail.com> to ICOCE 👻

Dear ICOCE 2024 Committee

Thank you for your information.

Regards, Author Paper ID XJ0041 and XJ0042 ...

← Reply

3 \rightarrow Forward

Mon, Apr 15, 2024, 9:54 AM 🔥 🙂 🕤 🚦

about paper publication--XJ0041 > Inbox ×

X & C

⊕ ← :

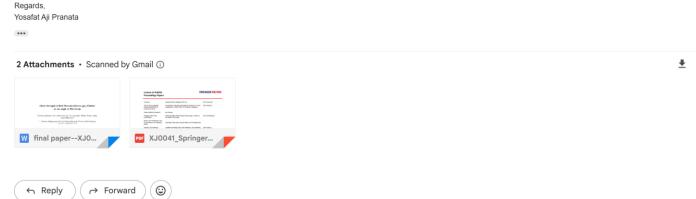
📼 Sun, Apr 28, 2024, 5:02 AM 🔥

ICOCE <icoce@etpub.com> to me, novi, deni.setiawan, vivi.arisandhy, hendry.w, 2021002 👻

Dear Yosafat Aji Pranata, Novi, Deni Setiawan, Vivi Arisandhy, Hendry Wong, Sof-hie Angela Hagiyanto,

I received the notification from publishing house that your paper need to be revised based on the attached version according to the following tips.

1. [14] is not mentioned in the paper, please kindly mention it.


2.reference should be mentioned in sequence. However, [10] is mentioned ahead of [8],[9], please kindly revise accordingly.

In addition, you need to fill in the copyright form and send it together with the modified paper to me in 2 days.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

yosafat ap <yosafat.ap@gmail.com>

to ICOCE

to ICOCE 👻

-

:

Tue, Jul 16, 2024, 8:23 AM 🛧 🙂 🥎 🕄

yosafat ap <<u>yosafat.ap@gmail.com</u>>

Tue, Mar 26, 7:24 AM

Dear ICOCE 2024 Organizing Committee

Thank you for the conference and online session during March 22-24. Let me know when the proceeding book (Lecturer Notes in Civil Engineering, Springer) will be release?

Regards, Yosafat A.P. Paper ID XJ0041 and XJ0042

ICOCE <icoce@etpub.com> to me • Tue, Jul 16, 2024, 10:53 PM 🕁 🙂 🕤 🚦

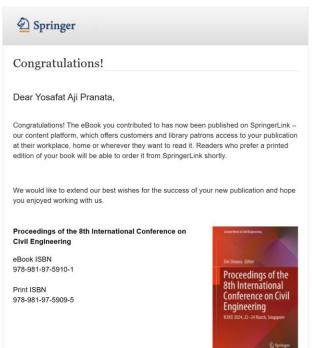
Dear Yosafat A.P., The papers of ICOCE 2024 are still in the process of publication. Please wait for the notification from publishing house.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/

978-981-97-5909-5, 551599_1_En, (Chapter 25), Lecture Notes in Civil Engineering, Vol. 539, Eric Strauss (Eds): Proceedings of the 8th International Conference on Civil Engineering D International Conference on Civil Eng

roofing@springernature.com	Sun, Jul 28, 2024, 1:56 AM
SPRINGER NATURE	
Dear Yosafat Aji Pranata,	
l am happy to inform you on behalf of <mark>Springer</mark> Nature that the proofs of your book chapter " Shear Strength of Red Meranti (Shorea Spp.) Timber at an Angle to the Grain" are now available.	
You can help us facilitate quick and accurate publication by using our e.Proofing system. The system will show you an HTML version of the chapter that you can correct online. In addition, you can view/download a PDF version for your reference.	
As you are reviewing the proofs, please keep in mind the following:	
 This is the only set of proofs you will see prior to publication. Only serious errors in content and errors introduced during the production process may be corrected. Any changes that contradict house style will not be made. Please ensure you fill out your response to any Author Queries raised during typesetting. This is necessary to enable you to submit your corrections and allow us to continue processing your chapter for publication. Please check the author/editor names very carefully to ensure correct spelling, correct sequence of given 	
 and family names, and that the given names and family names have been correctly designated (NB the family name is highlighted in blue). Please note that we standardly publish professional (institutional) e-mail addresses, but not private ones. If you have a different preference regarding publication of your email address, please indicate this clearly on the proof. 	

\leftarrow				<	>
	Confirmation mail for Chapter 10.1007/978-981-97-5910-1_25 Proceedings of the 8th International Conference on Civil Engineering > International Conference on Civil Engineering			æ	Ľ
	eproofing@springernature.com Sun, Jul 28, 2024, 6:46 PM to me 👻	☆	:	←	:
	Book: Proceedings of the 8th International Conference on Civil Engineering. DOI : 10.1007/978-981-97-5910-1 Chapter Title : Shear Strength of Red Meranti (Shorea Spp.) Timber at an Angle to the Grain.				
	Dear Author/Editor,				
	Your corrections have been submitted successfully. We will now process the corrections and finalize your work for publication. Please note that no more corrections may	ay be su	ubmitteo	d.	
	Auto Generated Email. Springer Nature Corrections Team				
÷		27 of n	nany	<	>
	UrgentPlease finish the proof checking before September 19, 2024ICOCE 2024 ${}_{ m D}$ $$ Index $$			æ	Z
	ICOCE <icoce@etpub.com> Mon, Sep 16, 2024, 11:29 PM to me ▼</icoce@etpub.com>	☆	٢	¢	:
•	Dear Sir/Madam,				


Please finish he proof checking before September 19, 2024 through https://eproofing.springer.com/ePb/index/KQk74-v9_AKBsd0FacjzsYqpi1IMAGM4kyI5huHh9AgARuQ2_78yU-68g_ Hell_pUVEtrZsrZyVRNS5SuFvAwiH5JX3T-zIgyHWa6TaC50s_40IHkRYMkAY8Diuhk2Ly. If there is no problem, please click "submit".

If you didn't finish it before September 19, 2024, the publishing house will publish it based on the current version.

Thanks & Regards, Ms. Iris Tang ICOCE 2024 Conference Secretary Email: icoce@etpub.com | Tel.: +86-18117808141 ICOCE Website: http://www.icoce.org/ Your personal eBook: Proceedings of the 8th International Conference on Civil Engineering 🔉 🔤

Springer <springer@newsletter.springer.com> to me • Tue, Oct 1, 2024, 10:01 PM 🔂 😳 🕤

Your eBook has been published on SpringerLink

2024 8th International Conference on Civil Engineering

Website: http://www.icoce.org/; E-mail: icoce@etpub.com

Notification of Acceptance

Co-Sponsored by

Dear Yosafat Aji Pranata, Novi, Deni Setiawan, Vivi Arisandhy, Hendry Wong, Sof-hie Angela Hagiyanto,

Congratulations!

We are pleased to inform you that the review process for **2024 8th International Conference on Civil Engineering (ICOCE 2024)** has been completed. The conference received submissions from **15** different countries and regions, which have been reviewed by the technical program committee members and external international reviewers. Based on the recommendations of the reviewers and the international program committees, we are pleased to inform you that your paper identified below has been accepted for publication in the conference proceedings and presentation at the conference. You are cordially invited to present the paper at ICOCE 2024 to be held during March 22-24, 2024 in Singapore.

Paper ID: XJ0041

Paper Title: Shear Strength of Red Meranti (Shorea spp.) Timber at An Angle to The Grain

After rigorous peer review process, the above paper after proper registration and presentation will be published as post-proceedings in Springer book series: Lecture Notes in Civil Engineering, which will be submitted to El Compendex, Scopus, Inspec, SCImago, ZbMATH etc for indexing.

2024 8th International Conference on Civil Engineering

Website: http://www.icoce.org/; E-mail: icoce@etpub.com

Registration Instruction

In order for you to attend the conference and have your paper included in the conference proceedings successfully, you must finish following steps.

1. Revise your paper according to the Review Comments carefully.

2. Prepare your final revised paper by following the template.

http://www.icoce.org/splnproc1703.docm

3. Fast registration Link:

http://confsys.iconf.org/register/icoce2024

Send your Final Revised Paper (Both .doc and .pdf format), Scanned Payment Proof (if you pay by bank transfer) to us at **icoce@etpub.com** by Registration Deadline (February 25th, 2024).

If you have any problem, please feel free to contact us via **icoce@etpub.com** for assistance. For the most updated information about the conference, please check the latest news on the conference website at http://www.icoce.org/. The conference schedule will be available in Middle March, 2024.

Finally, we would like to further extend our congratulations to you and we are looking forward to meeting you in Singapore!

2024 8th International Conference on Civil Engineering

Website: http://www.icoce.org/; E-mail: icoce@etpub.com

Review Form of ICOCE 2024

Singapore | March 22-24, 2024

The below manuscript which was submitted to **2024 8th International Conference on Civil Engineering** has been reviewed. The author should revise your manuscript by stipulated date.

Paper ID:	XJ004	1									
Paper Title:	: Shear strength of red Meranti (shorea spp) timber at an angle t										
Evaluation											
Poor Fair Good Very Good Outstanding											
Originality											
Innovation				\boxtimes							
Technical Merit											
Applicability				\boxtimes							
Presentation and Eng	glish										
Match to Conference	Торіс			\boxtimes							
	L	Reco	ommendation t	o Editors							
		Strongly Reject	Reject	Marginally Accept	Accept	Strongly Accept					
Recommendation	ו										
Comments											
Please briefly explain w guidance regarding revi											

80 words)

Accept with minor corrections.

The significance of the research works is not explained,

The conclusion is too short does not explain all solutions.

All the references should be mentioned in sequence in the paper. However, [11] is mentioned ahead of [10]. Please check all the references to ensure that they are mentioned in sequence.

Shear Strength of Red Meranti (*Shorea spp.*) Timber at An Angle to The Grain

Yosafat Aji Pranata¹, Novi², Deni Setiawan³, Vivi Arisandhy⁴, Hendry Wong⁵, Sofhie Angela Hagiyanto⁶

^{1,2,3,4,5,6} Faculty of Engineering, Universitas Kristen Maranatha, West Java 40513, Indonesia ¹yosafat.ap@gmail.com

Abstract. The shear strength is one of the parameters that used for the design of beam members in wood buildings. Shear strength is also used as a parameter for bridge girder design. Red meranti (Shorea spp.) is a species that is easily found in Indonesia and is commonly used as a construction material for buildings, docks, or bridges. The objective of this study is to obtain an empirical equation for the shear strength with different grain angles from 0° to 10°. The research of the influence of the grain angle must be carried out under real conditions, since the direction of the wood grain is not perfectly 0° and the inclination of the grain can influence the shear strength of the wood. The method of making the specimens and the experimental methods refer to ASTM D143-22, and the total number of test specimens was 33 specimens. The tests were performed using a universal testing machine, with the test speed (crosshead) 0.6 mm/minute. The test results show that the shear strength of wood with a directional fiber angle ranging from 0° to 10° in a range from 2.77 MPa (10° grain angle) to 7.57 MPa (0° grain angle). The results of the analysis by the polynomial regression method give an empirical equation, namely $F_v = 7.03 - 0.97\theta + 0.066\theta^2$ with R-Sq = 74.7%. Fiber angle has an effect on shear strength. Empirical equations offer advantages to building designers in calculating the design capacity of wood beams, especially due to shear forces.

Keywords: Shear Strength, Red Meranti (shorea spp.), Timber, Angle.

1 Introduction

The shear strength is a fundamental mechanical property of timber and is used in general timber structural design such as beam of column members. The shear strength can be determined by clear specimen testing as recommended by testing standards such as ASTM D143-22 [1]. This paper has presented the outline results of a series of shear tests to determine the shear strength of Red Meranti (*Shorea spp.*) timber at an angle to the grain. The shear test procedure has been to produce shear strengths based on ASTM D143-22 [1]. It was noticed that the cracks were commonly initiated within clear timber and caused shear failure. As the grain angle increasing from zero to certain value, the mechanical properties will be decrease. The greatest influence of grain deviation angle on mechanical properties was recorded for ultimate load values.

Several previous research of wood shear testing to obtain mechanical properties of shear strength, among others, were carried out by He et.al. [2] which is studying shear testing of Spruce and Douglas-fir woods to obtain shear strength parameters and their influence on the main axis of the wood, namely in the tangential-longitudinal plane and in the radial-longitudinal plane directions, the shape of the test object and the test method refers to the ASTM D143, with the aim of obtaining shear strength parameters and failure modes. Other research has also been done by Teixeira et.al. [3] namely studying the shear strength of Angelim-pedra wood with an orientation parallel to the grain, then another research with the Red Meranti wood type was carried out by Rizki [4] namely studying the shear strength parallel to the grain (0° grain angle). In 2011 the author himself [5] also carried out experimental research to obtain shear strength parameters parallel to the grain of Red Meranti wood with a grain angle of 0°. The grain angle is a deviation of fibers from a line parallel to an edge of sawn wood. Variability in timber mechanical properties can be mainly attributed to the grain angle, beside the wood density, of course. Grain deviation from the directions of the forces causes a decrease in mechanical properties of timber [6,7,10]. A strength reduction due to the increase in the grain deviation angle was also observed in the shear strength property, the grain deviation angle from 0 to 30° causes a decrease in shear strength by about 30% to 45% [8,9] and reaching even about 70% [11].

The objective of this study is to obtain an empirical equation for the shear strength with different grain angles from 0° to 10° . The research of the influence of the grain angle must be carried out under real conditions, since the direction of the wood grain is not perfectly 0° and the inclination of the grain can influence the shear strength of the wood. The method of making the test specimens and the test methods refer to ASTM D143-22 [1], and the total number of test specimens was 33 specimens. The tests were performed using a universal testing machine, with the test speed or crosshead is 0.6 mm/minute. The significance of the research works are to obtained the empirical values of the shear strength at an angle to the grain ranged from 0° to 10° .

2 Basic Theory

2.1 Shear Strength Mechanical Properties

The shear strength is an important parameter for the design of beam members in wood buildings. Shear strength is also used as a parameter for bridge girder design. Red meranti (*Shorea spp.*) is a species that is easily found in Indonesia and is commonly used as a construction material for buildings, docks, or bridges. The objective of this study is to obtain an empirical equation for the shear strength with different grain angles from 0° to 10° . The research of the influence of the grain angle must be carried out under real conditions, since the direction of the wood grain is not perfectly 0° and the inclination of the grain can influence the shear strength of the wood.

2.2 Clear Specimen Tests

The shear specimen test shall be made on a 50 mm by 50 mm by 63 mm specimens notched in accordance with Figure 1 to produce failure on a 50 mm by 50 mm surface. The load applied to and support the specimen on end-grain surfaces. The shear tool shall include an adjustable crossbar to align the specimen and support the back surface at the base plate [1]. The shear load for calculation of the shear strength is the maximum or ultimate load that cause the failure of specimenin term of shear plane 50 mm by 50 mm. The tests were performed using a universal testing machine, with the test speed (crosshead) 0.6 mm/minute.

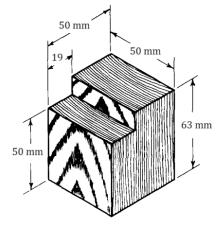


Fig. 1. The specimen for shear tests [1].

2.3 Hankinson's Formula

Elastic theory can be used to obtain the mechanical properties in directions other than along the parallel and perpendicular grain angle. Mechanical properties of wood which area elastic modulus, tensile strength, compression strength, and many more in directions ranging from parallel to perpendicular to the grain can be calculated using a Hankinson formula [10].

$$N = \frac{P.Q}{P.\sin^{"}\theta + Q.\cos^{"}\theta}$$
(1)

where N is strength at angle θ from grain angle, Q is strength perpendicular to the grain, P is strength parallel to the grain, and n is an constant [10].

2.4 Polynomial Regression Method

Polynomial regression is a regression model that is formed by adding up the influence of each independent variable raised to increasing powers up to the n-1 order. The highest power of the independent variable determines the shape of the response curve. The

polynomial model can be used to find out that there is a linear curve influence on the response, its shape resembles a curve. The polynomial model is also useful as an approximation function for very complex models and non-linear relationships [12].

3 Experimental Test and Results

3.1 Experimental Test

Shear test specimens were made from raw timber logs, which have been visually sorted to obtain defect-free parts. The number of test objects in this study was 33 test objects with grain angle variations ranging from 0° to 10° . The method of making the test specimens and the test methods refer to ASTM D143-22 [1]. Figure 2 shows some of the test object that has been made. Figure 3 shows the wood shear testing process.

Fig. 2. The specimen for shear tests.

Fig. 3. Shear tests.

3.2 Results

Figure 4 shows several examples of test results, namely the failure modes of the specimens after destructive testing to obtain the ultimate load which resulted in failure in the shear plane. Figure 5 shows the test results, namely the load versus deformation relationship curve for each test object with a grain angle direction of 0° to 10° . Table 1 and Figure 6 show the results of calculating the shear strength of wood at various angles of the grain angle. To calculate the shear strength, parameter of Cross-section of Shear Area (Figure 1) is calculated using real shear area of each specimen.

Fig. 4. Shear test result specimen with grain angle 0° .



Fig. 5. Load versus deformation results obtained from experimental tests.

The test results in Table 1, namely the parameters of the shear strength of wood and the direction of the grain angle, are then processed further using quadratic type polynomial regression analysis to obtain predictions of the empirical equation for the shear strength of wood. The analysis is carried out using Minitab software [13]. The analysis results (Figure 6) show that the experimental test results, namely the ultimate load versus deformation curve, have a tendency for the ultimate load to decrease as the direction of the wood grain angle increases. This indicates that the shear strength of wood has the

highest value at the grain angle parallel to the direction of the wood grain (grain angle 0°).

Table 1. Shear load (peak) obtained from experimental tests.							
Specimen	Specimen	Area (mm ²)	$P_{U}(N)$	F _v (MPa)	D _{max} (mm)	θ	
K3.20	K.1	2525.55	17431.86	6.90	1.18	0	
K3.50	K.2	2533.78	19018.69	7.51	1.33	0	
K3.1	K.3	2531.77	19172.62	7.57	0.67	0	
K3.37	K.4	2539.30	14563.99	5.74	1.13	1	
K3.38	K.5	2549.24	14559.46	5.71	1.63	1	
K3.45	K.6	2533.27	15401.46	6.08	0.98	1	
K3.47	K.7	2526.74	15813.41	6.26	1.06	1	
K3.49	K.8	2530.23	17521.24	6.92	1.37	1	
K2.32	K.9	2499.49	11261.84	4.51	0.82	2	
K2.34	K.10	2492.99	12239.55	4.91	0.71	2	
K3.6	K.11	2521.18	13491.15	5.35	0.43	2	
K3.17	K.12	2517.53	15578.01	6.19	1.20	2	
K3.25	K.13	2517.02	16044.29	6.37	1.22	2	
K3.34	K.14	2534.78	11515.32	4.54	0.95	2	
K3.40	K.15	2534.12	12225.97	4.82	0.75	2	
K3.44	K.16	2536.80	13758.22	5.42	0.88	2	
K4.7	K.17	2523.70	12133.17	4.81	1.62	2	
K3.32	K.18	2526.74	13135.80	5.20	1.77	3	
K3.33	K.19	2520.20	10813.73	4.29	0.81	3	
K4.33	K.20	2516.51	10929.15	4.34	1.57	3	
K5.4	K.21	2517.20	10245.69	4.07	0.98	3	
K5.13	K.22	2533.75	12327.81	4.87	1.52	3	
K5.44	K.23	2520.20	13796.70	5.47	1.42	3	
K5.32	K.24	2543.69	10585.16	4.16	0.89	4	
K5.38	K.25	2533.72	8536.98	3.37	0.81	4	
K1.32	K.26	2522.21	10261.53	4.07	0.43	5	
K2.28	K.27	2515.18	11021.94	4.38	1.01	5	
K4.22	K.28	2536.80	9400.73	3.71	1.38	5	
K4.27	K.29	2528.58	9690.99	3.83	0.95	5	
K5.45	K.30	2528.24	12769.15	5.05	1.54	6	
K5.12	K.31	2531.42	7018.90	2.77	0.50	7	
K2.2	K.32	2503.94	10748.10	4.29	0.88	8	
K5.1	K.33	2538.13	8623.11	3.40	0.67	10	

Table 1. Shear load (peak) obtained from experimental tests.

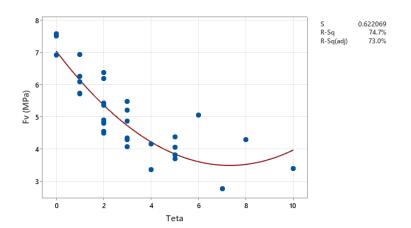


Fig. 6. Results obtained from study: Equation to predict the shear strength at an angle to the grain.

Results obtained from study which is quation to predict the shear strength at an angle to the grain show in Equation 2.

$$F_v = 7.03 - 0.97\theta + 0.066\theta^2 \tag{2}$$

$$R-Sq = 74.7\%$$
 (3)

4 Conclusion

The test results show that the shear strength of wood with a directional fiber angle ranging from 0° to 10° in a range from 2.77 MPa (10° grain angle) to 7.57 MPa (0° grain angle). The results of the analysis by the polynomial regression method give an empirical equation, namely $F_v = 7.03 - 0.97\theta + 0.066\theta^2$ with R-Sq = 74.7%. Fiber angle has an effect on shear strength. Empirical equations offer advantages to building designers in calculating the design capacity of wood beams, especially due to shear forces.

Acknowledgement

Authors would like to acknowledged Department of Civil Engineering, Faculty of Engineering, Universitas Kristen Maranatha for financial support for the research "Skema Tambahan" fiscal year 2021. Authors are also would like to acknowledged due to the Structural Laboratory for conducting timber shear testing.

References

- 1. American Standard Testing and Material: ASTM D143-22 Standard Test Methods for Small Clear Specimens of Timber, West Conshohocken, Pennsylvania, United States (2022).
- He, M.J., Zhang, J., Li, Z., Li, M.L.: Production and mechanical performance of scrimber composite manufactured from poplar wood for structural applications, Journal of Wood Science, Volume 62, pp.429–440, Springerlink (2016).
- Teixira, J.N., Wolenski, A.R.V., Aquino, V.B.d.M., Panzera, T.H., Silva, D.A.L., Campos, C.I., Silva, S.A.M., Lahr, F.A.R., Christoforo, A.L.: Infuence of provenance on physical and mechanical properties of Angelim-pedra (Hymenolobium petraeum Ducke.) wood species, European Journal of Wood and Wood Products, Volume 79, pp.1241–1251, Springerlink (2021).
- Rizki, A.: Perbandingan antara Kayu Meranti Merah dan Meranti Putih Ditinjau dari Kualitas Kayu Berdasarkan PKKI 1961, Jurnal Kajian Pendidikan Teknik Bangunan, Volume 3 Nomor 1, pp. 9-15 (2013) (in Indonesian).
- 5. Pranata, Y.A.: Perilaku Lentur Balok Laminasi-Baut Kayu Indonesia, Doctoral Dissertation (unpublished), Parahyangan Catholic University (in Indonesian).
- Kollmann, F., Côté, W.A.: Principles of Wood Science and Technology; Springer: Berlin/Heidelberg, Germany, 1968.
- Dinwoodie, J.M.: Timber A review of the structure-mechanical property relationship. J. Microsc, Volume 104, pp. 3–32. (1975).
- Liu, J.Y., Floeter, L.H.: Shear strength in principal plane of wood. Journal of Engineering Mechanics, Volume 110, pp. 930–936 (1984).
- Gorlacher, R.: A method for determining the rolling shear modulus of timber. Holz Roh-Werkst, Volume 60, pp. 317–322 (2002).
- 10. Bodig, J., Jayne, B.A.: Mechanics of Wood and Wood Composites, Van Nostrand Reinhold, The University of Michigan, Digitized Version (2007).
- Xavier, J.; Garrido, N., Oliveira, M., Morais, J., Camanho, P., Pierron, F.: A comparison between the Iosipescu and off-axis shear test methods for the shear characterization of Pinus pinaster Ait. Compos. A Appl. Sci. Manuf., Volume 35, pp. 827–884 (2009).
- University of Oregon Homepage: https://pages.uoregon.edu/jschombe/glossary/correlation.html, last accessed 2023/10/31.
- 13. Minitab, LLC: Minitab version 21.4.1 (64-bit), Minitab, LLC (2023).
- Mania, P., Siuda, F., Roszyk, E.: Effect of Slope Grain on Mechanical Properties of Different Wood Species, Materials, e-ISSN 1996-1944, Volume 13, Published by MDPI Materials (2020).

8

ICOCE 2024

Singapore 22-24 March, 2024

Bill To:	Invoice No.		AT20240105388
Yosafat Aji Pranata, Faculty of Engineering, Universitas Kristen Maranatha	Payment Date		2024-03-01
2024 8th International Mar	Conference on Civrch 22-24, 2024	v il Engi	neering
Description			Amount
The Registration Fee for:			
 Paper ID: XJ0041 Paper Title: Shear Strength of Red Merant An Angle to The Grain Author(s): Yosafat Aji Pranata, Novi, Den Arisandhy, Hendry Wong, Sof-hie Angela I Registration Name: Yosafat Aji Pranata 	i Setiawan, Vivi Hagiyanto		560.00USD
Addi	tional Publication (0.00
		er Fees	0.00
		e Total	560.00USD
		ıl Paid	560.00USD
	Amou	nt Due	0.00

Shear Strength of Red Meranti (*Shorea spp.*) Timber at An Angle to The Grain

Yosafat Aji Pranata¹, Novi², Deni Setiawan³, Vivi Arisandhy⁴, Hendry Wong⁵, Sofhie Angela Hagiyanto⁶

^{1,2,3,4,5,6} Faculty of Engineering, Universitas Kristen Maranatha, West Java 40164, Indonesia ¹yosafat.ap@gmail.com

Abstract. The shear strength is one of the parameters that used for the design of beam members in wood buildings. Shear strength is also used as a parameter for bridge girder design. Red meranti (Shorea spp.) is a species that is easily found in Indonesia and is commonly used as a construction material for buildings, docks, or bridges. The objective of this study is to obtain an empirical equation for the shear strength with different grain angles from 0° to 10°. The research of the influence of the grain angle must be carried out under real conditions, since the direction of the wood grain is not perfectly 0° and the inclination of the grain can influence the shear strength of the wood. The method of making the specimens and the experimental methods refer to ASTM D143-22, and the total number of test specimens was 33 specimens. The tests were performed using a universal testing machine, with the test speed (crosshead) 0.6 mm/minute. The test results show that the shear strength of wood with a directional fiber angle ranging from 0° to 10° in a range from 2.77 MPa (10° grain angle) to 7.57 MPa (0° grain angle). The results of the analysis by the polynomial regression method give an empirical equation, namely $F_v = 7.03 - 0.97\theta + 0.066\theta^2$ with R-Sq = 74.7%. Fiber angle has an effect on shear strength. Empirical equations offer advantages to building designers in calculating the design capacity of wood beams, especially due to shear forces.

Keywords: Shear Strength, Red Meranti (shorea spp.), Timber, Angle.

1 Introduction

The shear strength is a fundamental mechanical property of timber and is used in general timber structural design such as beam of column members. The shear strength can be determined by clear specimen testing as recommended by testing standards such as ASTM D143-22 [1]. This paper has presented the outline results of a series of shear tests to determine the shear strength of Red Meranti (*Shorea spp.*) timber at an angle to the grain. The shear test procedure has been to produce shear strengths based on ASTM D143-22 [1]. It was noticed that the cracks were commonly initiated within clear timber and caused shear failure. As the grain angle increasing from zero to certain value, the mechanical properties will be decrease. The greatest influence of grain deviation angle on mechanical properties was recorded for ultimate load values.

Several previous research of wood shear testing to obtain mechanical properties of shear strength, among others, were carried out by He et.al. [2] which is studying shear testing of Spruce and Douglas-fir woods to obtain shear strength parameters and their influence on the main axis of the wood, namely in the tangential-longitudinal plane and in the radial-longitudinal plane directions, the shape of the test object and the test method refers to the ASTM D143, with the aim of obtaining shear strength parameters and failure modes. Other research has also been done by Teixeira et.al. [3] namely studying the shear strength of Angelim-pedra wood with an orientation parallel to the grain, then another research with the Red Meranti wood type was carried out by Rizki [4] namely studying the shear strength parallel to the grain (0° grain angle). In 2011 the author himself [5] also carried out experimental research to obtain shear strength parameters parallel to the grain of Red Meranti wood with a grain angle of 0°. The grain angle is a deviation of fibers from a line parallel to an edge of sawn wood [6]. Variability in timber mechanical properties can be mainly attributed to the grain angle, beside the wood density, of course. Grain deviation from the directions of the forces causes a decrease in mechanical properties of timber [7,8,9]. A strength reduction due to the increase in the grain deviation angle was also observed in the shear strength property, the grain deviation angle from 0 to 30° causes a decrease in shear strength by about 30% to 45% [10,11] and reaching even about 70% [12].

The objective of this study is to obtain an empirical equation for the shear strength with different grain angles from 0° to 10° . The research of the influence of the grain angle must be carried out under real conditions, since the direction of the wood grain is not perfectly 0° and the inclination of the grain can influence the shear strength of the wood. The method of making the test specimens and the test methods refer to ASTM D143-22 [1], and the total number of test specimens was 33 specimens. The tests were performed using a universal testing machine, with the test speed or crosshead is 0.6 mm/minute. The significance of the research works are to obtained the empirical values of the shear strength at an angle to the grain ranged from 0° to 10° .

2 Basic Theory

2.1 Shear Strength Mechanical Properties

The shear strength is an important parameter for the design of beam members in wood buildings. Shear strength is also used as a parameter for bridge girder design. Red meranti (*Shorea spp.*) is a species that is easily found in Indonesia and is commonly used as a construction material for buildings, docks, or bridges. The objective of this study is to obtain an empirical equation for the shear strength with different grain angles from 0° to 10° . The research of the influence of the grain angle must be carried out under real conditions, since the direction of the wood grain is not perfectly 0° and the inclination of the grain can influence the shear strength of the wood.

2.2 Clear Specimen Tests

The shear specimen test shall be made on a 50 mm by 50 mm by 63 mm specimens notched in accordance with Figure 1 to produce failure on a 50 mm by 50 mm surface. The load applied to and support the specimen on end-grain surfaces. The shear tool shall include an adjustable crossbar to align the specimen and support the back surface at the base plate [1]. The shear load for calculation of the shear strength is the maximum or ultimate load that cause the failure of specimenin term of shear plane 50 mm by 50 mm. The tests were performed using a universal testing machine, with the test speed (crosshead) 0.6 mm/minute.

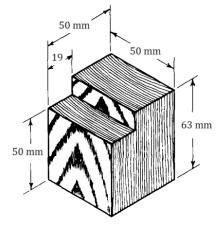


Fig. 1. The specimen for shear tests [1].

2.3 Hankinson's Formula

Elastic theory can be used to obtain the mechanical properties in directions other than along the parallel and perpendicular grain angle. Mechanical properties of wood which area elastic modulus, tensile strength, compression strength, and many more in directions ranging from parallel to perpendicular to the grain can be calculated using a Hankinson formula [9].

$$N = \frac{P.Q}{P.\sin^{"}\theta + Q.\cos^{"}\theta}$$
(1)

where N is strength at angle θ from grain angle, Q is strength perpendicular to the grain, P is strength parallel to the grain, and n is an constant [9].

2.4 Polynomial Regression Method

Polynomial regression is a regression model that is formed by adding up the influence of each independent variable raised to increasing powers up to the n-1 order. The highest power of the independent variable determines the shape of the response curve. The

polynomial model can be used to find out that there is a linear curve influence on the response, its shape resembles a curve. The polynomial model is also useful as an approximation function for very complex models and non-linear relationships [13].

3 Experimental Test and Results

3.1 Experimental Test

Shear test specimens were made from raw timber logs, which have been visually sorted to obtain defect-free parts. The number of test objects in this study was 33 test objects with grain angle variations ranging from 0° to 10° . The method of making the test specimens and the test methods refer to ASTM D143-22 [1]. Figure 2 shows some of the test object that has been made. Figure 3 shows the wood shear testing process.

Fig. 2. The specimen for shear tests.

Fig. 3. Shear tests.

3.2 Results

Figure 4 shows several examples of test results, namely the failure modes of the specimens after destructive testing to obtain the ultimate load which resulted in failure in the shear plane. Figure 5 shows the test results, namely the load versus deformation relationship curve for each test object with a grain angle direction of 0° to 10° . Table 1 and Figure 6 show the results of calculating the shear strength of wood at various angles of the grain angle. To calculate the shear strength, parameter of Cross-section of Shear Area (Figure 1) is calculated using real shear area of each specimen.

Fig. 4. Shear test result specimen with grain angle 0° .



Fig. 5. Load versus deformation results obtained from experimental tests.

The test results in Table 1, namely the parameters of the shear strength of wood and the direction of the grain angle, are then processed further using quadratic type polynomial regression analysis to obtain predictions of the empirical equation for the shear strength of wood. The analysis is carried out using Minitab software [14]. The analysis results (Figure 6) show that the experimental test results, namely the ultimate load versus deformation curve, have a tendency for the ultimate load to decrease as the direction of the wood grain angle increases. This indicates that the shear strength of wood has the

highest value at the grain angle parallel to the direction of the wood grain (grain angle 0°).

Table 1. Shear load (peak) obtained from experimental tests.							
Specimen	Specimen	Area (mm ²)	$P_{U}(N)$	F _v (MPa)	D _{max} (mm)	θ	
K3.20	K.1	2525.55	17431.86	6.90	1.18	0	
K3.50	K.2	2533.78	19018.69	7.51	1.33	0	
K3.1	K.3	2531.77	19172.62	7.57	0.67	0	
K3.37	K.4	2539.30	14563.99	5.74	1.13	1	
K3.38	K.5	2549.24	14559.46	5.71	1.63	1	
K3.45	K.6	2533.27	15401.46	6.08	0.98	1	
K3.47	K.7	2526.74	15813.41	6.26	1.06	1	
K3.49	K.8	2530.23	17521.24	6.92	1.37	1	
K2.32	K.9	2499.49	11261.84	4.51	0.82	2	
K2.34	K.10	2492.99	12239.55	4.91	0.71	2	
K3.6	K.11	2521.18	13491.15	5.35	0.43	2	
K3.17	K.12	2517.53	15578.01	6.19	1.20	2	
K3.25	K.13	2517.02	16044.29	6.37	1.22	2	
K3.34	K.14	2534.78	11515.32	4.54	0.95	2	
K3.40	K.15	2534.12	12225.97	4.82	0.75	2	
K3.44	K.16	2536.80	13758.22	5.42	0.88	2	
K4.7	K.17	2523.70	12133.17	4.81	1.62	2	
K3.32	K.18	2526.74	13135.80	5.20	1.77	3	
K3.33	K.19	2520.20	10813.73	4.29	0.81	3	
K4.33	K.20	2516.51	10929.15	4.34	1.57	3	
K5.4	K.21	2517.20	10245.69	4.07	0.98	3	
K5.13	K.22	2533.75	12327.81	4.87	1.52	3	
K5.44	K.23	2520.20	13796.70	5.47	1.42	3	
K5.32	K.24	2543.69	10585.16	4.16	0.89	4	
K5.38	K.25	2533.72	8536.98	3.37	0.81	4	
K1.32	K.26	2522.21	10261.53	4.07	0.43	5	
K2.28	K.27	2515.18	11021.94	4.38	1.01	5	
K4.22	K.28	2536.80	9400.73	3.71	1.38	5	
K4.27	K.29	2528.58	9690.99	3.83	0.95	5	
K5.45	K.30	2528.24	12769.15	5.05	1.54	6	
K5.12	K.31	2531.42	7018.90	2.77	0.50	7	
K2.2	K.32	2503.94	10748.10	4.29	0.88	8	
K5.1	K.33	2538.13	8623.11	3.40	0.67	10	

Table 1. Shear load (peak) obtained from experimental tests.

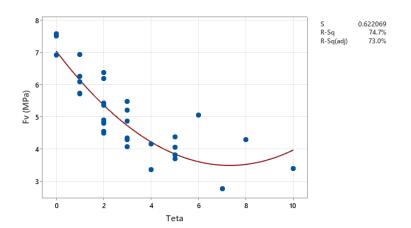


Fig. 6. Results obtained from study: Equation to predict the shear strength at an angle to the grain.

Results obtained from study which is quation to predict the shear strength at an angle to the grain show in Equation 2.

$$F_v = 7.03 - 0.97\theta + 0.066\theta^2 \tag{2}$$

$$R-Sq = 74.7\%$$
 (3)

4 Conclusion

The test results show that the shear strength of wood with a directional fiber angle ranging from 0° to 10° in a range from 2.77 MPa (10° grain angle) to 7.57 MPa (0° grain angle). The results of the analysis by the polynomial regression method give an empirical equation, namely $F_v = 7.03 - 0.97\theta + 0.066\theta^2$ with R-Sq = 74.7%. Fiber angle has an effect on shear strength. Empirical equations offer advantages to building designers in calculating the design capacity of wood beams, especially due to shear forces.

Acknowledgement

Authors would like to acknowledged Department of Civil Engineering, Faculty of Engineering, Universitas Kristen Maranatha for financial support for the research "Skema Tambahan" fiscal year 2021. Authors are also would like to acknowledged due to the Structural Laboratory for conducting timber shear testing.

References

- 1. American Standard Testing and Material: ASTM D143-22 Standard Test Methods for Small Clear Specimens of Timber, West Conshohocken, Pennsylvania, United States (2022).
- He, M.J., Zhang, J., Li, Z., Li, M.L.: Production and mechanical performance of scrimber composite manufactured from poplar wood for structural applications, Journal of Wood Science, Volume 62, pp.429–440, Springerlink (2016).
- Teixira, J.N., Wolenski, A.R.V., Aquino, V.B.d.M., Panzera, T.H., Silva, D.A.L., Campos, C.I., Silva, S.A.M., Lahr, F.A.R., Christoforo, A.L.: Infuence of provenance on physical and mechanical properties of Angelim-pedra (Hymenolobium petraeum Ducke.) wood species, European Journal of Wood and Wood Products, Volume 79, pp.1241–1251, Springerlink (2021).
- Rizki, A.: Perbandingan antara Kayu Meranti Merah dan Meranti Putih Ditinjau dari Kualitas Kayu Berdasarkan PKKI 1961, Jurnal Kajian Pendidikan Teknik Bangunan, Volume 3 Nomor 1, pp. 9-15 (2013) (in Indonesian).
- 5. Pranata, Y.A.: Perilaku Lentur Balok Laminasi-Baut Kayu Indonesia, Doctoral Dissertation (unpublished), Parahyangan Catholic University (in Indonesian).
- Mania, P., Siuda, F., Roszyk, E.: Effect of Slope Grain on Mechanical Properties of Different Wood Species, Materials, e-ISSN 1996-1944, Volume 13, Published by MDPI Materials (2020).
- Kollmann, F., Côté, W.A.: Principles of Wood Science and Technology; Springer: Berlin/Heidelberg, Germany, 1968.
- Dinwoodie, J.M.: Timber A review of the structure-mechanical property relationship. J. Microsc, Volume 104, pp. 3–32. (1975).
- 9. Bodig, J., Jayne, B.A.: Mechanics of Wood and Wood Composites, Van Nostrand Reinhold, The University of Michigan, Digitized Version (2007).
- Liu, J.Y., Floeter, L.H.: Shear strength in principal plane of wood. Journal of Engineering Mechanics, Volume 110, pp. 930–936 (1984).
- 11. Gorlacher, R.: A method for determining the rolling shear modulus of timber. Holz Roh-Werkst, Volume 60, pp. 317–322 (2002).
- Xavier, J.; Garrido, N., Oliveira, M., Morais, J., Camanho, P., Pierron, F.: A comparison between the Iosipescu and off-axis shear test methods for the shear characterization of Pinus pinaster Ait. Compos. A Appl. Sci. Manuf., Volume 35, pp. 827–884 (2009).
- 13. University of Oregon Homepage: https://pages.uoregon.edu/jschombe/glossary/correlation.html, last accessed 2023/10/31.
- 14. Minitab, LLC: Minitab version 21.4.1 (64-bit), Minitab, LLC (2023).

8

ICOCE 2024

2024 8th International Conference on Civil Engineering

AREEE 2024

2024 5th Asia Conference on Renewable Energy and Environmental Engineering

Singapore | March 22-24, 2024

 \sim

Sensors and Systems Society of Singapore

ICOCE AREEE 2024/

Table of Contents

Conference Location	3
Welcome Message	5
Conference Committee	6
Presentation Guidelines	8
Brief Schedule	
Keynote Speech I	11
Keynote Speech II	13
Invited Speech I	15
Invited Speech II	17
Invited Speech III	18
Session 1	19
Session 2	20
Session 3	21
Session 4	22
Session 5	23
Session 6	24
Poster Session	25
Session 7	26
Session 8	28
Note	29

ICOCE AREEE 2024

Conference Location

Conference Venue Name

Mercure Singapore Bugis

Address

122 Middle Road, 188973, Singapore (https://www.mercure-singapore-bugis.com/)

Queen III, Level 2

Queen II, Level 2

Royale Restaurant, Level 3

ICOCE AREEE 2024

Conference Location Introduction

Welcome to a contemporary 4-star hotel in the vibrant enclave of Bras Basah, Bugis in Singapore. The fun design reflects the colourful charm and heritage of a neighbourhood within Bugis that has it all. Majestic places of worship, historic monuments, street markets, shopping malls and a surplus of appeal. Explore Arab Street 's Middle Eastern ambiance and Orchard Road 's numerous boutiques. Visit the National Library or Museum. Or simply stroll through the lanes and admire the architecture within the Bugis area – a captivating blend of old and new. There are very few high rise in the area. At 15-storey high, the hotel is one of them – affording it a picturesque sky deck and clear views of the city from many of our rooms and loft suites.

The hotel is also one of the new dining and event destinations in Singapore within Bugis, with two restaurants, a lounge bar, private dining options, a ballroom and meeting facilities.

Located in the central business district, this modern hotel is a 6-minute walk from MRT Station, 6 km from Singapore Botanic Gardens and 9 km from Universal Studios Singapore.

Simple room with Wi-Fi, flat-screen TV and minibar. Many rooms offer city views, while some have loft bedrooms. Guests staying in club level rooms have access to the lounge, which offers free breakfast and cocktails. Room service is available 24 hours a day.

It features a Chinese restaurant, a steakhouse and a stylish lobby bar. Other facilities include a gym, an outdoor pool with a bar, a business centre and 3 meeting rooms.

Check-in time: 15:00

Check-out time: 12:00

Welcome Message

Welcome to attend 2024 8th International Conference on Civil Engineering (ICOCE 2024) and 2024 5th Asia Conference on Renewable Energy and Environmental Engineering (AREEE 2024), Singapore during March 22-24, 2024. On behalf of organizing committee, we sincerely appreciate your great support to the conference.

This conference program is highlighted by two outstanding Keynote Speakers and three Invited Speakers. ICOCE 2024 and AREEE 2024 consist of 59 oral presentations and 9 poster presentations, and there are more than 70 participants in total.

We express our sincere appreciation to all the individuals who have contributed to ICOCE 2024 and AREEE 2024 conference in various ways. Special thanks are extended to our colleagues in program committee for their thorough review of all the submissions, which is vital to the success of the conference, and also to the members in the organizing committee who had given their valuable time and efforts in planning, promoting, organizing and helping the conference. The conference will provide opportunities for the delegates from different areas to exchange new ideas and application experiences face to face, to establish business or research relations and to find global partners for future collaboration. It is a great platform to discuss the most recent innovations, trends, and concerns, practical challenges encountered and the various solutions in the fields of Civil Engineering and Renewable Energy & Environmental Engineering.

Wish all of you have a wonderful experience during the conference. Meanwhile, we warmly welcome you to join our conference next year!

Conference Organizing Committee

Conference Committee

Conference Chair

Prof. Zongjin Li, University of Macau, China

Program Co-Chair

Prof. Shane Snyder, Nanyang Technological University, Singapore

Program Chairs

Prof. Joseph Kim, California State University Long Beach, USA Assoc. Prof. Chian Siau Chen, National University of Singapore, Singapore Prof. Prashant Kumar, University of Surrey, UK Prof. Pen-Chi Chiang, National Taiwan University, Taiwan

Conference Local Chair

Assoc. Prof. ONG Ghim Ping Raymond, National University of Singapore, Singapore

Publication Chair

Prof. Eric Strauss, Michigan State University, USA

Technical Program Committees

Prof. Akmal Abdelfatah, American University of Sharjah, UAE Assoc. Prof. Osama Mohammed Ahmed Daoud, Director of building and roads research institute at university of Khartoum, Sudan Dr. Fei Jin, Cardiff University, Wales, UK Dr. Yongmin Kim, University of Glasgow Singapore, Singapore Dr. Saber Moradi, Toronto Metropolitan University, Canada Assoc. Prof. Pier Paolo Rossi, University of Catania, Italy Assoc. Prof. June Tay, Singapore University of Social Sciences, Singapore Dr. Yan Xiao, Dalian University of Technology, China Dr.Shabir Hussain, Prince Sultan University, Saudi Arabia Assoc. Prof. BEN AMMAR Ben Khadda, University of Biskra, Algeria Assoc. Prof. Goutam Ghoshb, Motilal Nehru National Institute of Technology Allahabad, India Dr. Alain Kusmoko, University of Wollongong, Australia Assoc.Prof. Chuang-Hung Lin, National United University, Taiwan Dr. Xin Ge, Architects & Engineers Co., LTD. of Southeast University, China Dr. Piyanut Wethyavivorn, Kasetsart University, Thailand. Assoc.Prof. Pirat Khunkitti, Khon Kaen University, Thailand Assoc.Prof. M. Hasanuzzaman, University of Malaya, Malaysia Prof. Martin Dornheim, University of Nottingham, UK Dr. Mohamad Darwish, Universiti Teknologi Malaysia, Malaysia

- 6 -

Dr. Chan Cho Yin, Technological and Higher Education Institute of Hong Kong, China

Assoc. Prof. Marcello Ruberti, University of Lecce, Italy

Dr. Jinsheng You, University of Nebraska, USA

Assoc. Prof. Cherdvong Saengsupavanich, Kasetsart University, Thailand

Assoc. Prof. Bashir Saleh, Libyan Academy, Libya

Dr. Yousef Alqaryouti, American University of the Middle East, Kuwait

Dr. Samiran Das, University of Glasgow Singapore, Singapore

Dr. Reza Soleimanpour, Australian University, Kuwait

Dr. S M Anas, Jamia Millia Islamia, India

Prof. Krishna Kumar Singh, National Institute of Technology Kurukshetra, India

Prof. Ramesh Srikonda, School of Planning and Architecture, India

Dr. Baoxin Liu, Future City Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, China

Presentation Guidelines

Devices Provided by the Conference Organizer:

Laptop Computer (MS Windows Operating System with MS PowerPoint and Adobe Acrobat Reader) Digital Projectors and Screen Laser Sticks

Materials Provided by the Presenters:

PowerPoint or PDF Files (Files should be copied to the Conference laptop at the beginning of each Session.)

Please do arrival registration. On March 22, 2024, we will have arrival registration and conference materials collection.

For participants who will attend the physical conference, the organizer doesn't provide accommodation, and we suggest you make an early reservation.

Instructions for Online Presentations

Time Zone

The time shown in this schedule is **Greenwich Mean Time+8 (GMT+8) Please set-up your laptop** time in advance.

- Equipment Provided by the Presenters
- 1. A computer with an internet connection (wired connection recommended)
- 2. USB plug-in headset with a microphone (recommended for optimal audio quality)
- 3. Webcam (optional): built-in or USB plug-in
- Environment requirement
- 1. Quiet Location and Proper lighting
- 2. Stable Internet Connection
- 3. Suitable Background

How to use ZOOM

Step 1: Download Zoom from the link: https://zoom.us/download

China Mainland Users: https://www.zoom.com.cn/download

Step 2: Sign up an account.

Step 3: Set up the languages and do some basic test.

Step 4: Get familiar with the basic functions: Rename, chat, raise hands, and screen share, etc.

- 1. **Rename:** Before you enter the conference room, please change your name to Paper ID + Name
- 2. Chat and raise your hand: During the session, if you have any questions about the operation of zoom, please let us know by clicking "raise your hands" and use "chat" to communicate with conference secretary

During the Question section, if you have any questions about keynote speakers or authors, you

can also click "raise your hands" or "chat"

3. **Share Screen:** Please open your power point first, and then click "share screen" when it's your turn to do the presentation.

Notes: How to join the conference online

- 1. Find your paper ID and suitable meeting ID on the conference program.
- 2. Open the ZOOM, click the join, paste the meeting ID, then you can join the conference.
- 3. Click the stop share after you finish your presentation

Duration of Each Presentation

Keynote Speech: about 35 Minutes of Presentation and 5 Minutes of Question and Answer Invited Speech about 15 Minutes of Presentation and 5 Minutes of Question and Answer Regular Oral Presentation: about 12 Minutes of Presentation and 3 Minutes of Question and Answer

Dress code

Please wear formal clothes or national representative of clothing.

Instructions for Poster Presentation

Materials Provided by the Conference Organizer:

The place to put poster

Materials Provided by the Presenters:

Home-made Posters Maximum poster size is A1 Load Capacity: Holds up to 0.5 kg

Conference Brief Schedule (GMT+8)

Day 1-March 22, 2024 Friday				
	Onsite			
10:00-17:00	Onsite Registration & Materials Collection	Hotel Lobby		
	Online			
14:00-16:00	Test for online participants	zoom		
	Day 2-March 23, 2024 Saturday			
	Onsite			
09:00-09:05	Opening Remarks-ONG Ghim Ping Raymond, National University of Singapore, Singapore			
09:05-09:45	Chair: ONG Ghim Ping Raymond, National University of Singapore, Singapore Keynote Speech I- Joseph Kim, California State University Long Beach, USA			
	Chair: Joseph Kim, California State University Long Beach, USA			
09:45-10:25	Keynote Speech II- ONG Ghim Ping Raymond, National University of Singapore, Singapore	Queen III, Level 2		
10:25-10:40	Group photo & Coffee Break			
10:40-11:00	Chair: Joseph Kim, California State University Long Beach, USA Invited Speech I- Kwun Nam HUI, University of Macau, China			
	Session 1: Wastewater Treatment and Water Quality Analysis	Queen III, Level 2		
11:00-12:30	Session 2: Renewable Energy and Electric Motor Technology	Queen II, Level 2		
12:30-13:40	Lunch Time	Royale Restaurant, Level 3		
13:40-14:00	Chair: Kwun Nam HUI, University of Macau, China Invited Speech II- Kim Yongmin, University of Glasgow, Singapore	Queen III, Level 2		
	Session 3: Infrastructure Engineering and Hydraulic engineering	Queen III, Level 2		
14:00-15:45	Session 4: Properties of Building Materials and Structures	Queen II, Level 2		
15:45-15:55	Coffee Break			
15:55-16:15	Chair: Kwun Nam HUI, University of Macau, China Invited Speech III-Chian Siau Chen, Darren, National University of Singapore, Singapore	Queen III, Level 2		
16:15-18:30	Session 5: Environmental Pollution Control and Resource Management	Queen III, Level 2		
16:15-18:00	Session 6: Seismic Response of Engineering Structures and Construction Management	Queen II, Level 2		
14:00-18:00	Poster Session	Queen III, Level 2		
18:30	Dinner	Queen I, Level 2		
	Day 3-March 24, 2024 Sunday			
13:30-16:15	Session 7: Building Materials, Building Environment, and Construction Management			
16:30-18:30	Session 8: Engineering Vibration and Mechanical Properties of Building Structures	zoom		
Online Room	ID: 890 8696 8540 Link: https://us02web.zoom.us/i/89086968540			

Keynote Speaker I

March 23, 2024 (Saturday) 09:05-09:45 | GMT+8

Venue: Queen III, Level 2

Prof. Joseph Kim

California State University Long Beach, USA

Dr. Joseph J. Kim, P.E. is a Professor at the Department of Civil Engineering and Construction Engineering Management at California State University Long Beach. Dr. Kim spent several years as a field engineer and safety engineer. He is a registered professional engineer and holds a LEED AP BD+C certification. He is the recipient of 2011 ASCE ExCEEd New Faculty Excellence in Teaching Award, 2013 ICCEPM Best Paper Award, 2016 KSEA Chapter President Award; 2020 and 2021 USA President's Volunteer Service Awards. His research interests include artificial intelligence (AI) applications to solve civil infrastructure systems' optimization problems, green building materials, best sustainability practices in built environments, building information modeling, cost estimating methods, construction robotics, project delivery systems, and statistical methods for construction engineers. Dr. Kim has authored 117 journal articles and conference papers in high-quality engineering and scientific journals such as the ASCE Journal of Construction Engineering and Management, Journal of Green Buildings, Canadian Journal of Civil Engineering, and Journal of Transportation Research Board. Dr. Kim is an active member of the American Society of Civil Engineers (ASCE), ASCE's Construction Research Council of the Construction Institute, and Korean American Scientists and Engineers Association (KSEA). He is a peer reviewer for many technical journals.

Speech Title---Decarbonation: The Power of Green Building Materials against Climate Change

Abstract-In today's dynamic climate change landscape, decarbonization efforts within the architecture, engineering, and construction (AEC) industry are paramount. In this keynote, I will delve into the transformative potential of innovation through the lens of green building materials. I will explore current research and development trends in the market, emphasizing how embracing innovation can drive success in combating climate change. I will start by examining the use of green building materials, crafted with a focus on minimizing carbon emissions across their lifecycle, from extraction to disposal. Through real-world examples and cutting-edge research, I will showcase how these materials significantly reduce building footprints, accelerating decarbonization goals. Furthermore, I will discuss the energy efficiency benefits of green materials, including high-performance insulation and reflective roofing, which decrease energy demand for heating, cooling, and lighting. This translates to lower carbon emissions from energy generation, further advancing decarbonization objectives. Then, I will highlight the importance of renewable resources such as bamboo, reclaimed wood, and recycled steel and plastics in construction, reducing reliance

on finite resources and minimizing environmental impact. These materials align with sustainability goals and contribute to decarbonization efforts. Additionally, I will introduce policies, building codes, incentive programs, and certification programs incentivizing the use of green materials, fostering broader decarbonization strategies. Compliance with these standards can significantly accelerate decarbonization efforts at various levels of governance. In conclusion, I aim to inspire continued research and development in creating innovative green building materials. By doing so, we can effectively combat global climate change, creating a sustainable society for future generations.

Keynote Speaker II

March 23, 2024 (Saturday) 09:45-10:25 | GMT+8

Venue: Queen III, Level 2

Assoc. Prof. ONG Ghim Ping Raymond

National University of Singapore, Singapore

Dr ONG Ghim Ping Raymond is an Associate Professor and Associate Head (Research) in the Department of Civil and Environmental Engineering at the National University of Singapore (NUS). He graduated with a B.Eng (Civil) (First Class Honours) with a minor in Business from the National University of Singapore in 2003 and obtained his PhD in Civil Engineering from the National University of Singapore in 2007. Prior to his current appointment, he worked as a postdoctoral research associate in the School of Civil Engineering at Purdue University from 2007 to 2008, a visiting assistant professor in the same university in 2009 and then a lecturer (from 2010 to 2014) and assistant professor (2014-2020) in the Department of Civil and Environmental Engineering at the National University of Singapore.

Dr Ong's research interests include pavement materials and engineering, and multimodal transport infrastructures and operations, with emphasis on future mega-transport infrastructures/operations (such as car-lite/car-free towns, next generation seaports and airports). He has authored or co-authored over 70 peer-reviewed journal articles as well as over 100 international conference papers in these research areas. He is also actively involved in translational research grants/projects related to the engineering development of critical mega-infrastructures in Singapore (including the Tuas mega-port, Changi East Development, and Woodlands Checkpoint).

Dr. Ong is currently serving in various scientific committees in the Transportation Research Board of the National Academies, the American Society of Civil Engineers, the America Society of Testing and Materials and the Eastern Asian Society of Transportation Studies. He is also currently serving in editorial roles in several peer-reviewed international journals. He has received several scientific awards in recognition to his achievements in transportation research, including the Alfred Noble Prize (ASCE), the Hanjin Prize (IAME), the inaugural Takeuchi Yoshio Award (OCDI) and the inaugural iSMARTi Early Career Award. His research expertise and achievements have also led to him to serve as consultant to agencies and companies such as Changi Airport Group, Defence Science and Technology Agency, Surbana Jurong Infrastructures Pte Ltd, Global Maritime and Port Services Pte Ltd, and the Korean Maritime Institute.

Dr. Ong is also passionate about sharing his thoughts on current and future issues related to his research expertise to the public. He has frequently appeared in mainstream print or internet media (such as Straits Times, Lianhe Zaobao, The New Paper, Today Online) and live or pre-recorded TV interviews (such as Channel NewsAsia, Channel 8 info-ed programs and news, and Suria info-ed programs) speaking on issues on transport infrastructure and operations, active mobility and car-lite/car-free initiatives.

Speech Title---Moving towards a Liveable Car-lite City: A Research Perspective in the Singapore Context

Abstract-This lecture shares the key aspects of a liveable car-lite city and why it is necessary as the world faces issues of urbanisation, climate change and limited resources. In particular, initiatives such as integrated land use transportation planning, consideration of liveability and safety in modern mobility planning (especially in the context of active mobility), and moving towards electric vehicles, electric fleet and autonomous connected vehicles shall be discussed. Future prospects on promoting a liveable car-lite city shall also be discussed.

Invited Speaker I

March 23, 2024 (Saturday) 10:40-11:00 GMT+8

Venue: Queen III, Level 2

Assoc. Prof. Kwun Nam HUI

University of Macau, China

Dr. Kwun Nam HUI, is an Associate professor at the Institute of Applied Physics and Materials Engineering, University of Macau. He obtained Ph.D. degrees in Electrical and Electronic Engineering from the University of Hong Kong in 2009. He has been working as Assistant professor (2009-2013) and Associate professor (2013-2015) in School of Materials Science and Engineering at Pusan National University. As Principle Investigator, he has managed 36 research projects including 4 projects from National Research Foundation of Korea with a total research grant of USD 2 million. His research has led to 1 US patent, 7 granted CN patents, 17 CN patent-pending, 10 granted KR patents, and 250 SCI journal papers. Dr. KN Hui has h-index (Google): 57; Citations: 9924. His current research interests include Li/Na/K/Al-ion batteries, hybrid Na-air battery, fuel cell, as well as metal/heteroatom-doped carbon electrocatalysis for oxygen reduction reaction, oxygen evolution reaction.

Speech Title---Advances in Potassium-ion Batteries: Materials Design and Solid Electrolyte Interface Analysis

Abstract-Energy storage plays a pivotal role across a wide range of applications, including portable electronics, electric vehicles, and renewable energy integration. Presently, lithium-ion batteries (LIBs) are extensively used for various applications due to their unique features. However, concerns have arisen regarding their feasibility and long-term sustainability, owing to the scarcity and uneven geographical distribution of lithium resources. Amidst these considerations, potassium-ion batteries (PIBs) have attracted substantial interest due to their cost-effectiveness and widespread availability. Nonetheless, the significant ionic radius of potassium ions (1.38 Å) presents challenges within graphite electrodes, resulting in electrode materials that demonstrate diminished capacity and limited cyclic stability in PIBs. Among the various reported anode materials for PIBs, phosphorus-based electrodes stand out with the most remarkable theoretical specific capacity (2596 mA h g–1). Unfortunately, these electrodes experience notable volume expansion during operation, leading to reduced capacity and insufficient cycling stability.

In this presentation, I will demonstrate that phosphorus-based electrodes in PIBs hold the potential to emerge as competitive alternatives to LIBs for large-scale, sustainable, eco-friendly, and secure energy storage systems. Strategies to enhance the capacity of phosphorus-based electrodes, improve cycling stability, and enhance the electrolyte safety of PIBs will be explored. Of paramount

significance, X-ray photoelectron spectroscopy (XPS) has been utilized to reveal essential insights into the dynamic evolution of solid electrolyte interphases on phosphorus-based anodes in organic phosphate-based electrolytes. This approach provides an explanation for the extended cycling stability observed in these systems. Lastly, approaches to enhance the cathode electrode for PIBs will also be discussed.

Invited Speaker II

March 23, 2024 (Saturday) 13:40-14:00 | GMT+8

Venue: Queen III, Level 2

Dr. Kim Yongmin

University of Glasgow, Singapore

Dr. Kim Yongmin is an Assistant Professor at the James Watt School of Engineering, University of Glasgow, specifically in Singapore campus. He completed his PhD in the School of Civil and Environmental Engineering at Yonsei University, Seoul, Korea, in 2015. His research lab, Digital Geotechnical Engineering Lab (DGEL), is focused on Urban Disasters & Sustainable Urban Development. The lab uses deep-layered neural networks, machine learning, extensive laboratory experiments, field testing, and coupled multidisciplinary analyses to conduct their studies. Dr Kim Yongmin's research focuses on unsaturated soil mechanics to solve geotechnical problems associated with tropical residual soils. His research emphasis has been on rainfall-induced landslides, one of the major natural disasters occurring in many parts of the world. He has utilized unsaturated soil mechanics principles to better understand the mechanisms of rainfall-induced slope failures, particularly in tropical residual soils. Dr Kim Yongmin and his team have developed several systems, including the Capillary Barrier System (CBS), GeoBarrier System (GBS) for cover systems and retaining structures, as well as a Slope Management and Susceptibility Geographical Information System. They have also applied unsaturated soil mechanics to soil improvement for tree stability, understanding the effects of rainfall on tree stability, and developed instruments for tree inclinometer with the associated analytics.

Speech Title---Role of Unsaturated Soil Mechanics in Rainfall-induced Slope Failure

Abstract-The principles of unsaturated soil mechanics are essential for understanding various geotechnical problems related to soils above the water table. Though there has been growing interest in using unsaturated soil mechanics to evaluate the behavior of unsaturated soil slopes, we are not paying as much attention as it was meant to be deserved. Hence, this talk will focus on rainfall-induced slope failure and the application of unsaturated soil mechanics to forensic analysis of slope instability.

Invited Speaker III

March 23, 2024 (Saturday) 15:55-16:15 | GMT+8

Venue: Queen III, Level 2

Assoc. Prof. Chian Siau Chen, Darren

National University of Singapore, Singapore

Dr. Chian Siau Chen, Darren is an Associate Professor at the Department of Civil and Environmental Engineering at the National University of Singapore (NUS). Dr. Chian is also the Director of the Centre for Soft Ground Engineering in the university. Dr. Chian obtained his Ph.D. and B.Eng. from Cambridge University and Nanyang Technological University respectively. Dr. Chian actively involves in collaborative research projects with local government agencies to recycle unwanted soils from underground construction projects as land reclamation fill materials. Dr. Chian has also expanded recycling waste material into useful pozzolans in supplementary cementitious material technology. Dr. Chian was named as Asia's Top 10 Innovators under 35 (TR35) by the MIT Technology Review in 2016, GeoSS Promising Young Geotechnical Engineer Award in 2018, Enterprise Singapore SAC Distinguished Award in 2018, Ministry of Transport Distinguished Minister Innovation (Distinguished) Award in 2021, Award Finalist of the Land Transport Excellence Award (Most Innovative Solution) and Prominent Geotechnical Engineer Award in 2022. Dr. Chian is the current President of the Geotechnical Society of Singapore (GeoSS).

Speech Title---Climate Effect on Cementitious Ground Improvement Technology

Abstract-Cement stabilisation of soft ground is a popular ground improvement methodology used worldwide. In tropical regions, the stabilisation of soil at elevated temperature and humidity is little studied. This is further aggravated by limited international standards for cement-soil stabilisation. In classic concrete technology, higher ambient temperature would result in a higher early stage, but lower later age strength as compared to one cured at reference temperature of 23 degree Celsius. This is commonly termed as a cross-over effect. In contrast, strength development of cement-soil stabilisation does not show cross-over effect in this study. Higher unconfined strength with denser microstructure were persistent at both early and later stage of curing owning to clay pozzolanic reaction on top of cement hydration, which infers the benefit of elevated temperature in cement stabilisation in cases of increased climatic temperature.

Wastewater Treatment and Water Quality Analysis Chair: Assoc. Prof. Khyle Glainmer N. Quiton, Mapúa University, Philippines				
	0-12:30 (GMT+8) 23, 2024 (Saturday)	Venue: Queen III, Level 2		
XJ5012-A 11:00-11:15	Optimization of Dual Coagulation Parameters for Turbidity Removal of Philippines' Pasig River Water Using Box-Behnken Design Model Khyle Glainmer N. Quiton, Noreen Caryl G. Reyes, Rance Nicolo S. Villena, and Michelle C. Almendrala Mapúa University, Philippines			
XJ5011-A 11:15-11:30	Degradation of Pyrene in Groundwater of Coking Plant by Ferrous Activated Sustained Release Persulfate Xueqiang Zhu , Qin Qiu, Hong Yang, Lai Zhou, and Qiyan Feng China University of Mining and Technology, China			
XJ5019-A 11:30-11:45	Macrophyte Assisted Vermifiltration for the Treatment of Cattle Feedlot Wastewater Rajneesh Singh, Shruti Singh, and Brijesh Kumar Yadav IIT Roorkee, India			
XJ5013 11:45-12:00	Wastewater Treatment	and Photo-Fenton Oxidation for Real Distillery		
XJ5042-A 12:00-12:15	Effects of co-Existing Parameter (PFOA)an Activated Charcoal Aung Thit Htun and Dao Janjard Chulalongkorn University, Thaila			
XJ5028-A 12:15-12:30	Development of Eutrophication Harshita Modi and M Mansoor Sardar Vallabhbhai National Ins	Ahammed		

Renewable Energy and Electric Motor Technology Chair: Assoc. Prof. Pirat Khunkitti, Khon Kaen University, Thailand				
	0-12:30 (GMT+8) 23, 2024 (Saturday)	Venue: Queen II, Level 2		
XJ5005-A 11:00-11:15	High Torque Density Axial Flux Permanent Magnet Motor for Electric Vehicles Kantapat Tonchua, Apirat Siritaratiwat and Pirat Khunkitti Khon Kaen University, Thailand			
XJ5036-A 11:15-11:30	Concentrated Solar Power Generation in Kuwait Haitham Yousef Safar KOC, Kuwait			
XJ5006-A 11:30-11:45	Optimization Design of Skewed Halbach-Array Permanent Magnet Arrangement in Axial-Flux Permanent Magnet Machine for Torque Capability Improvement Phuson Srikhumphun , Apirat Siritaratiwat, and Pirat Khunkitti Khon Kaen University, Thailand			
XJ5045-A 11:45-12:00	<i>Recyclable Thermoplastic Wind Turbine Blades</i> Edrea Phua Loughborough University, UK			
XJ5010-A 12:00-12:15	Enhanced Model Reference Adaptive System Speed Sensorless Model Predictive Control of an Interior Permanent Magnet Synchronous Motor Using PSO Algorithm Supanat Chamchuen, Apirat Siritaratiwat and Pirat Khunkitti Khon Kaen University, Thailand			
XJ5002-A 12:15-12:30	Dynamic Energy Management Strategy of a Solar-and-Energy Storage-integrated Smart Charging Station Kuo-Yang Wu, Tzu-Ching Tai, Bo-Hong Li and Cheng-Chien Kuo National Taiwan University of Science and Technology, Taiwan			

Infrastructure Engineering and Hydraulic Engineering Chair: Prof. Krishna Kumar Singh, NIT Kurukshetra, India				
	0-15:45 (GMT+8) 23, 2024 (Saturday)	Venue: Queen III, Level 2		
XJ0003 14:00-14:15	A Hybrid Genetic Algorithm - Artificial Neural Network Model for Cost Estimation and Corruption Detection of Public Road Rehabilitation Projects in Quezon City Christopher Jose Carlos and Angelo Benjamin Dizon University of the Philippines, Philippines			
XJ0008 14:15-14:30	An Integrated Design Method for Public Buildings with Digital Technology Collaboration: Taking Three Practical Projects as Examples Di Ai Architects & Engineers Co., LTD. of Southeast University, China			
XJ0028 14:30-14:45	 Mitigation Measures to Protect the Quality of Life in an Expansion of Thailand's Mega Port Cherdvong Saengsupavanich, Lanlila Chitsom, Sarinya Sanitwong-Na-Ayutthaya, Phansak Iamraksa, Salisa Wangtong, Worawut Poma, Naruphun Chotechuang and Nuttikan Saejew Kasetsart University, (Sri Racha Campus), Thailand 			
XJ0030 14:45-15:00	Local Scour Studies on Spur Dyke with Grouped Piles Arun Goel and Neeraj Pandey National Institute of Technology Kurukshetra, India			
XJ0017 15:00-15:15	Infrastructure and Sustainable Bangkok Ketsutee Ngamgwong and Piya Kasetsart University, Thailand	Development Goals: Unveiling Latent Factors in nut Wethyavivorn		
XJ0038-A 15:15-15:30	Advancing Rainfall Intensity-Duration-Frequency (IDF) Curves: A Regional Pooling Group Approach for Improved Accuracy in Singapore Samiran Das and Yongmin Kim University of Glasgow, Singapore			
XJ0053 15:30-15:45	Urban Flood Resilience: A Con with Diverse Vegetation Krishna Kumar Singh and Sando National Institute of Technology	-		

Properties of Building Materials and Structures Chair: Prof. Joseph Kim, California State University Long Beach, USA				
	0-15:45 (GMT+8) 23, 2024 (Saturday)	Venue: Queen II, Level 2		
XJ0019 14:00-14:15	Influence of Nano Ceramic Waste Powder on the Properties of Interlocking Bricks Niragi Dave, Nency Chavda and Dorji Pandit Deendayal Energy University, India			
XJ0022-A 14:15-14:30	Pore Structure of Alkali Residue-based Lightweight Soil and Its Influence on Physical and Mechanical Properties Based on X-ray Computed Tomography Zhengcheng Wang Southeast University, China			
XJ0013-A 14:30-14:45	A Study of the Effect of Geopolymer Repair Materials on Interfacial Bonding Properties Ke Wang Xi'an University of Architecture and Technology, China			
XJ0023-A 14:45-15:00	An Innovative MgO-carbonated Composite Pile in Ground Improvement Yizhao Liu Southeast University, China			
XJ0048 15:00-15:15	Self-Compacting Geo-Polymer Concrete: A Critical Review Huma Afrin, Alfia Bano and S.V. Deo National Institute of Technology, India			
XJ0052 15:15-15:30	Preparation of Porous Concrete Suitable for Vegetation Growth: An Approach Towards Green Infrastructure John Bosco Niyomukiza, Amin Eisazadeh and Som-nuk Tangtermsirikul Thammasat University, Thailand			
XJ0012 15:30-15:45	Experimental and Numerical Study of Full-size Reinforced Geopolymer Concrete Beams Borui Wu and Yao Yao Xi'an University of Architecture and Technology, China			

Environmental Pollution Control and Resource Management Chair: Assoc. Prof. Kwun Nam HUI, University of Macau, China				
	.5-18:30 (GMT+8) 23, 2024 (Saturday)	Venue: Queen III, Level 2		
XJ5031-A 16:15-16:30	Hydrochloric Acid Leaching of Lithium Iron Batteries Yu-Rui Huang, Ching-Hwa Lee, Lim, Kimberly Hannah T., and Tz-Leun Huang Da-Yeh University, Taiwan			
XJ5046-A 16:30-16:45	Longgang Tao	ture and Carbonation , Qing Yue Kouk, Jiawei Liu, Cun Wang, Jie Bu, nemicals, Energy and Environment, Singapore		
XJ5043-A 16:45-17:00	Reversible Detection of Heavy Metal Ions in Blood and Water Utilizing Polypropylene Waste Sweety Rani, Dheeraj Kumar, Bhanu Nandan, and Rajiv K. Srivastava Indian Institute of Technology Delhi, India			
XJ5032-A 17:00-17:15	Multicomponent Heterojunction Photocatalysts via Non-noble Metal Plasmatic Nanoparticles Promote the Photoreduction of CO_2 to C_2H_5OH Haitao Yu and Yimin Xuan Nanjing University of Aeronautics and Astronautics, China			
XJ5025-A 17:15-17:30	The Spatiotemporal Pattern of Methane Emissions Embodied in the Global Natural Gas Trade SiJia Gao, HaoRan Mao, and Bo Zhang China University of Petroleum (East China), China			
XJ5033-A 17:30-17:45	Comparison of Photocatalytic CO ₂ Reduction Performance of ZnIn ₂ S ₄ Catalyst in Liquid Suspension and Three-phase Reaction Mode Jin Wang and Yimin Xuan Nanjing University of Aeronautics and Astronautics, China			
XJ0070 17:45-18:00	Assessment of Life Cycle Energy and Green House Gas of a Two Storied Residential building in Central India Using Open Source Data A D Prasad, Ajay Vikram Ahirwar and Padma Ganasala National Institute of Technology Raipur, India			
XJ5037-A 18:00-18:15	Pd Deposited FeVO ₄ /ZrO ₂ Visible Active Photocatalysts for Organic Pollutant Degradation Naveen Kumar and Monika Kumari Maharshi Dayanand University, India			
XJ0056 18:15-18:30	Raipur City, India	esh Chaturthi, Dussehra and Diwali Festival for wara, Vishal Kumara and Sahil Ali y Raipur, India		

Session 6

Seismic Response of Engineering Structures and Construction Management Chair: Assoc. Prof. Chian Siau Chen, Darren, National University of Singapore, Singapore

	.5-18:00 (GMT+8) 23, 2024 (Saturday)	Venue: Queen II, Level 2		
XJ0045-A 16:15-16:30	Impact of Train Formation in Numerical Simulation on Operational Safety Analysis of Trains under Uniform Seismic Motion Kangming Zhong Beijing University of Technology, China			
XJ0015-A 16:30-16:45	Development of New Passive Vibration Control System using Pulley Mechanism Installed at Continuous Multiple-story Majima Ryo Toyohashi University of Technology, Japan			
XJ0046-A 16:45-17:00	Considering a Hierarchical Estimating Fragility for Real Gra Zhuo Song and Xiaojun Li Beijing University of Technology			
XJ0050 17:00-17:15	from the Military Coup	estigating New Normal Construction Risks Arising echapeeraparnich, Nathee Athigakunagorn and		
XJ0061-A 17:15-17:30	Integrated Assessment of Seisr Machine Learning Approach Jinpeng Zhao and Xiaojun Li Beijing University of Technology	nic Economic Impacts: An Interpretable Ensemble y, China		
XJ0024-A 17:30-17:45	Recent Status and Direction Management Works Joseph J. Kim and Vishwajit S. I California State University Long			
XJ0018 17:45-18:00	<i>Explore Owner Organizational C</i> Panorm Chanderm and Piyanut Kasetsart University, Thailand	Capability in Thai Construction Industry t Wethyavivorn		

Poster Session

Urban Planning and Environmental Pollution Control				
	0-18:00 (GMT+8) 23, 2024 (Saturday)	Venue: Queen III, Level 2		
XJ1002	Summer Microclimate of Urban Built Environment Research Shouli Yi, Di Hu, Yuanbo Tuo and Suping Gao Sichuan Normal University, China			
XJ0020	Gang Liu, Xinchen Jiang, Meng	ods Based on Interactive Web Application Yang, Siyu Chen, Yi Liu Design and Research Institute Corp.Ltd, China		
XJ5016-A	Inhibiting Acidithiobacillus Ferrooxidans through Microbial Production of Low-Molecular-Weight Organic Acids to Prevent Acid Mine Drainage Generation in High-Sulfur Coal Mines Wenbo Li and Qiyan Feng China University of Mining and Technology, China			
XJ1003	Research on the Availability of Outdoor Space Under the Background of Aging Shouli Yi, Di Hu, Guo Chen, Yuanbo Tuo and Suping Gao Sichuan Normal University, Chengdu, China			
XJ5018-A	Development of ZIF-67@3D Platform Electrode for Utilization of MOF as a Catalyst for Water Electrolysis YuJin Jo and JongSung Park Gyeongsang National University, Republic of Korea			
XJ5023-A	Optimal Dispatch for Microgrid Energy Management System Based on Firefly Moving Regression Strategy Cheng-I Chen National Central University, Taiwan			
XJ0064-A	Seismic Performance of Prece Connections Xiaolong Si Beijing University of Technology	ast Double-column Pier with UHPC-filled Socket y, China		
XJ5015-A	Groundwater Pollution and Con Qiyan Feng, Xueqiang Zhu, Wer China University of Mining and			
XJ0011	Numerical Study of Cold-for Long-span Structures Johnny Setiawan, Ridho Bayuaj Institut Teknologi Sepuluh Nope			

Building Materials, Building Environment, and Construction Management Chair: Assoc. Prof. Osama Mohammed Ahmed Daoud, university of Khartoum, Sudan			
	-16:15 (GMT+8)	Room ID: 890 8696 8540	
	24, 2024 (Sunday)	https://us02web.zoom.us/j/89086968540	
XJ0057 13:30-13:45		ough Rice Husk Ash Incor-poration: A Sustainable	
XJ0062-A 13:45-14:00			
XJ0043 14:00-14:15	Elements for Low to Mid-rise	e L. Silva, Russell L. Diona and Kevin Lawrence M. de	
XJ0025 14:15-14:30	Identification of Green Construction Indicators and Project Performance in Green Construction Based Project Management using the Delphi Method I G A Istri Mas Pertiwi, Yulvi Zaika, Kartika Puspa Negara, Solimun and M Agung Wibowo Brawijaya University, Indonesia		
XJ0044 14:30-14:45	Influence of Factors Affectin Network-Based Sensitivity Ind	ng the Delay in Bridge Construction using Neural Nex Method L. Silva, Russell L. Diona and Kevin Lawrence M. de	
XJ1005 14:45-15:00		System and Upper Reservoir Leakage of the on in Jiangyou, China Sijia Li and Nengfeng Wang	
XJ1006 15:00-15:15	(GBRTs): a Systematic Review	I C. Ezema, Eziyi O. Ibem, Chinwe Sam-amobi and	
XJ0067 15:15-15:30	Analytical Hierarchy Process	m Wahyudi, Henny Pratiwi Adi and R S Wahyudi	
XJ1007 15:30-15:45	Thermal Comfort in Education	-	

XJ1010	Indicators to Check Global Optimality of Design Solution of Looped Water
15:45-16:00	Distribution Networks
	Rajesh Gupta, Laxmi Gangwani and Shilpa Dongre
	Visvesvaraya National Institute of Technology (VNIT), India
XJ5004-A	Recycling of Waste Paper to Convert into Environmental Friendly Mosquito
16:00-16:15	Replant Sticks Using Natural Azadirachtin
	Vaibhav Sapkal, Pooja Kharra, Kevin Somra, Rahul Sharma and V. K. Dogra
	Shri Mata Vaishno Devi University (SMVDU), Katra (J&K), India

Engine		nical Properties of Building Structures ssi, University of Catania, Italy	
16:30)-18:30 (GMT+8)	Room ID: 890 8696 8540	
March	24, 2024 (Sunday)	https://us02web.zoom.us/j/89086968540	
XJ0054 16:30-16:45	Inspection, Appraisal, and Rel Mine Sen Li Shandong Business Institute,	habilitation Plan for the Main Shaft Tower at a Gold China	
XJ0042 16:45-17:00	 Flexural Behavior of Indonesian Berua Timber: Experimental Test and Numerical Analysis Yosafat Aji Pranata, Anang Kristianto and Novi Universitas Kristen Maranatha, Indonesia 		
XJ0005 17:00-17:15	Performance Degradation of I	Youquan, WU Bitao, LIU Xuzheng and REN Liang	
XJ0026 17:15-17:30	Compressive Bearing Capacity	Influence of Plate Position Parameters on the of Concrete Expanded Plate Double-Pile ei, Zhai Lian and Zhang Ji yuan	
XJ0058 17:30-17:45	Based on Parametric Analysis	bal Stability for Single-layer Cylindrical Grid Shells and Regression Analysis aozhi LUO, Hui-Bin GE and Yanbin SHEN	
XJ0041 17:45-18:00	Yosafat Aji Pranata, Novi, De Angela Hagiyanto Universitas Kristen Maranatha		
XJ0035 18:00-18:15	Ultrasonic Waves	RP Retrofitted Concrete Beams using Nonlinear nmad Hany Yassin, Naser Khaled Mohammad, nd Miryan Nabil Sweid	
XJ0002 18:15-18:30	Loads: Experimental Study	rced Concrete Spliced Beams Subjected to Repeated elawy, Alaa Jaleel Naji and Dheyaa A. N. Alobaidi q	

ICOCE	AREEE	2024	
		Note	

ICOCE AREEE 2024 ----------

Licence to Publish Proceedings Papers

SPRINGER NATURE

Authors')

Licensee	Springer Nature Singapore Pte Ltd.	(the 'Licensee')
Title of the Proceedings Volume/Edited Book or Conference Name:	Proceedings of the 8th International Conference on Civil Engineering - ICOCE 2024, 22–24 March, Singapore	(the 'Volume')
Volume Editor(s) Name(s):	Eric Strauss	
Proposed Title of the Contribution:	Shear Strength of Red Meranti (Shorea spp.) Timber at An Angle to The Grain	(the 'Contribution')
Series: The Contribution may be published in the following series	A Springer book series Lecture Notes in Civil Engineering	
Author(s) Full Name(s):	Yosafat Aji Pranata; Novi; Deni Setiawan; Vivi Arisandhy; Hendry Wong; Sofhie Angela Hagiyanto	(the 'Author')
When Author is more than one pe otherwise indicated.	erson the expression "Author" as used in this Agreement will	apply collectively unless
Corresponding Author Name:	Yosafat Aji Pranata	
Instructions for Authors	https://www.springer.com/gp/authors-	(the 'Instructions for

editors/conference-proceedings/conference-proceedings-

guidelines

1 Grant of Rights

- a) For good and valuable consideration, the Author hereby grants to the Licensee the perpetual, exclusive, world-wide, assignable, sublicensable and unlimited right to: publish, reproduce, copy, distribute, communicate, display publicly, sell, rent and/or otherwise make available the contribution identified above, including any supplementary information and graphic elements therein (e.g. illustrations, charts, moving images) (the 'Contribution') in any language, in any versions or editions in any and all forms and/or media of expression (including without limitation in connection with any and all end-user devices), whether now known or developed in the future. Without limitation, the above grant includes: (i) the right to edit, alter, adapt, adjust and prepare derivative works; (ii) all advertising and marketing rights including without limitation in relation to social media; (iii) rights for any training, educational and/or instructional purposes; (iv) the right to add and/or remove links or combinations with other media/works; and (v) the right to create, use and/or license and/or sublicense content data or metadata of any kind in relation to the Contribution (including abstracts and summaries) without restriction. The above rights are granted in relation to the Contribution as a whole or any part and with or in relation to any other works.
- b) Without limiting the rights granted above, Licensee is granted the rights to use the Contribution for the purposes of analysis, testing, and development of publishing- and research-related workflows, systems, products, projects, and services; to confidentially share the Contribution with select third parties to do the same; and to retain and store the Contribution and any associated correspondence/files/forms to maintain the historical record, and to facilitate research integrity investigations. The grant of rights set forth in

this clause (b) is irrevocable.

c) If the Licensee elects not to publish the Contribution for any reason, all publishing rights under this Agreement as set forth in clause 1a above will revert to the Author.

2 Copyright

Ownership of copyright in the Contribution will be vested in the name of the Author. When reproducing the Contribution or extracts from it, the Author will acknowledge and reference first publication in the Volume.

3 Use of Contribution Versions

- a) For purposes of this Agreement: (i) references to the "Contribution" include all versions of the Contribution; (ii) "Submitted Manuscript" means the version of the Contribution as first submitted by the Author prior to peer review; (iii) "Accepted Manuscript" means the version of the Contribution accepted for publication, but prior to copy-editing and typesetting; and (iv) "Version of Record" means the version of the Contribution published by the Licensee, after copy-editing and typesetting. Rights to all versions of the Manuscript are granted on an exclusive basis, except for the Submitted Manuscript, to which rights are granted on a non-exclusive basis.
- b) The Author may make the Submitted Manuscript available at any time and under any terms (including, but not limited to, under a CC BY licence), at the Author's discretion. Once the Contribution has been published, the Author will include an acknowledgement and provide a link to the Version of Record on the publisher's website: "This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in [insert volume title], and is available online at https://doi.org/[insert DOI]".
- The Licensee grants to the Author (i) the right to make the Accepted Manuscript available c) on their own personal, self-maintained website immediately on acceptance, (ii) the right to make the Accepted Manuscript available for public release on any of the following twelve (12) months after first publication (the "Embargo Period"): their employer's internal website; their institutional and/or funder repositories. Accepted Manuscripts may be deposited in such repositories immediately upon acceptance, provided they are not made publicly available until after the Embargo Period. The rights granted to the Author with respect to the Accepted Manuscript are subject to the conditions that (i) the Accepted Manuscript is not enhanced or substantially reformatted by the Author or any third party, and (ii) the Author includes on the Accepted Manuscript an acknowledgement in the following form, together with a link to the published version on the publisher's website: "This version of the contribution has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/[insert DOI]. Use of this Accepted Version is subject to the publisher's Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms".

Under no circumstances may an Accepted Manuscript be shared or distributed under a Creative Commons or other form of open access licence.

Any use of the Accepted Manuscript not expressly permitted under this subclause (c) is

subject to the Licensee's prior consent.

- d) The Licensee grants to Author the following non-exclusive rights to the Version of Record, provided that, when reproducing the Version of Record or extracts from it, the Author acknowledges and references first publication in the Volume according to current citation standards. As a minimum, the acknowledgement must state: "First published in [Volume, page number, year] by Springer Nature".
 - i. to reuse graphic elements created by the Author and contained in the Contribution, in presentations and other works created by them;
 - the Author and any academic institution where they work at the time may reproduce the Contribution for the purpose of course teaching (but not for inclusion in course pack material for onward sale by libraries and institutions);
 - iii. to reuse the Version of Record or any part in a thesis written by the same Author, and to make a copy of that thesis available in a repository of the Author(s)' awarding academic institution, or other repository required by the awarding academic institution. An acknowledgement should be included in the citation: "Reproduced with permission from Springer Nature";
 - iv. to reproduce, or to allow a third party to reproduce the Contribution, in whole or in part, in any other type of work (other than thesis) written by the Author for distribution by a publisher after an embargo period of 12 months; and
 - v. to publish an expanded version of their Contribution provided the expanded version
 (i) includes at least 30% new material (ii) includes an express statement specifying the incremental change in the expanded version (e.g., new results, better description of materials, etc.).

4 Warranties & Representations

Author warrants and represents that:

a)

- i. the Author is the sole copyright owner or has been authorised by any additional copyright owner(s) to grant the rights defined in clause 1,
- ii. the Contribution does not infringe any intellectual property rights (including without limitation copyright, database rights or trade mark rights) or other third party rights and no licence from or payments to a third party are required to publish the Contribution,
- iii. the Contribution has not been previously published or licensed, nor has the Author committed to licensing any version of the Contribution under a licence inconsistent with the terms of this Agreement,
- iv. if the Contribution contains materials from other sources (e.g. illustrations, tables, text quotations), Author has obtained written permissions to the extent necessary from the copyright holder(s), to license to the Licensee the same rights as set out in clause 1 but on a non-exclusive basis and without the right to use any graphic

elements on a stand-alone basis and has cited any such materials correctly;

- b) all of the facts contained in the Contribution are according to the current body of research true and accurate;
- c) nothing in the Contribution is obscene, defamatory, violates any right of privacy or publicity, infringes any other human, personal or other rights of any person or entity or is otherwise unlawful and that informed consent to publish has been obtained for any research participants;
- d) nothing in the Contribution infringes any duty of confidentiality owed to any third party or violates any contract, express or implied, of the Author;
- e) all institutional, governmental, and/or other approvals which may be required in connection with the research reflected in the Contribution have been obtained and continue in effect;
- f) all statements and declarations made by the Author in connection with the Contribution are true and correct;
- g) the signatory who has signed this Agreement has full right, power and authority to enter into this Agreement on behalf of all of the Authors; and
- h) the Author complies in full with: i. all instructions and policies in the Instructions for Authors, ii. the Licensee's ethics rules (available at <u>https://www.springernature.com/gp/authors/book-authors-code-of-conduct</u>), as may be updated by the Licensee at any time in its sole discretion.

5 Cooperation

- a) The Author will cooperate fully with the Licensee in relation to any legal action that might arise from the publication of the Contribution, and the Author will give the Licensee access at reasonable times to any relevant accounts, documents and records within the power or control of the Author. The Author agrees that any Licensee affiliate through which the Licensee exercises any rights or performs any obligations under this Agreement is intended to have the benefit of and will have the right to enforce the terms of this Agreement.
- b) Author authorises the Licensee to take such steps as it considers necessary at its own expense in the Author's name(s) and on their behalf if the Licensee believes that a third party is infringing or is likely to infringe copyright in the Contribution including but not limited to initiating legal proceedings.

6 Author List

Changes of authorship, including, but not limited to, changes in the corresponding author or the sequence of authors, are not permitted after acceptance of a manuscript.

7 Post Publication Actions

The Author agrees that the Licensee may remove or retract the Contribution or publish a correction or other notice in relation to the Contribution if the Licensee determines that such

actions are appropriate from an editorial, research integrity, or legal perspective.

8 Controlling Terms

The terms of this Agreement will supersede any other terms that the Author or any third party may assert apply to any version of the Contribution.

9 Governing Law

This Agreement shall be governed by, and shall be construed in accordance with, the laws of the Republic of Singapore. The courts of Singapore, Singapore shall have the exclusive jurisdiction.

Signed for and on behalf of the Author	Print Name:		Date:	
Ngm	Yosafat Aji Pranata		29 April 2024	
Address:	Universitas Kristen Maranat	Universitas Kristen Maranatha, Jl. Suria Sumantri No. 65, Bandung, West Java, 40164, Indonesia		
Email:	yosafat.ap@gmail.com	yosafat.ap@gmail.com		

Springer Nature Singapore Pte Ltd., 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore ER_Book_ProceedingsPaper_LTP_ST_v.1.0 (10_2021)

Lecture Notes in Civil Engineering

Eric Strauss Editor

Proceedings of the 8th International Conference on Civil Engineering

Lecture Notes in Civil Engineering

Volume 539

Series Editors

Marco di Prisco, Politecnico di Milano, Milano, Italy

Sheng-Hong Chen, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, China

Ioannis Vayas, Institute of Steel Structures, National Technical University of Athens, Athens, Greece

Sanjay Kumar Shukla, School of Engineering, Edith Cowan University, Joondalup, Australia

Anuj Sharma, Iowa State University, Ames, USA

Nagesh Kumar, Department of Civil Engineering, Indian Institute of Science Bangalore, Bengaluru, India

Chien Ming Wang, School of Civil Engineering, The University of Queensland, Brisbane, Australia

Zhen-Dong Cui, China University of Mining and Technology, Xuzhou, China

Xinzheng Lu, Department of Civil Engineering, Tsinghua University, Beijing, China

Lecture Notes in Civil Engineering (LNCE) publishes the latest developments in Civil Engineering—quickly, informally and in top quality. Though original research reported in proceedings and post-proceedings represents the core of LNCE, edited volumes of exceptionally high quality and interest may also be considered for publication. Volumes published in LNCE embrace all aspects and subfields of, as well as new challenges in, Civil Engineering. Topics in the series include:

- Construction and Structural Mechanics
- Building Materials
- Concrete, Steel and Timber Structures
- Geotechnical Engineering
- Earthquake Engineering
- Coastal Engineering
- Ocean and Offshore Engineering; Ships and Floating Structures
- Hydraulics, Hydrology and Water Resources Engineering
- Environmental Engineering and Sustainability
- Structural Health and Monitoring
- Surveying and Geographical Information Systems
- Indoor Environments
- Transportation and Traffic
- Risk Analysis
- Safety and Security

To submit a proposal or request further information, please contact the appropriate Springer Editor:

- Pierpaolo Riva at pierpaolo.riva@springer.com (Europe and Americas);
- Swati Meherishi at swati.meherishi@springer.com (Asia—except China, Australia, and New Zealand);
- Wayne Hu at wayne.hu@springer.com (China).

All books in the series now indexed by Scopus and EI Compendex database!

Eric Strauss Editor

Proceedings of the 8th International Conference on Civil Engineering

ICOCE 2024, 22-24 March, Singapore

Editor Eric Strauss Michigan State University Dimondale, MI, USA

ISSN 2366-2557 ISSN 2366-2565 (electronic) Lecture Notes in Civil Engineering ISBN 978-981-97-5909-5 ISBN 978-981-97-5910-1 (eBook) https://doi.org/10.1007/978-981-97-5910-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

Conference Committees

Conference Chair

Prof. Zongjin Li, University of Macau, China

Conference Co-chair

Prof. Shane Snyder, Nanyang Technological University, Singapore

Program Chairs

Prof. Joseph Kim, California State University Long Beach, USA Assoc. Prof. Chian Siau Chen, National University of Singapore, Singapore Prof. Prashant Kumar, University of Surrey, UK Prof. Pen-Chi Chiang, National Taiwan University, Taiwan

Conference Local Chair

Assoc. Prof. Ong Ghim Ping Raymond, National University of Singapore, Singapore

Publication Chair

Prof. Eric Strauss, Michigan State University, USA

Technical Program Committees

Prof. Akmal Abdelfatah, American University of Sharjah, UAE Assoc. Prof. Osama Mohammed Ahmed Daoud, Director of Building and Roads Research Institute at University of Khartoum, Sudan Dr. Fei Jin, Cardiff University, Wales, UK Dr. Yongmin Kim, University of Glasgow Singapore, Singapore Dr. Saber Moradi, Toronto Metropolitan University, Canada Assoc. Prof. Pier Paolo Rossi, University of Catania, Italy Assoc. Prof. June Tay, Singapore University of Social Sciences, Singapore Dr. Yan Xiao, Dalian University of Technology, China Dr. Shabir Hussain, Prince Sultan University, Saudi Arabia Assoc. Prof. Ben Ammar Ben Khadda, University of Biskra, Algeria Assoc. Prof. Goutam Ghoshb, Motilal Nehru National Institute of Technology Allahabad, India Dr. Alain Kusmoko, University of Wollongong, Australia Assoc. Prof. Chuang-Hung Lin, National United University, Taiwan Dr. Xin Ge, Architects and Engineers Co., Ltd. of Southeast University, China Dr. Piyanut Wethyavivorn, Kasetsart University, Thailand Assoc. Prof. Pirat Khunkitti, Khon Kaen University, Thailand Assoc. Prof. M. Hasanuzzaman, University of Malaya, Malaysia Prof. Martin Dornheim, University of Nottingham, UK Dr. Mohamad Darwish, Universiti Teknologi Malaysia, Malaysia Dr. Chan Cho Yin, Technological and Higher Education Institute of Hong Kong, China Assoc. Prof. Marcello Ruberti, University of Lecce, Italy Dr. Jinsheng You, University of Nebraska, USA Assoc. Prof. Cherdvong Saengsupavanich, Kasetsart University, Thailand Assoc. Prof. Bashir Saleh, Libyan Academy, Libya Dr. Yousef Algaryouti, American University of the Middle East, Kuwait Dr. Samiran Das, University of Glasgow Singapore, Singapore Dr. Reza Soleimanpour, Australian University, Kuwait Dr. S. M. Anas, Jamia Millia Islamia, India Prof. Krishna Kumar Singh, National Institute of Technology Kurukshetra, India Dr. Baoxin Liu, Future City Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, China

Prof. Ramesh Srikonda, School of Planning and Architecture, India

Preface

The 2024 8th International Conference on Civil Engineering (ICOCE 2024) was successfully and physically held in Singapore during March 22–24, 2024. This event has provided a unique opportunity for international scholars, researchers and practitioners working in a wide variety of scientific areas with a common interest in civil engineering to interact and share knowledge.

This year, there were more than 40 participants in total. They were from China, Singapore, USA, Philippines, India, Thailand, Kuwait, UK, Japan, Korea, Indonesia, etc. The conference has included discussions on topics such as wastewater treatment and water quality analysis, renewable energy and electric motor technology, infrastructure engineering and hydraulic engineering, properties of building materials and structures, environmental pollution control and resource management, seismic response of engineering structures and construction management, building materials, building environment, and construction management, engineering vibration and mechanical properties of building structures. In addition, two excellent keynote speeches were delivered by Prof. Joseph Kim from California State University Long Beach, USA, and Assoc. Prof. Ong Ghim Ping Raymond from the National University of Singapore, Singapore. After that, Assoc. Prof. Kwun Nam Hui from University of Macau, China, Assoc. Prof. Chian Siau Chen, Darren from the National University of Singapore, Singapore, and Dr. Kim Yongmin from the University of Glasgow, Singapore, gave outstanding invited speeches. All the speeches and presentations focused on the latest information and most innovative developments in their respective expertise areas of civil engineering.

ICOCE 2024 has received more than 70 papers. Thirty-six papers were accepted for publication in the Conference Proceedings. All the submissions were peer reviewed by Conference Committees. The papers selected depended on their originality, language, quality, and their relevancy to the conference. The proceeding is divided into six chapters, including engineering vibration and mechanical properties of building structures, mechanical properties of concrete structures, hydraulic engineering and flood control, urban planning and infrastructure engineering, properties of building materials and structures, building environment and environmental impact assessment of buildings, engineering project management and optimization. We are sure that the proceedings will serve as an important research tool to become a source of references and knowledge, which will lead to not only scientific and engineering findings but also to new products and technologies.

Finally, we would like to deeply express our heartfelt appreciation to all our delegates, keynote speakers, invited speakers, session chairs, and international reviewers as well as all the committee members involved in the technical evaluation of conference papers and in the conference organization for your enthusiasm, effort, and great contributions. Apart from that, we would like to extend our thanks to all the authors and external reviewers for your willingness to make the conference a worthwhile experience. It is your recognized competence, enthusiasm, valuable time, and expertise that have enabled us to prepare and hold the conference and make it a great success.

Dimondale, USA

Prof. Eric Strauss

Contents

Engineering Vibration and Mechanical Properties of Building Structures

Research on Seismic Performance of Existing Skew BridgesConsidering Performance Degradation of Laminated BearingsGang Wu, Yiqin Wang, Youquan Zou, Bitao Wu, Xuzheng Liu,and Liang Ren	3
Numerical Study of Cold-Formed Steel Built-Up CompressionMembers for Long-Span StructuresJohnny Setiawan, Ridho Bayuaji, and M. Arif Rohman	19
Inspection, Appraisal, and Rehabilitation Plan for the Main Shaft Tower at a Gold Mine Sen Li	33
Evaluation Equations of Global Stability for Single-LayerCylindrical Grid Shells Based on Parametric Analysisand Regression AnalysisBaoxin Liu, Pei-Shan Chen, Yaozhi Luo, Hui-Bin Ge, and Yanbin Shen	49
Flexural Behavior of Indonesian Berua Timber: ExperimentalTest and Numerical AnalysisYosafat Aji Pranata, Anang Kristianto, and Novi	61
Mechanical Properties of Concrete Structures	
Experimental and Numerical Study of Full-Size Reinforced Geopolymer Concrete Beams Borui Wu and Yao Yao	75

Structural Behavior of Reinforced Concrete Spliced Beams Subjected to Repeated Loads: An Experimental Study Alaa Hassoon, Haider M. Al-Jelawy, Alaa Jaleel Naji, and Dheyaa A. N. Alobaidi	87
Theoretical Study on the Influence of Plate Position Parameterson the Compressive Bearing Capacity of Concrete Expanded PlateDouble PileHanyuan Chang, Yongmei Qian, Lian Zhai, and Ji Yuan Zhang	101
Detecting Debonding in FRP Retrofitted Concrete Beams Using Nonlinear Ultrasonic Waves Reza Soleimanpour, Mohammad Hany Yassin, Naser Khaled Mohammad, Mohammad Khaleel Bo Arki, and Miryan Nabil Sweid	113
CFRP Strengthening of Corroded Short Thin-Walled Steel Tubular Columns Filled with Concrete Under Direct Loading Ali Hameed Aziz and Zainab Faiq Yawer	127
Hydraulic Engineering and Flood Control	
Selection of Highway Underpass Accessibility Solution for Flooded Area Using Analytical Hierarchy Process Method Danang Atmodjo, Slamet Imam Wahyudi, Henny Pratiwi Adi, and Rahmatia Sarah Wahyudi	143
Local Scour Studies on Spur Dyke with Grouped Piles	153
Analysis of Karst Water System and Upper Reservoir Leakage of the Pumped-Storage Power Station in Jiangyou, China Chunwen Chen, Xingcan Wei, Sijia Li, and Nengfeng Wang	167
Indicators to Check Global Optimality of Design Solution of Looped Water Distribution Networks Rajesh Gupta, Laxmi Gangwani, and Shilpa Dongre	181
Urban Flood Resilience: A Comparative Exploration of Rain Garden Infiltration with Diverse Vegetation Krishna Kumar Singh and Sandeep Kumar	191
Urban Planning and Infrastructure Engineering	
Generative Urban Design Methods Based on Interactive Web Application Gang Liu, Xinchen Jiang, Meng Yang, Siyu Chen, and Yi Liu	209

Contents

Research on the Availability of Outdoor Space Underthe Background of AgingShouli Yi, Di Hu, Guo Chen, Yuanbo Tuo, and Suping Gao	221
Mitigation Measures to Protect the Quality of Life in an Expansion of Thailand's Mega Port Cherdvong Saengsupavanich, Lanlila Chitsom, Sarinya Sanitwong-Na-Ayutthaya, Phansak Iamraksa, Salisa Wangtong, Worawut Poma, Naruphun Chotechuang, and Nuttikan Saejew	231
Preparation of Porous Concrete Suitable for Vegetation Growth: An Approach Toward Green Infrastructure John Bosco Niyomukiza, Amin Eisazadeh, and Somnuk Tangtermsirikul	245
An Integrated Design Method for Public Buildings with Digital Technology Collaboration: Taking Three Practical Projects as Examples Di Ai and Xin Ge	255
Infrastructure and Sustainable Development Goals: UnveilingLatent Factors in BangkokKetsutee Ngamgwong and Piyanut Wethyavivorn	271
Properties of Building Materials and Structures	
Properties of Building Materials and Structures Influence of Nanoceramic Waste Powder on the Properties of Interlocking Bricks Niragi Dave, Nency Chavda, and Dorji	285
Influence of Nanoceramic Waste Powder on the Properties of Interlocking Bricks	285 295
Influence of Nanoceramic Waste Powder on the Properties of Interlocking Bricks Niragi Dave, Nency Chavda, and Dorji Self-compacting Geopolymer Concrete: A Critical Review	
Influence of Nanoceramic Waste Powder on the Properties of Interlocking Bricks Niragi Dave, Nency Chavda, and Dorji Self-compacting Geopolymer Concrete: A Critical Review Huma Afrin, Alfia Bano, and S. V. Deo Optimizing Soil Strength Through Rice Husk Ash Incorporation: A Sustainable Geotechnical Solution	295
Influence of Nanoceramic Waste Powder on the Properties of Interlocking Bricks Niragi Dave, Nency Chavda, and Dorji Self-compacting Geopolymer Concrete: A Critical Review Huma Afrin, Alfia Bano, and S. V. Deo Optimizing Soil Strength Through Rice Husk Ash Incorporation: A Sustainable Geotechnical Solution Abdelmageed Atef and Zakaria Hossain Shear Strength of Red Meranti (Shorea Spp.) Timber at an Angle to the Grain Yosafat Aji Pranata, Novi, Deni Setiawan, Vivi Arisandhy,	295 307

Assessment of Life Cycle Energy and Green House Gas of a Two-Storied Residential Building in Central India Using Open Source Data	337
A. D. Prasad, Ajay Vikram Ahirwar, and Padma Ganasala	007
Impact of Building Plan Shape on Natural Ventilation Efficiency for Thermal Comfort in Educational Facilities: A Post-occupancy Evaluation	355
Emeka J. Mba, Francis O. Okeke, Peter I. Oforji, Ikechukwu W. Ozigbo, Ezema C. Emmanuel, and Chinelo A. Ozigbo	
Noise Monitoring During Ganesh Chaturthi, Dussehra, and DiwaliFestival for Raipur City, IndiaA. D. Prasad, Ajay Vikram Ahirwar, Vishal Kumar, and Sahil Ali	371
Engineering Project Management and Optimization	
A Hybrid Genetic Algorithm—Artificial Neural Network Model for Cost Estimation and Corruption Detection of Public Road Rehabilitation Projects in Quezon City Christopher Jose C. Carlos and Angelo Benjamin D. Dizon	385
Influence of Factors Affecting the Delay in Bridge ConstructionUsing Neural Network-Based Sensitivity Index MethodKarlo Allen R. Pieldad, Dante L. Silva, Russell L. Diona,and Kevin Lawrence M. de Jesus	401
Explore Owner Organizational Capability in Thai ConstructionIndustryPanorm Chanderm and Piyanut Wethyavivorn	413
Identification of Green Construction Indicators and ProjectPerformance in Green Construction Based Project ManagementUsing the Delphi MethodUsing the Delphi MethodI. G. A. Istri Mas Pertiwi, Yulvi Zaika, Kartika Puspa Negara,Solimun, and M. Agung Wibowo	429
Artificial Neural Network Prediction of Total Construction Cost Using Building Elements for Low- to Mid-Rise Buildings Abo Yasser L. Manalindo, Dante L. Silva, Russell L. Diona, and Kevin Lawrence M. de Jesus	441

Contents

Comparative Analysis of the Features of Major Green Building	
Rating Tools (GBRTs): A Systematic Review	453
Francis O. Okeke, Emmanuel C. Ezema, Eziyi O. Ibem,	
Chinwe Sam-amobi, and Abdullahi Ahmed	
Building in Uncertain Time: Investigating New Normal	
Constant of an Distant Antician from the Millian Course	471

Shear Strength of Red Meranti (*Shorea Spp.*) Timber at an Angle to the Grain

Yosafat Aji Pranata, Novi, Deni Setiawan, Vivi Arisandhy, Hendry Wong, and Sofhie Angela Hagiyanto

Abstract The shear strength is one of the parameters that is used for the design of beam members in wood buildings. Shear strength is also used as a parameter for bridge girder design. Red meranti (Shorea spp.) is a species that is easily found in Indonesia and is commonly used as a construction material for buildings, docks, or bridges. The objective of this study is to obtain an empirical equation for the shear strength with different grain angles from 0° to 10° . The research of the influence of the grain angle must be carried out under real conditions, since the direction of the wood grain is not perfectly 0° and the inclination of the grain can influence the shear strength of the wood. The method of making the specimens and the experimental methods refer to ASTM D143-22, and the total number of test specimens was 33 specimens. The tests were performed using a universal testing machine, with the test speed (crosshead) 0.6 mm/minute. The test results show that the shear strength of wood with a directional fiber angle ranging from 0° to 10° in a range from 2.77 MPa (10° grain angle) to 7.57 MPa (0° grain angle). The results of the analysis by the polynomial regression method give an empirical equation, namely $F_{\nu} = 7.03 - 0.97\theta$ $+ 0.066\theta^2$ with R-Sq = 74.7%. Fiber angle has an effect on shear strength. Empirical equations offer advantages to building designers in calculating the design capacity of wood beams, especially due to shear forces.

Keywords Shear strength · Red Meranti (shorea spp.) · Timber · Angle

1 Introduction

The shear strength is a fundamental mechanical property of timber and is used in general timber structural design such as beam of column members. The shear strength can be determined by clear specimen testing as recommended by testing standards such as ASTM D143-22 [1]. This paper has presented the outline results of a series of shear tests to determine the shear strength of Red Meranti (*Shorea spp.*) timber at

315

Y. A. Pranata (\boxtimes) · Novi · D. Setiawan · V. Arisandhy · H. Wong · S. A. Hagiyanto Faculty of Engineering, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia e-mail: yosafat.ap@gmail.com

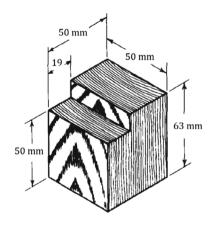
[©] The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 E. Strauss (ed.), *Proceedings of the 8th International Conference on Civil Engineering*, Lecture Notes in Civil Engineering 539, https://doi.org/10.1007/978-981-97-5910-1_25

an angle to the grain. The shear test procedure has been to produce shear strengths based on ASTM D143-22 [1]. It was noticed that the cracks were commonly initiated within clear timber and caused shear failure. As the grain angle increasing from zero to certain value, the mechanical properties will be decreased. The greatest influence of grain deviation angle on mechanical properties was recorded for ultimate load values.

Several previous researches of wood shear testing to obtain mechanical properties of shear strength, among others, were carried out by He et al. [2] which is studying shear testing of spruce and Douglas-fir woods to obtain shear strength parameters and their influence on the main axis of the wood, namely in the tangential-longitudinal plane and in the radial-longitudinal plane directions, and the shape of the test object and the test method refers to the ASTM D143, with the aim of obtaining shear strength parameters and failure modes. Other research has also been done by Teixeira et al. [3], namely studying the shear strength of Angelim-pedra wood with an orientation parallel to the grain, and then, another research with the Red Meranti wood type was carried out by Rizki [4], namely studying the shear strength parallel to the grain $(0^{\circ}$ grain angle). In 2011, the author himself [5] also carried out experimental research to obtain shear strength parameters parallel to the grain of Red Meranti wood with a grain angle of 0° . The grain angle is a deviation of fibers from a line parallel to an edge of sawn wood [6]. Variability in timber mechanical properties can be mainly attributed to the grain angle, beside the wood density, of course. Grain deviation from the directions of the forces causes a decrease in mechanical properties of timber [7– 9]. A strength reduction due to the increase in the grain deviation angle was also observed in the shear strength property, and the grain deviation angle from 0 to 30° causes a decrease in shear strength by about 30 to 45% [10, 11] and reaching even about 70% [12].

The objective of this study is to obtain an empirical equation for the shear strength with different grain angles from 0° to 10° . The research of the influence of the grain angle must be carried out under real conditions, since the direction of the wood grain is not perfectly 0° and the inclination of the grain can influence the shear strength of the wood. The method of making the test specimens and the test methods refer to ASTM D143-22 [1], and the total number of test specimens was 33 specimens. The tests were performed using a universal testing machine, with the test speed or crosshead is 0.6 mm/minute. The significance of the research works is to obtain the empirical values of the shear strength at an angle to the grain ranged from 0° to 10° .

2 Basic Theory


2.1 Shear Strength Mechanical Properties

The shear strength is an important parameter for the design of beam members in wood buildings. Shear strength is also used as a parameter for bridge girder design. Red meranti (*Shorea spp.*) is a species that is easily found in Indonesia and is commonly used as a construction material for buildings, docks, or bridges. The objective of this study is to obtain an empirical equation for the shear strength with different grain angles from 0° to 10° . The research of the influence of the grain angle must be carried out under real conditions, since the direction of the wood grain is not perfectly 0° and the inclination of the grain can influence the shear strength of the wood.

2.2 Clear Specimen Tests

The shear specimen test shall be made on a 50 mm by 50 mm by 63 mm specimens notched in accordance with Fig. 1 to produce failure on a 50 mm by 50 mm surface. The load applied to and support the specimen on end-grain surfaces. The shear tool shall include an adjustable crossbar to align the specimen and support the back surface at the base plate [1]. The shear load for calculation of the shear strength is the maximum or ultimate load that causes the failure of specimen in term of shear plane 50 mm by 50 mm. The tests were performed using a universal testing machine, with the test speed (crosshead) 0.6 mm/minute.

Fig. 1 Specimen for shear tests [1]

2.3 Hankinson's Formula

Elastic theory can be used to obtain the mechanical properties in directions other than along the parallel and perpendicular grain angle. Mechanical properties of wood which area elastic modulus, tensile strength, compression strength, and many more in directions ranging from parallel to perpendicular to the grain can be calculated using a Hankinson formula [9].

$$N = \frac{P \cdot Q}{P \cdot \sin'' \theta + Q \cdot \cos'' \theta} \tag{1}$$

where N is strength at angle θ from grain angle, Q is strength perpendicular to the grain, P is strength parallel to the grain, and n is an constant [9].

2.4 Polynomial Regression Method

Polynomial regression is a regression model that is formed by adding up the influence of each independent variable raised to increasing powers up to the n - 1 order. The highest power of the independent variable determines the shape of the response curve. The polynomial model can be used to find out that there is a linear curve influence on the response, and its shape resembles a curve. The polynomial model is also useful as an approximation function for very complex models and nonlinear relationships [13].

3 Experimental Test and Results

3.1 Experimental Test

Shear test specimens were made from raw timber logs, which have been visually sorted to obtain defect-free parts. The number of test objects in this study was 33 test objects with grain angle variations ranging from 0° to 10°. The method of making the test specimens and the test methods refer to ASTM D143-22 [1]. Figure 2 shows some of the test object that has been made. Figure 3 shows the wood shear testing process.

Fig. 2 Specimen for shear tests

Fig. 3 Shear tests

3.2 Results

Figure 4 shows several examples of test results, namely the failure modes of the specimens after destructive testing to obtain the ultimate load which resulted in failure in the shear plane. Figure 5 shows the test results, namely the load versus deformation relationship curve for each test object with a grain angle direction of 0° to 10° . Table 1 and Fig. 6 show the results of calculating the shear strength of wood at various angles of the grain angle. To calculate the shear strength, parameter of cross-section of shear area (Fig. 1) is calculated using real shear area of each specimen.

The test results in Table 1, namely the parameters of the shear strength of wood and the direction of the grain angle, are then processed further using quadratic-type polynomial regression analysis to obtain predictions of the empirical equation for the shear strength of wood. The analysis is carried out using Minitab software [14]. The

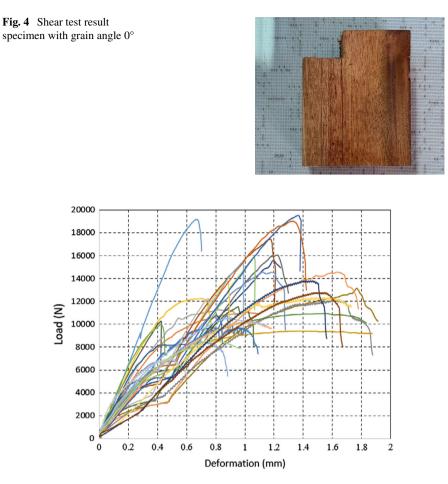


Fig. 5 Load versus deformation results obtained from experimental tests

analysis results (Fig. 6) show that the experimental test results, namely the ultimate load versus deformation curve, have a tendency for the ultimate load to decrease as the direction of the wood grain angle increases. This indicates that the shear strength of wood has the highest value at the grain angle parallel to the direction of the wood grain (grain angle 0°).

Results obtained from study which is equation to predict the shear strength at an angle to the grain shown in Eq. 2.

$$F_{\nu} = 7.03 - 0.97\theta + 0.066\theta^2 \tag{2}$$

$$R-Sq = 74.7\%$$
 (3)

Specimen	Specimen	Area (mm ²)	$P_U(\mathbf{N})$	F_{v} (MPa)	D _{max} (mm)	θ
K3.20	K.1	2525.55	17,431.86	6.90	1.18	0
K3.50	K.2	2533.78	19,018.69	7.51	1.33	0
K3.1	K.3	2531.77	19,172.62	7.57	0.67	0
K3.37	K.4	2539.30	14,563.99	5.74	1.13	1
K3.38	K.5	2549.24	14,559.46	5.71	1.63	1
K3.45	K.6	2533.27	15,401.46	6.08	0.98	1
K3.47	K.7	2526.74	15,813.41	6.26	1.06	1
K3.49	K.8	2530.23	17,521.24	6.92	1.37	1
K2.32	K.9	2499.49	11,261.84	4.51	0.82	2
K2.34	K.10	2492.99	12,239.55	4.91	0.71	2
K3.6	K.11	2521.18	13,491.15	5.35	0.43	2
K3.17	K.12	2517.53	15,578.01	6.19	1.20	2
K3.25	K.13	2517.02	16,044.29	6.37	1.22	2
K3.34	K.14	2534.78	11,515.32	4.54	0.95	2
K3.40	K.15	2534.12	12,225.97	4.82	0.75	2
K3.44	K.16	2536.80	13,758.22	5.42	0.88	2
K4.7	K.17	2523.70	12,133.17	4.81	1.62	2
K3.32	K.18	2526.74	13,135.80	5.20	1.77	3
K3.33	K.19	2520.20	10,813.73	4.29	0.81	3
K4.33	K.20	2516.51	10,929.15	4.34	1.57	3
K5.4	K.21	2517.20	10,245.69	4.07	0.98	3
K5.13	K.22	2533.75	12,327.81	4.87	1.52	3
K5.44	K.23	2520.20	13,796.70	5.47	1.42	3
K5.32	K.24	2543.69	10,585.16	4.16	0.89	4
K5.38	K.25	2533.72	8536.98	3.37	0.81	4
K1.32	K.26	2522.21	10,261.53	4.07	0.43	5
K2.28	K.27	2515.18	11,021.94	4.38	1.01	5
K4.22	K.28	2536.80	9400.73	3.71	1.38	5
K4.27	K.29	2528.58	9690.99	3.83	0.95	5
K5.45	K.30	2528.24	12,769.15	5.05	1.54	6
K5.12	K.31	2531.42	7018.90	2.77	0.50	7
K2.2	K.32	2503.94	10,748.10	4.29	0.88	8
K5.1	K.33	2538.13	8623.11	3.40	0.67	10

 Table 1
 Shear load (peak) obtained from experimental tests

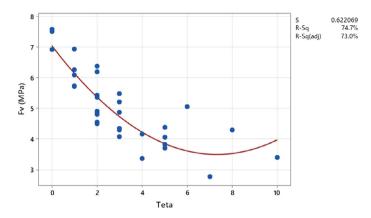


Fig. 6 Results obtained from study: equation to predict the shear strength at an angle to the grain

4 Conclusion

The test results show the shear strength of wood with a directional fiber angle ranging from 0° to 10° in a range from 2.77 MPa (10° grain angle) to 7.57 MPa (0° grain angle). The results of the analysis by the polynomial regression method give an empirical equation, namely $F_{\nu} = 7.03 - 0.97\theta + 0.066\theta^2$ with R-Sq = 74.7%. Fiber angle has an effect on shear strength. Empirical equations offer advantages to building designers in calculating the design capacity of wood beams, especially due to shear forces.

Acknowledgements Authors would like to acknowledge Department of Civil Engineering, Faculty of Engineering, Universitas Kristen Maranatha for financial support for the research "Skema Tambahan" fiscal year 2021. Authors are also would like to acknowledge due to the Structural Laboratory for conducting timber shear testing.

References

- 1. American Standard Testing and Material: ASTM D143–22 Standard Test Methods for Small Clear Specimens of Timber, West Conshohocken, Pennsylvania, United States (2022)
- He, M.J., Zhang, J., Li, Z., Li, M.L.: Production and mechanical performance of scrimber composite manufactured from poplar wood for structural applications. J. Wood Sci. 62, 429–440 (2016)
- Teixira, J.N., Wolenski, A.R.V., Aquino, V.B.d.M., Panzera, T.H., Silva, D.A.L., Campos, C.I., Silva, S.A.M., Lahr, F.A.R., Christoforo, A.L.: Infuence of provenance on physical and mechanical properties of Angelim-pedra (Hymenolobium petraeum Ducke.) wood species. Eur. J. Wood Wood Prod. **79**, 1241–1251 (2021)
- Rizki, A.: Perbandingan antara Kayu Meranti Merah dan Meranti Putih Ditinjau dari Kualitas Kayu Berdasarkan PKKI 1961. Jurnal Kajian Pendidikan Teknik Bangunan 3(1), 9–15 (2013) (in Indonesian)

- 5. Pranata, Y.A.: Perilaku Lentur Balok Laminasi-Baut Kayu Indonesia. Doctoral Dissertation (unpublished). Parahyangan Catholic University (in Indonesian)
- Mania, P., Siuda, F., Roszyk, E.: Effect of Slope Grain on Mechanical Properties of Different Wood Species, Materials, volume. 13. Published by MDPI Materials (2020). e-ISSN 1996-1944
- Kollmann, F., Côté, W.A.: Principles of Wood Science and Technology. Springer, Berlin/ Heidelberg, Germany (1968)
- Dinwoodie, J.M.: Timber—a review of the structure-mechanical property relationship. J. Microsc. 104, 3–32 (1975)
- 9. Bodig, J., Jayne, B.A.: Mechanics of Wood and Wood Composites, Van Nostrand Reinhold. The University of Michigan, Digitized Version (2007)
- Liu, J.Y., Floeter, L.H.: Shear strength in principal plane of wood. J. Eng. Mech. 110, 930–936 (1984)
- Gorlacher, R.: A method for determining the rolling shear modulus of timber. Holz Roh-Werkst 60, 317–322 (2002)
- Xavier, J., Garrido, N., Oliveira, M., Morais, J., Camanho, P., Pierron, F.: A comparison between the Iosipescu and off-axis shear test methods for the shear characterization of Pinus pinaster Ait. Compos. A Appl. Sci. Manuf. 35, 827–884 (2009)
- University of Oregon Homepage. https://pages.uoregon.edu/jschombe/glossary/correlation. html. Accessed 31 Oct 2023
- 14. Minitab, LLC: Minitab Version 21.4.1 (64-bit). Minitab, LLC (2023)