# 625-1742-1-PB.pdf by Yosafat Pranata **Submission date:** 13-Jan-2025 11:54PM (UTC+0700) **Submission ID:** 2563497933 **File name:** 625-1742-1-PB.pdf (867.19K) Word count: 4038 **Character count: 18546** ## Study of the Effect of Grain Angle on the Compressive Strength of Red Meranti Timber (Shorea spp.) 1 Yosafat Aji Pranata, Anang Kristianto, Novi #### Abstract The compressive strength of timber is the main parameter in designing truss system, for instance timber bridges, building roof, or column in buildings. In term of design of compression structural components according to the SNI 7973:2013, the corrected compression design value is a calculation of compressive strength parameters and correction factors, for example, wet service factors, temperature factors, column stability factors, and others. Timber as an orthotropic mater 4 has three main directions, therefore the angle of the timber gra 1 has an influence on compressive strength. This research aims to study the effect of timber grain's angle on the compressive strength of Red Meranti wood (Shorea spp.) and develop an empirical equation to calculate the compressive strength of timber with the influence of the wood grain's angle. The 6t specimens were made based on the primary method reference for compression test namely 50mm x 50mm x 200mm (parallel to the grain type), according to ASTM D143-22 for test specimens with variations in fiber direction, namely 0°, 10°, 20° and 30°. Meanwhile, test objects with variations in fiber direction, namely 60°, 70°, 11 and 90°, were made the sizes of 50mm x 50mm x 150mm (perpendicular to the grain type). Testings were carried out using a Universal Testing Machine with test speed according to ASTM D143-22. All test objects were made in dry conditions (moisture content ranging 1 from 14% to 16%). The conclusion obtained from this research are an empirical equation for calculating the compressive strength of Red Meranti timber with a predictor is the timber grain's angle, which are F<sub>CY</sub> = 14.01 – 0.119θ + 0.000042θ<sup>2</sup> (in term of yield of proportional point) and F<sub>CU</sub> = 29.82 - 0.4170 + 0.00180<sup>2</sup> (in term of peak or ultimate point). This equation provides benefits for academics and practitioners, especially in designing compression structural components especially with compression value as the main parameter. Keywords: Compression Strength, grain angle of timber, Red Meranti, Compressive Design, ASTM D143. #### Introduction Compressive strength of timber is the main parameter in designing of timber bridges (truss system), building roof (truss system), or column in buildings. In term of design of compression structural components according to the SNI 7973:2013 (BSN, 2013), the corrected compression design value is a calculation of compressive strength parameters and correction factors, for example, wet service factors, temperature factors, column stability factors, and others. Timber as an orthotropic material has three main directions, thus the angle of the timber grain has an influence on compressive strength. Previous research related to timber properties, especially the compressive strength of Meranti species wood, has been carried out several times, namely experimental research on timber compression testing with several variations in grain angles (Pranata and Suryoatmono, 2012) for 3 (three) wood species, namely Acacia, Meranti, and Keruing. The results being an alternative of von Mises-based equation for calculating the compressive strength of wood, however this study was limited to only a few grain's angles and a limited number of test objects. Anothe 4 study was experimental and numerical research to study the effect of grain's angle on the compressive strength of Red Meranti wood (Pranata and Suryoatmono, 2013) with variations in fiber angles of 12°, 60°, and 80°. Wood is generally assumed to behave as mutually perpendicular material principal axes, namely and tangential axes. Compressive strength is the compressive force that acts on a unit cross-sectional area of wood that is subjected to that force. Compressive strength of wood defines the limit of wood's ability to accept compressive loads until the wood fails. Previous study of Red Meranti (*Shorea spp.*) compression strength were conducted by Nakai (Nakai, 1985), Chik (Chik, 12), Pranata and Suryoatmono (Pranata and Suryoatmono, 2012; Pranata and Suryoatmono, 2013), Tjondro et al. (Tjondro et al., 2016), Azmi et al. (Azmi et al., 2022), and wood database (Meier, 2024). Table 1 shows the summary of compression strength of Red Meranti (*Shorea spp.*) timber obtained from previous research histories. Table 1. Compression strength of Red Meranti (*Shorea spp.*) Timber from previous research histories. | References | θ<br>(°) | F <sub>CY</sub><br>(MPa) | F <sub>CU</sub><br>(MPa) | |-------------------|----------|--------------------------|--------------------------| | Nakai, 1985 | 0 | 31.60 | 36.50 | | Azmi et.al., 2022 | 0 | 31.30 | - | | Meier, 2024 | 0 | 33.90 | - | | Tiendre et el | 0 | 30.78 | 41.21 | | Tjondro et.al., | 90 | 7.51 | - | | Chik 1000 | 0 | - | 39.60 | | Chik, 1988 | 90 | - | 4.14 | | θ<br>(°) | F <sub>CY</sub><br>(MPa) | Fc∪<br>(MPa) | |----------|---------------------------------------|-------------------------------------------------------------------------------| | 0 | 33.67 | - | | 5 | 31.16 | - | | 10 | 28.55 | - | | 12 | 27.82 | 33.30 | | 60 | 8.52 | 9.10 | | 80 | 7.68 | 8.10 | | 90 | 7.17 | - | | | (°)<br>0<br>5<br>10<br>12<br>60<br>80 | (°) (MPa)<br>0 33.67<br>5 31.16<br>10 28.55<br>12 27.82<br>60 8.52<br>80 7.68 | Currently, the parameters for compressive strength of timber are known parallel to the graft parain's angle of 0°) or longitudinal direction, and compressive strength perpendicular to the grain (grain angle of 90°) or radial direction. These two parameters can be obtained from experimental testing in the laboratory using testing standards including ASTM D143-22 (ASTM, 2022) with primary and secondary test metr 4.s. This research aims to and the effect of timber grain's angle on the compressive strength of Red Meranti wood (Shorea spp.) and develop an empirical equation to calculate the compressive strength of timber with the influence of wood grain's angle. #### **Materials and Methods** The scope of the research were that: - The timber studied is the Red Meranti species (Shorea spp.). - 2. The total number of test objects are 45 test objects. - 3. The test specimens were made based on the primary method reference for compression test reference method 50mm x 50mm x 200mm (parallel to the grain type), according to ASTM D143-22 regulations for test specimens with variations in fiber direction, namely 0°, 10°, 20° and 30°. Meanwhile, test objects with variations in fiber direction, namely 60°, 70°, 80° and 90°, were made with test object sizes of 50mm x 50mm x 150mm (perpendicular to the grain type). - Testings are carried out using a Universal Testing Machine with test speed according to ASTM D143-22. - All test objects were made in dry conditions (moisture content ranging from 14% to 16%). - The compressive strength referred to in this research is the compressive stress calculated under peak or ultimate load condition (Fcu) and proportional load condition (Fcy). - Test objects are made from timber log, with angle dimensions adjusted for testing purposes. #### Compression\_Tests Testing was carried out using a Universal Testing Machine (UTM) HT-9501 Electro-Hydraulic Servo (maximum load capacity 1000 kN) with output data in the form of a history curve of the relationship between compressive axial load and axial deformation. Figure 1 shows the test equipment used in server research. Figure 2a shows a schematic history of the load vs deformation relationship curve obtained from experimental test results. Next, the curve was then converted into a curve for the tonship between stress and strain, where stress (engineering stress) is the compressive axial force divided by the initial cross-sectional area, 7 hile strain is the change in length (in this case shortening) divided by the 11 ial length of the test object. Figure 2b shows a schematic of the stress vs strain relationship curve resulting from the conversion of the load vs deformation relationship curve. Stress and strain were calculated using Equation 1 and Equation 2 (Goodno and Gere, 2021). $$\sigma = P/A \tag{1}$$ $$\varepsilon = \Delta / L_o$$ (2) with $\sigma$ is engineering stress (MPa), P is axial compressive load (N), A is specimen's cross-section (mm²), $\epsilon$ is strain (mm/mm), $\Delta$ is the change in length of shortening (mm), and $L_0$ is initial length of the specimen (mm). The testing speed (according to the ASTM D143's primary 5 thod) for the test object type parallel to the grain was a strain rate 5 0.003 mm/mm per minute or a displacement rate of 0.6 mm per minute. While for the test 5 ject type perpendicular to the grain, the speed was a displacement rate of 0.305 mm per minute (ASTM, 2022). Figure 1. Instrumen for testing using Universal Testing Machine (UTM) Figure 2. Idealization of the axial load vs axial deformation curve and normal (axial) stress vs strain (Pranata and Suryoatmono, 2013). #### 18 #### Proportional Load and Ultimate Load The proportional point indicates when material behavior changes 3 m elastic to plastic. One of the methods to calculate the proportional point 2 the Yasumura and Kawai Method (Munoz et al., 2010). The calculated initial stiffness was between 10% and 40% of the ultimate or peak load. A straight line between 40% and 90% of the peak load and a straight-line tangent to the load-displacement curve, then parallel to the 40% and 90% second line, were determined. In this research, this method was used to determine the proportional load divided by a cross-section's area, to calculate the compression strength in terms of yield or proportional strength. While the compression strength in terms of ultimate strength was calculated using peak load, divided by cross-section's area.. Figure 3. Yasumura and Kawai Method to determine the proportional load of timber (Munoz et.al., 2010). #### Polynomial Regression Analysis Several parameters for statistical data, which are mean, standard deviation, and coefficient of variation, are needed for analysis. Standard deviation measures how they are distributed around the arithmetic mean (Heumann et.al., 2017). A low standard deviation value indicates that the values are highly concentrated around the mean. Meanwhile, the coefficient of variation (usually expressed as a percentage) is a ratio between the standard deviation and the average value. In this research, polynomial regression analysis was carried out with Minitab software (LLC, 2023). #### Results and Discussion The test specimens with an angle of less than 45° were made and tested based on the primary method ference for compression test specimens reference method parallel to the grain type according to ASTM D143-22 regulations. This method used for test specimens with variations in fiber direction, namely 0°, 10°, 20° and 30°. Meanwhile, test objects with an angle of more than 45° with variations in fiber direction, namely 60°, 70°, 80° and 90°, were made and tested with perpendicular to the grain type in accordance with ASTM D143-22. All test objects were made in dry conditions (moisture content ranging from 14% to 16%). Test objects are made from timber log, with angle dimensions adjusted for testing purposes. Figure 4. Tests results: Axial load vs deformation curve, obtained from experimental test for specimen 4.1.1 (grain's angle of 30°) and specimen 4.2.8 (grain's angle of 10°) Figure 5. Convertion results: Stress vs strain curves of specimen 4.1.1 (grain's angle of 30°) and specimen 4.2.8 (grain's angle of 10°) Figure 4 shows an example result obtained from compression test which is axial load vs deformation curve. Figure 5 shows a conversion results, which is calculation of stress and strain curves. The results above show that the test object we a lower grain angle produces a higher peak load than the test of 10 with a larger grain angle. Figure 6 shows an example of compto sion test using parallel to the grain method, while Figure 7 shows an example of compression test speciment witto rain angle of 70°. Figure 8 shows some of test results of the specimens with dimension 50mm x 50mm 2 200mm, while Figure 9 shows some of test results of the specimens with dimension 50mm x 50mm x 200mm. Figure 6. Experimental tests for 50 x 50 x 200mm specimen, using test method of compression parallel to the grain Figure 7. Example of 70° grain angle of Red Meranti timber specimen Figure 8. Results of failure mode for some 50 x 50 x 200mm specimens (compression parallel to the grain method of test) Figure 9. Resides of failure mode for some 50 x 50 x 150mm specimens (compression perpendicular to the grain method of test) In this research, the compression strength were calculated in term of proportional load. The method to determine the yield point were cariied out by using Yasumura and Kawai method (Munoz et.al. 1010), and in term of peak of ultimate load. Table 1 shows the results of calculation of 17 proportional load, peak load, deformation at proportional load, deformation at peak load, and the grain's angle for all 45 specimens. Table 2 shows the results of calculation of the stress and strain in term of proportional stress and peak stress using Equation 1 and Equation 2. Table 2. Tests results: Load and deformation obtained from experimental tests and calculation using Yasumura and Kawai Method | and Nawai Method | | | | | | | |------------------|-----------------------|--------------------------|------------------------|---------------------------|----------|--| | Spec-<br>imens | P <sub>y</sub><br>(N) | P <sub>peak</sub><br>(N) | D <sub>y</sub><br>(mm) | D <sub>peak</sub><br>(mm) | θ<br>(°) | | | 1 | 14313.0 | 26650.6 | 0.3 | 5.0 | 70 | | | 2 | 7932.0 | 18839.9 | 0.7 | 6.0 | 80 | | | 3 | 18834.1 | 32409.2 | 0.4 | 6.2 | 60 | | | 4 | 13788.4 | 25203.8 | 1.5 | 6.0 | 70 | | | 5 | 15479.0 | 25547.9 | 0.5 | 6.0 | 70 | | | 6 | 29603.0 | 46987.6 | 0.3 | 0.8 | 30 | | | 7 | 28950.5 | 46224.6 | 0.4 | 1.0 | 30 | | | 8 | 24203.2 | 43516.9 | 0.3 | 0.8 | 30 | | | 9 | 123246.1 | 69692.6 | 1.6 | 1.2 | 10 | | | 10 | 5906.3 | 14661.3 | 0.7 | 6.0 | 90 | | | 11 | 17531.7 | 39520.9 | 0.8 | 6.1 | 30 | | | 12 | 16969.8 | 32393.3 | 0.5 | 6.0 | 60 | | | 13 | 10581.1 | 21456.7 | 0.5 | 6.0 | 80 | | | 14 | 6994.9 | 13948.3 | 1.5 | 6.0 | 90 | | | 15 | 37925.6 | 62397.2 | 0.4 | 0.8 | 10 | | | 16 | 38100.2 | 53651.3 | 0.5 | 0.9 | 20 | | | 17 | 32993.8 | 53975.8 | 0.3 | 8.0 | 20 | | | 18 | 56268.3 | 62644.0 | 0.7 | 1.1 | 10 | | | 19 | 16092.7 | 33444.2 | 0.4 | 6.1 | 60 | | | 20 | 6041.2 | 14045.7 | 1.3 | 6.1 | 90 | | | 21 | 5608.1 | 13160.7 | 1.2 | 6.1 | 90 | | | 22 | 18349.4 | 27524.6 | 1.2 | 6.1 | 70 | | | 23 | 36903.4 | 73806.8 | 0.3 | 8.0 | 0 | | | 24 | 39992.2 | 79984.5 | 0.8 | 1.7 | 0 | | | 25 | 29505.0 | 77361.8 | 0.8 | 1.6 | 0 | | | 26 | 26908.8 | 70598.3 | 0.4 | 1.1 | 10 | | | 27 | 28731.6 | 78258.5 | 0.5 | 1.3 | 0 | | | 28 | 29826.7 | 80297.5 | 0.5 | 1.3 | 0 | | | 29 | 21269.1 | 48193.7 | 0.4 | 6.1 | 30 | | | 30 | 24211.4 | 53836.4 | 0.5 | 6.1 | 20 | | | 31 | 44493.6 | 74663.0 | 0.4 | 0.7 | 0 | | | 32 | 32710.6 | 65421.2 | 0.5 | 14.5 | 10 | | | 33 | 40336.6 | 52428.3 | 0.4 | 0.9 | 20 | | | 34 | 35617.8 | 71235.7 | 5.3 | 1.1 | 10 | | | 35 | 12995.6 | 32007.6 | 0.5 | 6.1 | 60 | | | 36 | 6229.3 | 11832.2 | 1.4 | 6.1 | 90 | | | 37 | 15569.4 | 27696.7 | 0.5 | 6.1 | 70 | | | 38 | 13269.9 | 25523.0 | 0.4 | 6.2 | 70 | | | 39 | 11873.1 | 21078.7 | 0.7 | 6.1 | 80 | | | 40 | 9391.3 | 17105.2 | 0.5 | 6.1 | 90 | | | 41 | 11103.5 | 19313.0 | 0.4 | 6.1 | 80 | | | Spec-<br>imens | P <sub>y</sub><br>(N) | P <sub>peak</sub><br>(N) | D <sub>y</sub><br>(mm) | D <sub>peak</sub><br>(mm) | θ<br>(°) | |----------------|-----------------------|--------------------------|------------------------|---------------------------|----------| | 42 | 18469.9 | 44526.6 | 0.6 | 2.2 | 30 | | 43 | 79513.1 | 46903.8 | 1.6 | 1.2 | 20 | | 44 | 15292.9 | 30585.8 | 0.3 | 0.9 | 60 | | 45 | 19199.5 | 31501.1 | 0.3 | 1.0 | 60 | Table 3. Conversion results: Stress and Strain at proportional and ultimate limit conditions | Spec-<br>imens | F <sub>CY</sub><br>(MPa) | F <sub>CU</sub><br>(MPa) | ε <sub>y</sub><br>(mm/mm) | ε <sub>U</sub><br>(mm/mm) | θ (°) | |----------------|--------------------------|--------------------------|---------------------------|---------------------------|-------| | 1 | 5.6 | 10.4 | 0.002 | 0.025 | 70 | | 2 | 3.1 | 7.4 | 0.003 | 0.030 | 80 | | 3 | 7.4 | 12.7 | 0.002 | 0.031 | 60 | | 4 | 5.4 | 9.9 | 0.008 | 0.030 | 70 | | 5 | 6.1 | 10.1 | 0.002 | 0.030 | 70 | | 6 | 11.6 | 18.4 | 0.002 | 0.005 | 30 | | 7 | 11.3 | 18.0 | 0.002 | 0.007 | 30 | | 8 | 9.6 | 17.2 | 0.002 | 0.006 | 30 | | 9 | 13.9 | 27.8 | 0.010 | 0.008 | 10 | | 10 | 2.3 | 5.8 | 0.004 | 0.030 | 90 | | 11 | 7.0 | 15.7 | 0.004 | 0.031 | 30 | | 12 | 6.8 | 12.9 | 0.003 | 0.030 | 60 | | 13 | 4.2 | 8.4 | 0.003 | 0.030 | 80 | | 14 | 2.7 | 5.5 | 0.007 | 0.030 | 90 | | 15 | 14.8 | 24.4 | 0.003 | 0.005 | 10 | | 16 | 15.2 | 21.4 | 0.003 | 0.006 | 20 | | 17 | 13.2 | 21.7 | 0.002 | 0.006 | 20 | | 18 | 12.1 | 24.6 | 0.005 | 0.008 | 10 | | 19 | 6.6 | 13.7 | 0.002 | 0.030 | 60 | | 20 | 2.5 | 5.7 | 0.007 | 0.030 | 90 | | 21 | 2.2 | 5.2 | 0.006 | 0.031 | 90 | | 22 | 7.2 | 10.8 | 0.006 | 0.030 | 70 | | 23 | 15.0 | 29.9 | 0.002 | 0.005 | 0 | | 24 | 15.7 | 31.4 | 0.005 | 0.012 | 0 | | 25 | 11.7 | 30.6 | 0.005 | 0.011 | 0 | | 26 | 10.6 | 27.9 | 0.003 | 0.007 | 10 | | 27 | 11.5 | 31.3 | 0.003 | 0.009 | 0 | | 28 | 12.0 | 32.4 | 0.003 | 0.009 | 0 | | 29 | 8.8 | 19.2 | 0.002 | 0.030 | 30 | | 30 | 9.4 | 20.9 | 0.002 | 0.030 | 20 | | 31 | 17.4 | 29.1 | 0.002 | 0.005 | 0 | | 32 | 12.8 | 25.5 | 0.003 | 0.096 | 10 | | 33 | 15.4 | 20.1 | 0.002 | 0.006 | 20 | | 34 | 13.6 | 27.2 | 0.035 | 0.008 | 10 | | 35 | 5.3 | 13.1 | 0.002 | 0.030 | 60 | | _ | | | | | | | | |---|----------------|--------------------------|--------------------------|---------------------------|---------------------------|-------|---| | | Spec-<br>imens | F <sub>CY</sub><br>(MPa) | F <sub>CU</sub><br>(MPa) | ε <sub>y</sub><br>(mm/mm) | ε <sub>∪</sub><br>(mm/mm) | θ (°) | | | | 36 | 2.6 | 4.9 | 0.007 | 0.030 | 90 | | | | 37 | 6.4 | 11.4 | 0.002 | 0.031 | 70 | | | | 38 | 5.4 | 10.4 | 0.002 | 0.031 | 70 | | | | 39 | 4.9 | 8.6 | 0.003 | 0.030 | 80 | | | | 40 | 3.9 | 7.0 | 0.002 | 0.030 | 90 | | | | 41 | 4.5 | 7.9 | 0.002 | 0.031 | 80 | | | | 42 | 7.6 | 18.2 | 0.004 | 0.015 | 30 | | | | 43 | 9.6 | 19.2 | 0.011 | 0.008 | 20 | | | | 44 | 6.3 | 12.6 | 0.002 | 0.006 | 60 | | | | 45 | 7.8 | 12.8 | 0.002 | 0.007 | 60 | | | _ | | | | | | | ľ | Figure 10 shows the result obtained experimentally (Fcv) and the equation-curve obtained from the polynomial regression analysis to predict the value of compression strength of Red Meranti timber in term of proportional or yield point, this empirical equation result shows the relationship between the compression strength (unit in MPa) and the grain angle $\theta$ (unit in degrees). The coefficient of $R^2$ is generally it is relatively near 100%, for timber this is considered normal because timber is a material that comes from nature. The regression equation for the curve in Figure 10 is shown in Equation 3 and Equation 4. Figure 10. Results obtained from polynomial regression analysis. $$F_{CY} = 14.01 - 0.1190 + 0.0000420^2$$ (3) $R^2 = 85.52\%$ (4) Figure 11 shows the result obtained experimentally (F<sub>CU</sub>) and the equation-curve obtained from the polynomial regression analysis to predict the value of compression strength of Red Meranti timber in term of peak or ultimate point, this empirical equation result shows the relationship between the compression strength (unit in MPa) and the grain angle $\theta$ (unit in degrees). The coefficient of $R^2$ is generally it is relatively near 100%, for timber this is considered normal because timber is a material that comes from nature. The regression equation for the curve in Figure 10 is shown in Equation 5 and Equation 6. Figure 11. Results obtained from polynomial regression analysis. $$F_{CU} = 29.82 - 0.417\theta + 0.0018\theta^2$$ (5) $R^2 = 96.56\%$ (6) #### Conclusions The conclusion obtained from this research is an empirical equation for calculating the compressive strength of Red Meranti timber (Shorea spp.) with a predictor, namely the wood grain's angle, namely $F_{CY}=14.01-0.1190+0.0000420^2$ with $R^2=85.52\%$ in term of yield or proportional point. While in term of peak or ultimate load, an empirical equation is $F_{CU}=29.82-0.4170+0.00180^2$ with $R^2=96.56\%$ . F<sub>CY</sub> or compression strength in term of proportional load value is an useful parameter for design of column or compression member in timber building, timber bridge truss, or timber roof truss in accordance with SNI 7973:2013. This equation provides benefits for academics and practitioners, especially in designing compression structural components, which is the compression design value parameter. #### Acknowledgements The authors received an internal funding research grant from Universitas Kristen Maranatha in the 2022 fiscal year, which was B-Scheme Research with the title "Experimental Study of the Compressive Mechanical Properties of Timber with Various Angle Direction". For this reason, largely author would like to express his deepest gratitude, so that all research activities can be completed in the same year. The authors also would like to thank all parties who have helped with the research process in the laboratory. #### References American Standard Testing and Material. 2022. ASTM D143-22 Standard Test Methods for Small Clear Specimens of Timber, West Conshohocken, Pennsylvania, United States, 2022. - American Standard Testing and Material. 2018. ASTM D5764-97a Standard Test Method for Evaluating Dowel-Bearing Strength of Wood and Wood-Based Products, West Conshohocken, Pennsylvania, United States, 2018. - Azmi, A., Ahmad, Z., Lum, W.C., Baharin, A., Za'ba N.I.L., Bhkari, N.M., Lee, S.H. 2022. Compressive strength characteristic values of nie structural sized Malaysian tropical hardwoods, Forests 2022, 13(8), 1172; https://doi.org/10.3390/f13081172. - Bodig, J., Jayne, B.A. 1993. Mechanics of Wood and Wood Composites, Krieger Publishing Company, Malabar, Florida, USA, 1993. - Chik, E.A.R. 1988. Basic and grade stresses for some Malaysian timbers. Malayan Forest Service Trade Leaflet No.38. The Malaysian Timber Industry Board And Forest Research Institute Malaysia, Kuala Lumpur 13 pp. - Goodno, B.J., Gere, J.M. 2021. Mechanics of Materials 9th Edition, ISBN-13: 9780357377857, Cengage Learning Asia - Heumann, Christian, Michael Schomaker, Shalabh. 2017. Introduction to Statistics and Data Analysis: With Exercises, Solutions and Applications in R. Introduction to Statistics and Data Analysis: With Exercises, Solutions and Applications in R. Springer International Publishing, 2017. - LLC. 2023. Product version Minitab® 21.4.1 (64-bit) 2023 Minitab, LLC. All rights reserved. - Meier, E. The Wood database, URL: https://www.wood-database.com/worlds-strongest-woods, accessed on 15 October 2024. - Munoz, W., Mohammad, M., Salenikovich, A. & Quenneville, P. 2010. Determination of Yield Point and Ductility of Timber Assemblies: In Search for a Harmonized Approach, Engineered Wood Products Association, 2010. - Nakai, T. 1985. Mechanical properties of tropical woods. JARQ Volume 18 No. 4, pp. 315-323, 1985. - Pranata, Y.A., Suryoatmono, B. 2013. Nonlinear finite elemen modeling of red meranti compression at an angle to the grain. Journal of Engineering and Technological Science, Volume 45 No. 3, pp. 222-240, 2013. - Pranata, Y.A., Suryoatmono, B. 2012. distortion energy criterion for timber uniaxial compression mechanical properties. Jurnal Dinamika Teknik Sipil, Volume 12 No. 02, May 2012 (in Indonesian). - Tjondro, A., Suryoatmono, B., Imran, I. 2016, Non-linier Compression Stress-Strain Curve Model for Hardwood, Jurnal Teknik Sipil Mekanika, Volume 1 No. 1, pp. 49-52, June 2016. Yosafat Aji Pranata Universitas Kristen Maranatha Jl. Suria Sumantri 65, Bandung, 40164, Jawa Barat Tel. : +62-22-2012186 ext. 1212 E-mail: yosafat.ap@gmail.com Anang Kristianto Universitas Kristen Maranatha Jl. Suria Sumantri 65, Bandung, 40164, Jawa Barat Tel. : +62-22-2012186 ext. 1212 Novi Universitas Kristen Maranatha Jl. Suria Sumantri 65, Bandung, 40164, Jawa Barat Tel. :+62-22-2012186 ext. 1212 ### 625-1742-1-PB.pdf **Publication** **ORIGINALITY REPORT** SIMILARITY INDEX **INTERNET SOURCES PUBLICATIONS** STUDENT PAPERS **PRIMARY SOURCES** "Proceedings of the 8th International 3% Conference on Civil Engineering", Springer Science and Business Media LLC, 2025 **Publication** mafiadoc.com 2% Internet Source www.iufro.org Internet Source InCIEC 2015, 2016. **Publication** journal.unpar.ac.id 5 Internet Source Mohammad Ali Taj, Saeed Kazemi Najafi, 0% 6 Ghanbar Ebrahimi. "Tragverhalten von Holzschrauben in Buchen-, Hainbuchen- und Pappelholz bei Scherbeanspruchung und auf Herausziehen", European Journal of Wood and Wood Products, 2009 | | P. King. "Modeling and Design of Zero-<br>Stiffness Elastomer Springs Using Machine<br>Learning", Advanced Intelligent Systems,<br>2022<br>Publication | . , , | |----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 8 | repository.maranatha.edu Internet Source | <1% | | 9 | Adeyemi Adesina, Sreekanta Das. "Mechanical performance of engineered cementitious composites incorporating recycled glass powder", Canadian Journal of Civil Engineering, 2019 Publication | <1% | | 10 | Yong-Ki Lee, Chae-Soon Choi, Seungbeom<br>Choi, Kyung-Woo Park. "A New Digital<br>Analysis Technique for the Mechanical<br>Aperture and Contact Area of Rock<br>Fractures", Materials, 2023 | <1% | | 11 | Marc A. Meyers, Lawrence E. Murr, Karl P. Staudhammer. "Shock–Wave and High–Strain–Rate Phenomena in Materials", CRC Press, 2023 Publication | <1% | | 12 | Wei-Lian Fu, Hui-Yuan Guan, Wei Li, Kei | <1% | Sawata, Yao Zhao. "Elastoplastic performance Hyeongkeun Kim, Sameh H. Tawfick, William <1% of wood under compression load considering cross-grain orientation and moisture content", European Journal of Wood and Wood Products, 2022 Publication **Publication** | 13 | cdn.techscience.cn Internet Source | <1% | |----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 14 | www.drewno-wood.pl Internet Source | <1% | | 15 | www.yumpu.com Internet Source | <1% | | 16 | Anis Azmi, Zakiah Ahmad, Wei Chen Lum,<br>Adnie Baharin, Nurul Izzatul Lydia Za'ba,<br>Norshariza Mohamad Bhkari, Seng Hua Lee.<br>"Compressive Strength Characteristic Values<br>of Nine Structural Sized Malaysian Tropical<br>Hardwoods", Forests, 2022 | <1% | | 17 | Mahesh P. More, Mahendra D. Patil, Abhijeet P. Pandey, Pravin O. Patil, Prashant K. Deshmukh. "Fabrication and characterization of graphene-based hybrid nanocomposite: assessment of antibacterial potential and biomedical application", Artificial Cells, Nanomedicine, and Biotechnology, 2016 | <1% | Y A Pranata, A Kristianto, A Darmawan. "Elastic Cross-Section Modulus Ratio of Jabon (Anthocephalus cadamba Miq.) BoltLaminated Timber Beams", IOP Conference Series: Materials Science and Engineering, 2021 <1% Publication Exclude quotes Off Exclude matches Off Exclude bibliography