

Oleh Robby Yussac Tallar

Isi:

- Pengenalan : Siklus/Daur Hidrologi, Water Budget,
 DAS, Urbanisasi
- Atmospheric Water: Presipitasi Surface water
- Subsurface Water (tidak dibahas): Unsaturated Flow, Infiltration
- Groundwater (tidak dibahas)

Definisi

Hidrologi adalah ilmu yang mempelajari terjadinya, pergerakan dan distribusi air di bumi, yang menyangkut perubahannya antara keadaan cair, padat dan gas dalam atmosfir, di atas dan di bawah permukaan tanah, tentang sifat fisik, kimia serta reaksinya terhadap lingkungan dan hubungannya dengan kehidupan.

Proses-proses pada siklus hidrologi

- Presipitasi(precipitation)
- Air Larian (runoff)
- Evaporasi (evaporation)
- Transpirasi (transpiration)
- Evapotranspirasi (evapotranspiration)
- Intersepsi (interception)
- Infiltrasi (infiltration)
- Perkolasi (percolation)

Definisi

- Presipitasi(precipitation)
 Adalah curahan atau jatuhnya air dari atmosfer ke permukaan bumi dan laut dalam bentuk yang berbeda, yaitu curah hujan di daerah tropis dan curah hujan
- serta salju di daerah beriklim sedang/dingin
 Air Larian (runoff)
 Adalah bagian dari curah hujan yang mengalir di atas permukaan tanah menuju
- Evaporasi (evaporation)
 Adalah penguapan air yang berada di laut, di daratan, di sungai, dsb.
- Transpirasi (transpiration)
 Adalah pergerakan air dari akar ke daun pada tanaman akibat penguapan
- Evapotranspirasi (evapotranspiration)
 Adalah peristiwa penguapan air dari tanaman ke udara

ke badan-badan air seperti sungai, danau dan laut

- Intersepsi (interception)
 Adalah masuknya air hujan ke tanaman
- Infiltrasi (infiltration)
 Adalah perpindahan air dari atas ke dalam permukaan tanah. Kebalikannya disebut rembesan (seepage).
- Perkolasi (percolation)
 Adalah gerakan air ke bawah dari zona tak jenuh sampai ke zona jenuh/permukaan air tanah

Air Di Bumi

Laut

- All icecaps/glaciers
- Air tanah
- Danau air tawar
- Danau air asin
- Atmosphere
- All Rivers
- Total

97.2%

2.0%

0.62%

0.009%

0.008%

0.001%

0.0001%

99.8381%

Water Budget

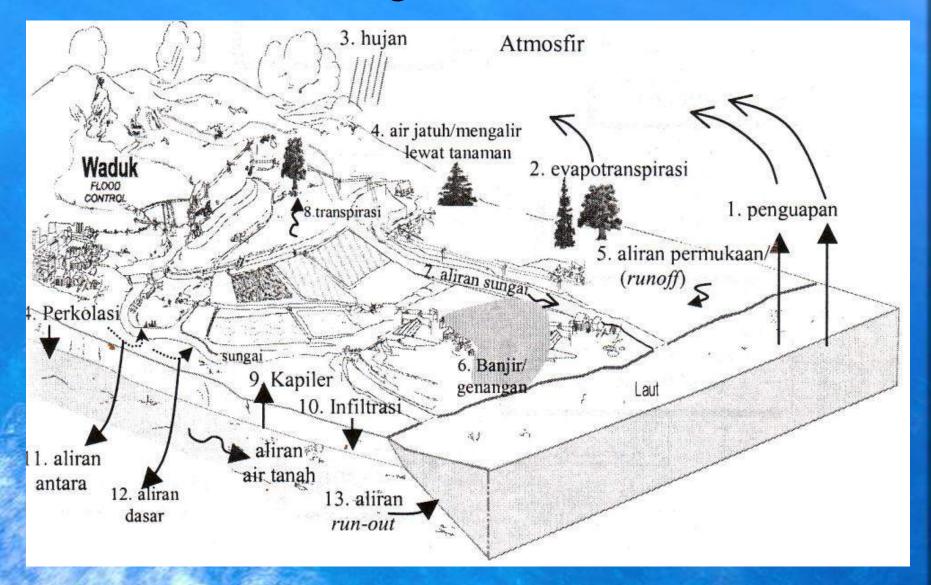
- Inputs Outputs = change in storage
- $\cdot P E T G Q = dS$
- P = Precipitation
- E = Evaporation
- T = Transpiration
- G = Groundwater flow
- Q = Surface runoff
- dS = Perubahan storage

Bila groundwater flow diabaikan maka : dS = P - (E + T + I + Q)

I = Infiltration

Contoh:

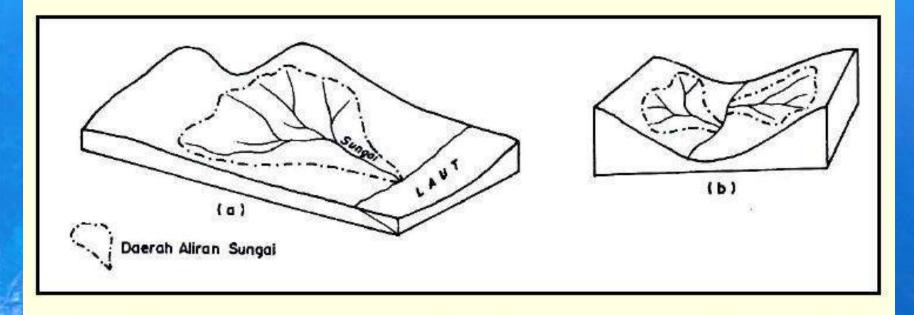
Dalam suatu area seluas 600 ha memiliki data presipitasi selama 60 hari diukur sebesar 208 mm. Pada periode yang sama, inflow dan outflow pada suatu sumber air adalah 2.05 m³/det dan 1.85 m³/det. Infiltrasi yang terjadi sebesar 60 mm dan evaporasi (termasuk dari tanaman) sebesar 50 mm.

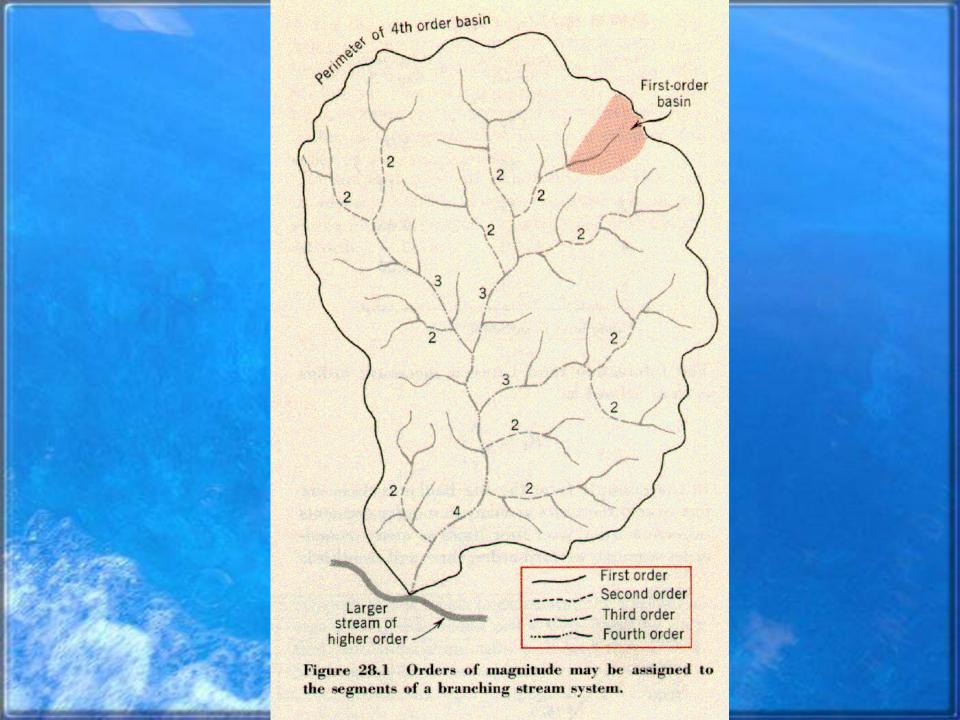

Hitung perubahan yang terjadi pada simpanan air(storage) pada area tsb (dalam satuan m³ dan m³/det)

Jawab:

```
Luas area = 600 \text{ ha} = 6.000.000 \text{ m}^2
Waktu = 60 hari = 5814000 detik
Inflow volume= 2.05 \text{ m}^3/\text{det} = 2.05*5814000 = 10627200 m}^3
Outflow volume = 1.85 \text{ m}^3/\text{det} = 1.85*5814000 = 9590400 m}^3
Presipitasi = 208 \text{ mm} = 0.208 \text{ m}
Presipitasi volume = 0.208*6.000.000 = 1248000 m<sup>3</sup>
Infiltrasi = 60 \text{ mm} = 0.06 \text{ m}
Infiltrasi volume = 0.06*6.000.000 = 360000 \text{ m}^3
Evaporasi = 50 \text{ mm} = 0.05 \text{ m}
Evaporasi volume = 0.05*6.000.000 = 300.000 \text{ m}^3
```

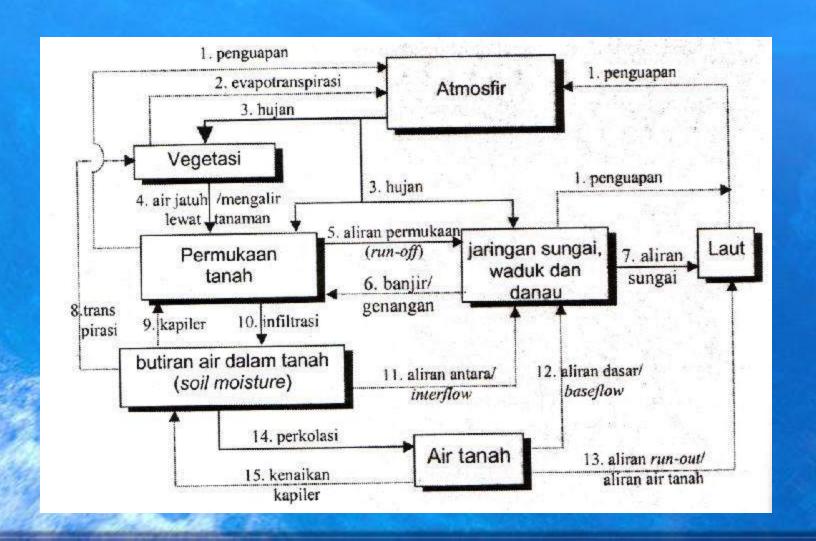
- Perubahan pada storage = 1248000 (300.000+ 9590400+ 10627200 360000) = 1.625.200 m³ (positif berarti air lebih)
- Volume perubahan storage =
 1.625.200 m³ / 5814000 detik =
 0.313 m³/det


Siklus Hidrologi Dalam Suatu DAS

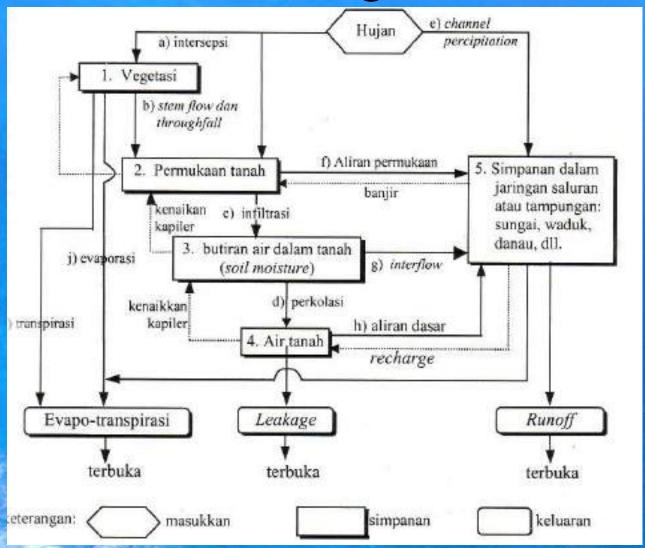

Daerah Aliran Sungai (Watershed/Catchment Area)

 DAS adalah suatu wilayah daratan yang secara topografik dibatasi oleh punggung-punggung gunung yang menampung dan menyimpan air hujan untuk kemudian menyalurkannya ke laut melalui sungai utama

Cekungan topografi

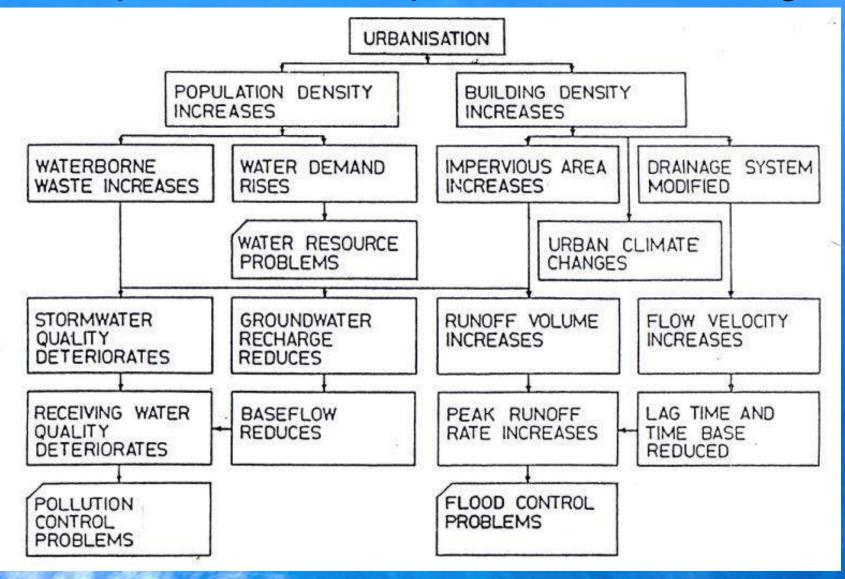


Tempat yang secara morfologi bentuknya cekung dan dibatasi oleh tinggian atau punggungan



Siklus Hidrologi Tertutup

Siklus Hidrologi Tertutup


 Siklus hidrologi yang menunjukkan bahwa "air" baik itu berupa gas/uap, fluida maupun padat melakukan sirkulasi di dalam suatu sistem. Dengan kata lain, volume air di dalam sistem tersebut tetap kuantitasnya dan melakukan peredaran melewati subsistemsubsistem. Seluruh sistem dalam siklus tsb dikendalikan oleh radiasi matahari. Siklus Hidrologi Terbuka

Siklus Hidrologi Terbuka

- Aliran air tanah bisa merupakan satu atau lebih dari subsistem dan tidak lagi tertutup, karena sistem tertutup itu dipotong pada suatu bagian tertentu dari seluruh sistem aliran. Transportasi aliran di luar bagian aliran air tanah merupakan masukan dan keluaran dari subsistem aliran air tanah tersebut.
- Demikian pula aliran air permukaan dapat merupakan satu atau lebih dari subsistem dan tidak lagi tertutup, karena sistem tertutup itu dipotong pada suatu bagian tertentu dari seluruh sistem aliran.

Dampak Urbanisasi pada Siklus Hidrologi

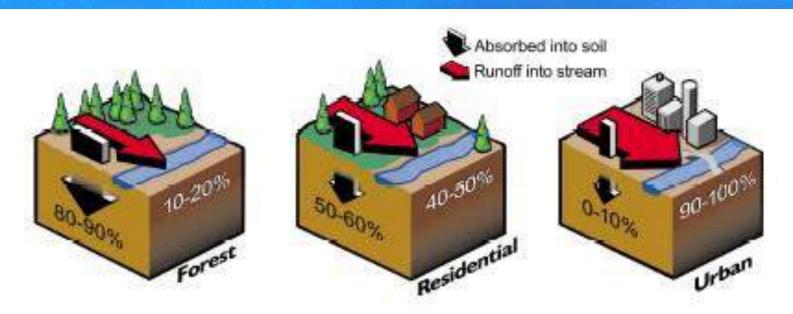
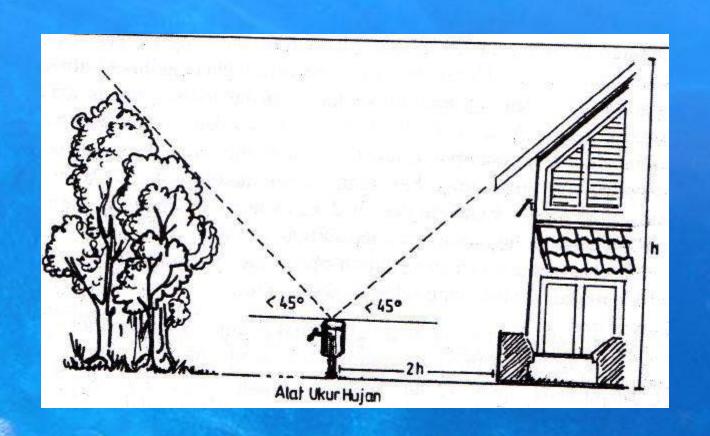


Figure 1.1-2 Changes in Hydrology and Runoff Due to Development Based on Marsh, 1983. Graphic courtesy of Atlanta Journal-Constitution

PRESIPITASI

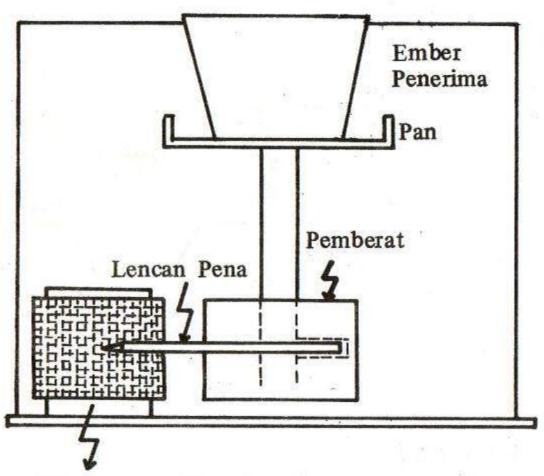
- Adalah curahan atau jatuhnya air dari atmosfer ke permukaan bumi dan laut dalam bentuk yang berbeda, yaitu curah hujan di daerah tropis dan curah hujan serta salju di daerah beriklim sedang/dingin.
- Di Indonesia, presipitasi sama dengan curah hujan maka dalam pembahasan selanjutnya digunakan istilah curah hujan
- Presipitasi berkaitan dengan kelembaban udara, energi/radiasi matahari, arah dan kecepatan angin dan suhu udara.


ALAT PENGUKUR PRESIPITASI/CURAH HUJAN

- Alat Pengukur Hujan Biasa
- Alat Pengukur Hujan Otomatis
- Jumlah Air Hujan yang terukur/tertampung dalam alat pencatat hujan
- · Satuan: mm atau inch
- Tujuan: mengukur banyaknya/intensitas curah hujan yang turun tanpa memperhitungkan faktor infiltrasi, pengaliran atau penguapan.

Alat Pengukur Curah Hujan Biasa

- Biasanya berupa gelas ukur/ember /kontainer yang telah diketahui diameternya.
- Diameter dan ketinggian bidang penangkap air hujan bervariasi
- Disarankan dimensi diameter dan ketinggian alat berkisar 15-30 cm dan 50-75 cm

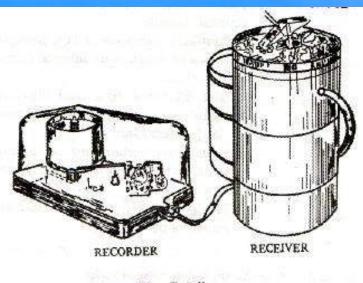


Alat Pengukur Curah Hujan Otomatis

- Adalah alat penakar hujan yang mekanisme pencatatan besarnya curah hujan bersifat otomatis.
- Data hujan yang diperoleh selain besarnya curah hujan selama periode waktu tertentu, juga dapat dicatat lama waktu hujan sehingga besarnya intensitas hujan dapat ditentukan.
- Ada 3 tipe alat pengukur curah hujan otomatis: Weighting bucket rain gauge, tipping bucket rain gauge, float type rain gauge (jarang digunakan)

Weighting bucket rain gauge

- Terdiri atas corong penangkap air hujan yang ditempatkan diatas ember penampung air yang terletak diatas timbangan yang dilengkapi dengan alat pencatat otomatis.
- Alat pencatat (pen) pada timbangan tsb dihubungkan ke permukaan kertas grafik yang tergulung pada sebuah kaleng silinder




Silinder yang dibungkus dengan kertas mili meter block (Berputar Sesuai Dengan Waktu)


Tipping bucket rain gauge

- Lebih canggih dari weighting bucket rain gauge
- Beroperasi secara otomatis dan tidak memerlukan tinta dan kertas dalam mencatat data hujan.
- Mekanisme kerjanya seperti timbangan dimana salah satu bucket/ember penampung air bergerak(jatuh) ke bawah setiap kali menerima beban (air hujan) dengan volume tertentu

Distribusi/Jaringan Alat Penakar Hujan

- Perencanaan jaringan kerja alat penakar hujan ditentukan oleh kondisi ekonomi dan kepadatan penduduk.
- Satu alat penakar hujan utk daerah kepulauan kecil seluas lebih kurang 25 km²
- Satu alat penakar hujan utk daerah pegunungan seluas lebih kurang 100-250 km²
- Satu alat penakar hujan utk daerah relatif datar seluas lebih kurang 600-900 km²

Analisa Curah Hujan Rencana

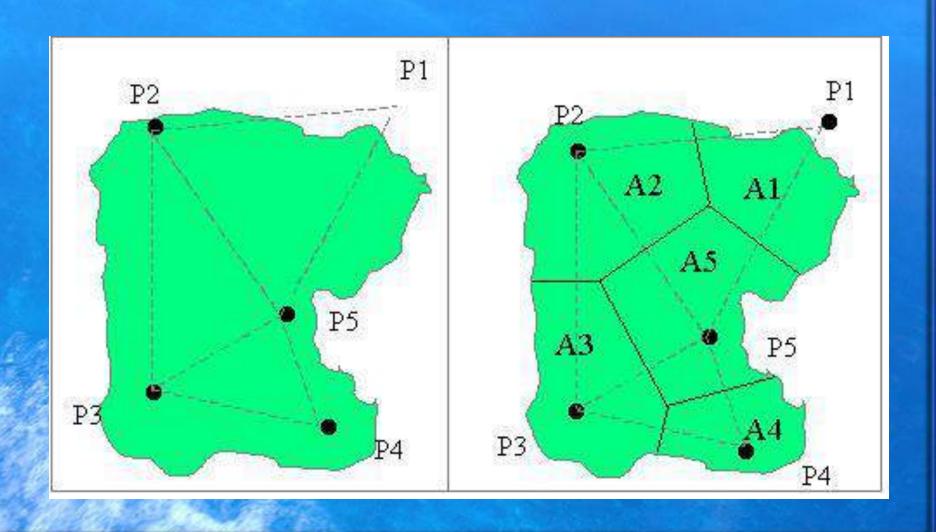
- Jumlah curah hujan yang jatuh biasanya diukur dalam satuan mm atau inci
- Analisa Curah Hujan Rencana meliputi :
 - a) Melengkapi data hujan
 - b) Meratakan data hujan : Rata-Rata Aritmatik, Poligon Thiessen, Isohyet
 - c) Konsistensi data hujan : kurva massa gand
 - d) Menghitung besarnya curah hujan rencana dengan analisis frekuensi : distribusi normal, gumbel, pearson type III dan log pearson type III

Cara Rata-Rata Aritmatik

- Rumus : Jumlah curah hujan dibagi dengan Banyaknya stasiun penakar hujan
- Alat-alat penakar hujan sebaiknya berada di dalam daerah tangkapan air (DAS) yang diamati, akan tetapi alat penakar hujan yang berada diluar DAS dapat dimanfaatkan sepanjang mewakili atau tidak jauh dari daerah pengamatan
- Hasil pengukuran dianggap memadai apabila :
 - a) Lokasi alat penakar hujan penyebarannya merata
 - b) Ketinggian daerahnya relatif seragam

Contoh perhitungan dengan cara Aritmatik:

Lokasi SubDAS Citarik Jawa Barat


No	Stasiun Penakar Hujan	Curah Hujan Tahunan (mm)	
1	Ujung Berung	1545.5	
2	Selacau	1728.9	
3	Tanjung Sari	2158.6	
4	Derwati	1521.1	
5	Bojong Salam	1816.8	
6	Ciparay	2087.8	
7	Cicalengka	1607.8	
8	Cipaku/Paseh	1927.5	

Curah hujan tahunan rata-rata SubDAS Citarik adalah 1799.3 mm

Cara Poligon Thiessen

- Tidak mempertimbangkan bentuk topografi
- Dilakukan dengan cara menghubungkan satu alat penakar hujan dengan lainnya menggunakan garis lurus sehingga membentuk segitiga, kemudian buat garis bagi tegak lurus dari garis penghubung segitiga tsb
- Hitung Luas poligon tsb

Contoh perhitungan dengan cara Poligon Thiessen:

$$\mathbf{A} = \sum_{j=1}^{j} \mathbf{A}_{j}$$

$$\mathbf{C} = \mathbf{1}/\mathbf{A} \sum_{j=1}^{j} \mathbf{A}_{j} \mathbf{C}_{j}$$

Cara Isohyet

- Cocok digunakan pada daerah pegunungan dan daerah dengan intensitas curah hujan tinggi
- Memberikan hasil yang teliti
- Caranya dengan membuat garis-garis isohyet dengan interval curah hujan tertentu
- Kemudian luas wilayah antara dua garis isohyet tsb dihitung besarnya dengan menggunakan planimeter untuk kemudian dikalikan dengan besarnya curah hujan ratarata diantara dua garis isohyet tsb

Variabilitas Curah Hujan

- Umumnya dibedakan menjadi 2 yaitu yang berdimensi ruang (spatial) dan waktu (temporal)
- Variabilitas hujan di daerah tropis jauh lebih besar dari daerah beriklim lainnya.
- Dengan adanya variasi besarnya hujan tsb maka diperlukan data hujan dalam jangka panjang untuk dapat memperkirakan besarnya nilai tengah curah hujan dan besarnya frekuensi hujan, yaitu ketika satu besaran hujan tertentu akan datang lagi pada periode waktu tertentu.

 Periode ulang adalah periode waktu rata-rata yang diharapkan terjadi antara dua kejadian yang berurutan.

 Hal ini sering disalahartikan sebagai suatu hal yang secara statistika dibenarkan bahwa dua hal (peristiwa banjir misalnya) akan terjadi secara berurutan dengan waktu yang tetap.

- Besarnya kejadian hujan berulang dalam satu serial data pengamatan curah hujan dapat menggunakan rumus : T = (n+1)/m
 - T = kejadian hujan berulang untuk m pengamatan data hujan
 - n = jumlah total pengamatan kejadian hujan
 - m = nomor peringkat untuk pengamatan kejadian hujan tertentu

Prosedur yang harus dilakukan adalah dengan cara menyusun data hujan (berdasarkan besarnya) secara menurun. Data hujan yang terbesar diberi nomor peringkat 1(m=1) dan data hujan terbesar kedua diberi nomor peringkat 2 (m=2) dst

Lalu membuat Kurva Frekuensi banjir

Langkah-langkah dalam membuat kurva frekuensi banjir :

- 1. Susun data curah hujan/debit menurut peringkatnya, dari nilai terbesar ke nilai terkecil.
- 2. Tentukan kedudukan plot dari rumus :p = m/(n+1)
- 3. Plot angka pengamatan seperti tsb pada tabel diatas kertas probabilitas atau kertas log

Memperkirakan Data Pengamatan Yang Hilang

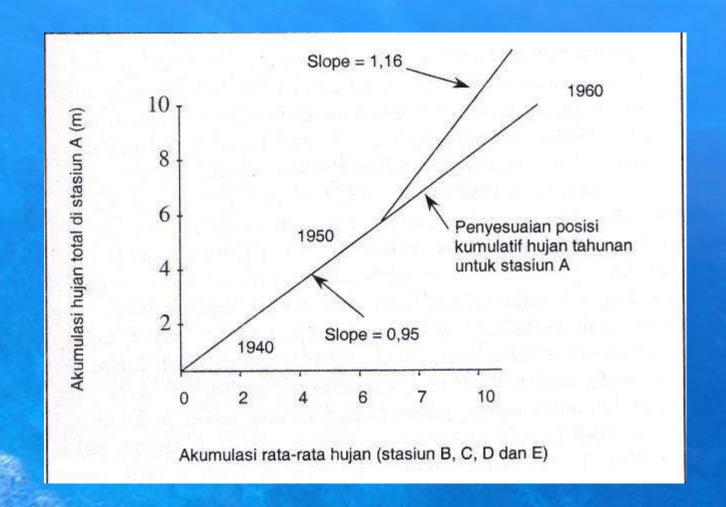
- Data curah hujan yang tidak lengkap diakibatkan oleh :
 - 1. Kerusakan alat
 - 2. Kelalaian petugas
 - 3. Penggantian/pemindahan alat
 - 4. Bencana alam
 - 5. Tertutupnya alat oleh vegetasi dsb
- Rumus yang digunakan bila besarnya perbedaan antara curah hujan rata-rata tahunan dari masingmasing ketiga stasiun penakar hujan tsb dan curah hujan rata-rata tahunan dari alat penakar hujan yang akan diperkirakan < 10% maka :

Px = (Pa+Pb+Pc)/3

Px = volume curah hujan harian atau bulanan yang diperkirakan besarnya (mm)

Pa = Pb = Pc = volume curah hujan harian atau bulanan yang dimasukkan (mm)

 Apabila besarnya perbedaan antara curah hujan rata-rata tahunan dari masing-masing ketiga stasiun penakar hujan dan curah hujan rata-rata tahunan dari alat penakar hujan yang akan diperkirakan > 10% maka digunakan metode perbandingan normal:


Px = 1/3 [(Nx/Na)Pa+(Nx/Nb)Pb+(Nx/Nc)Pc]

Pa, Pb dan Pc adalah data curah hujan ratarata bulanan yang diperoleh dari tiga stasiun penakar hujan disekitar lokasi stasiun yang dikaji.

Nx, Na, Nb, dan Nc adalah curah hujan normal jangka panjang di empat stasiun pencatat curah hujan.

Konsistensi Data Curah Hujan

- Agar data curah hujan yang dikumpulkan konsisten, maka data tsb perlu "disesuaikan" untuk menghilangkan pengaruh dari gangguan.
- Digunakan analisis kurva ganda (double mass analysis)

Distribusi Curah Hujan

- Curah hujan harian rata-rata adalah jumlah curah hujan dalam satu bulan dibagi banyaknya hari dalam satu bulan.
- Curah hujan bulanan rata-rata adalah jumlah curah hujan dalam satu tahun dibagi 12.
- Curah hujan tahunan adalah jumlah curah hujan per bulan dalam tahun tertentu.

STATISTIKA DALAM HIDROLOGI

 Metode statistika biasanya digunakan untuk mendeskripsikan data hidrologi seperti kedalaman dan intensitas curah hujan, debit puncak (banjir) tahunan, dsb

Pengertian Dasar

- Probabilitas adalah suatu basis matematis bagi peramalan, dimana rangkaian hasil lengkap yang didapat merupakan rasio hasilhasil yang akan menghasilkan suatu kejadian tertentu terhadap jumlah total hasil yang mungkin.
- Frekuensi adalah jumlah kejadian dalam suatu kelompok pada saat kejadiannya diklasifikasikan menurut perbedaan sifatsifatnya

 Periode ulang adalah periode waktu rata-rata yang diharapkan terjadi antara dua kejadian yang berurutan.

Analisis frekuensi

- Sebagai aturan umum, analisis frekuensi tidak seharusnya dilakukan untuk data yang dikumpulkan kurang dari 10 tahun.
- Beberapa metoda yaitu distribusi normal, gumbel, pearson type III dan log pearson type III

Distribusi Normal

Langkah-langkah:

- 1. Rmax-1, Rmax-2, Rmax-3,..... Dst
- 2. Hitung nilai mean

$$\mu = \frac{\Sigma(R_{\text{max}})}{N}$$

3. Hitung standar deviasi

$$\sigma = \sqrt{\frac{\sum (R_{\text{max}} - \mu)^2}{N}}$$

4. Menentukan nilai KTr

Nilai KTr diperoleh dari hubungan periode ulang dengan KTr seperti tabel

dibawah.

No.	Tr (thn)	K _{Tr}	Peluang
1	1,001	-3,05	0,999
2	1,005	-2,58	0,995
3	1,010	-2,33	0,990
4	1,050	-1,64	0,950
5	1,110	-1,28	0,900
6	1,250	-0,84	0,800
7	1,330	-0,67	0,750
8	1,430	-0,52	0,700
9	1,670	-0,25	0,600
10	2,000	0,00	0,500
11	2,500	0,25	0,400
12	3,330	0,52	0,300
13	4,000	0,67	0,250
14	5,000	0,84	0,200
15	10,000	1,28	0,100
16	25,000	1,64	0,040
17	50,000	2,05	0,020
18	100,000	2,33	0,010
19	200,000	2,58	0,005
20	500,000	2,88	0,002
21	1000,000	3,09	0,001

5. Curah hujan rencana

$$R_{Tr} = \mu + (\sigma \times K_{Tr})$$

Contoh Soal

Curah Hujan Max Harian Tahunan (1992 - 2003)

No.	Tahun	Curah Hujan Maksimum R _{max} (mm/hr)
1	1992	126,6
2	1993	121,7
3	1994	88,3
4	1995	69,1
5	1996	81,7
6	1997	79,8
7	1998	101,8
8	1999	56,8
9	2000	63,6
10	2001	92,0
11	2002	71,1
12	2003	52,6

Analisa Curah Hujan Rencana Distribusi Normal

No.	Tahun	No. Urut	R _{max} (mm/hr)	R _{max-urut} (mm/hr)
1	1992	1	126,6	126,6
2	1993	2	121,7	121,7
3	1994	5	88,3	101,8
4	1995	9	69,1	92,0
5	1996	6	81,7	88,3
6	1997	7	79,8	81,7
7	1998	3	101,8	79,8
8	1999	11	56,8	71,1
9	2000	10	63,6	69,1
10	2001	4	92,0	63,6
11	2002	8	71,1	56,8
12	2003	12	52,6	52,6
luml	ah Data		N	12
	Rata-rata	District Ann	μ	83,758
	dar Deviasi o			
Stant	iai Devias			22,710
	Tr (thn)	K _{Tr}	R _{Tr} (mm/hr)	
	2	0,00	83,76	
	5	0,84	102,83	
	10	1,28	112,83	
	25	1,64	121,00	
	50	2,05	130,31	
	100	2,33	136,67	

Distribusi Gumbel

Langkah-langkah:

1. Curah hujan harian maksimum tahunan rata-rata

$$\mu = \frac{\sum R_{\text{max}}}{N}$$

2. Reduksi mean sebagai fungsi probabilitas

$$Y_{Tr} = -Ln \left[Ln \left(\frac{Tr}{Tr - 1} \right) \right]$$

3. Reduce mean (Yn) dan reduced standar deviasi (Sn) Besarnya Yn dan Sn dapat dicari dengan menggunakan tabel disamping ini

10	Sampel	Yn	Sn	Sampel	Yn	Sn
11 0,4996 0,9676 57 0,5511 1,1708 12 0,5035 0,9833 58 0,5515 1,1721 13 0,5070 0,9971 59 0,5519 1,1734 14 0,5100 1,0095 60 0,5521 1,1747 15 0,5128 1,0206 61 0,5524 1,1759 16 0,5157 1,0316 62 0,5527 1,1770 17 0,5181 1,0411 63 0,5530 1,1782 18 0,5202 1,0565 65 0,5533 1,1793 19 0,5220 1,0565 65 0,5538 1,1814 21 0,5252 1,0696 67 0,5540 1,1824 22 0,5268 1,0754 68 0,5543 1,1834 23 0,5283 1,0811 69 0,5545 1,1844 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5555 1,1881 26						
12 0,5035 0,9833 58 0,5515 1,1721 13 0,5070 0,9971 59 0,5519 1,1734 14 0,5100 1,0095 60 0,5521 1,1747 15 0,5128 1,0206 61 0,5524 1,1759 16 0,5157 1,0316 62 0,5527 1,1770 17 0,5181 1,0411 63 0,5530 1,1782 18 0,5202 1,0493 64 0,5533 1,1793 19 0,5220 1,0565 65 0,5538 1,1814 21 0,5236 1,0628 66 0,5538 1,1814 21 0,5252 1,0696 67 0,5540 1,1824 22 0,5268 1,0754 68 0,5543 1,1834 23 0,5296 1,0864 70 0,5548 1,1854 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5550 1,1854 26					0,5508	
13 0,5070 0,9971 59 0,5519 1,1734 14 0,5100 1,0095 60 0,5521 1,1747 15 0,5128 1,0206 61 0,5524 1,1759 16 0,5157 1,0316 62 0,5527 1,1770 17 0,5181 1,0411 63 0,5530 1,1782 18 0,5202 1,0493 64 0,5533 1,1793 19 0,5220 1,0565 65 0,5538 1,1814 21 0,5252 1,0696 67 0,5540 1,1824 21 0,5252 1,0696 67 0,5541 1,1824 22 0,5268 1,0754 68 0,5543 1,1834 23 0,5283 1,0811 69 0,5545 1,1844 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5550 1,1881 26						
14 0,5100 1,0095 60 0,5521 1,1747 15 0,5128 1,0206 61 0,5524 1,1759 16 0,5157 1,0316 62 0,5527 1,1770 17 0,5181 1,0411 63 0,5530 1,1782 18 0,5202 1,0493 64 0,5533 1,1793 19 0,5220 1,0565 65 0,5535 1,1803 20 0,5236 1,0628 66 0,5538 1,1814 21 0,5252 1,0696 67 0,5540 1,1824 22 0,5268 1,0754 68 0,5543 1,1834 23 0,5283 1,0811 69 0,5545 1,1844 24 0,5296 1,0864 70 0,5548 1,1854 24 0,5296 1,0864 70 0,5555 1,1881 24 0,5296 1,0864 72 0,5555 1,1881 25						
15						
16 0,5157 1,0316 62 0,5527 1,1770 17 0,5181 1,0411 63 0,5530 1,1782 18 0,5202 1,0493 64 0,5533 1,1793 19 0,5220 1,0565 65 0,5535 1,1803 20 0,5236 1,0696 67 0,5540 1,1824 21 0,5252 1,0696 67 0,5540 1,1824 22 0,5268 1,0754 68 0,5543 1,1834 23 0,5283 1,0811 69 0,5545 1,1844 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5550 1,1854 25 0,5320 1,0861 72 0,5552 1,1873 27 0,5332 1,004 73 0,5555 1,1881 28 0,5343 1,1047 74 0,5557 1,1890 29						
17 0,5181 1,0411 63 0,5530 1,1782 18 0,5202 1,0493 64 0,5533 1,1793 19 0,5220 1,0565 65 0,5535 1,1803 20 0,5236 1,0696 67 0,5540 1,1824 21 0,5252 1,0696 67 0,5540 1,1824 22 0,5268 1,0754 68 0,5543 1,1834 23 0,5283 1,0811 69 0,5545 1,1844 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5550 1,1854 25 0,5309 1,0915 71 0,5550 1,1854 26 0,5320 1,0861 72 0,5555 1,1873 27 0,5332 1,1047 74 0,5557 1,1890 29 0,5353 1,1086 75 0,5561 1,1906 31						
18 0,5202 1,0493 64 0,5533 1,1793 19 0,5220 1,0565 65 0,5535 1,1803 20 0,5236 1,0628 66 0,5538 1,1814 21 0,5252 1,0696 67 0,5540 1,1824 21 0,5268 1,0754 68 0,5543 1,1834 23 0,5283 1,0811 69 0,5545 1,1854 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5555 1,1873 26 0,5320 1,0861 72 0,5555 1,1873 27 0,5332 1,004 73 0,5555 1,1890 29 0,5353 1,1047 74 0,5557 1,1890 29 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32						
19			1,0411			
20 0,5236 1,0628 66 0,5538 1,1814 21 0,5252 1,0696 67 0,5540 1,1824 22 0,5268 1,0754 68 0,5543 1,1834 23 0,5283 1,0811 69 0,5545 1,1844 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,55550 1,1854 26 0,5320 1,0861 72 0,5555 1,1873 26 0,5323 1,1004 73 0,5555 1,1890 28 0,5332 1,1004 73 0,5555 1,1890 29 0,5333 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1933 34	18	0,5202	1,0493			
21 0,5252 1,0696 67 0,5540 1,1824 22 0,5268 1,0754 68 0,5543 1,1834 23 0,5283 1,0811 69 0,5545 1,1844 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5550 1,1854 26 0,5320 1,0861 72 0,5555 1,1873 27 0,5332 1,1004 73 0,5555 1,1881 28 0,5343 1,1047 74 0,5557 1,1890 29 0,5353 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1287 81 0,5570 1,1945 36	19	0,5220	1,0565	65		1,1803
22 0,5268 1,0754 68 0,5543 1,1834 23 0,5283 1,0811 69 0,5545 1,1844 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5550 1,1854 26 0,5320 1,0861 72 0,5552 1,1873 27 0,5332 1,1004 73 0,5555 1,1881 28 0,5343 1,1047 74 0,5557 1,1890 29 0,5353 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1287 81 0,5570 1,1945 36 0,5402 1,1287 81 0,5570 1,1953 37	20		1,0628	66		
23 0,5283 1,0811 69 0,5545 1,1844 24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5550 1,1854 26 0,5320 1,0861 72 0,5552 1,1873 27 0,5332 1,1004 73 0,5555 1,1881 28 0,5343 1,1047 74 0,5557 1,1890 29 0,5353 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37	21	0,5252	1,0696	67		1,1824
24 0,5296 1,0864 70 0,5548 1,1854 25 0,5309 1,0915 71 0,5550 1,1854 26 0,5320 1,0861 72 0,5552 1,1873 27 0,5332 1,1004 73 0,5555 1,1881 28 0,5343 1,1047 74 0,5557 1,1890 29 0,5353 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,313 82 0,5572 1,1953 37 0,5418 1,1383 83 0,5574 1,1959 38	22	0,5268	1,0754	68	0,5543	1,1834
25 0,5309 1,0915 71 0,5550 1,1854 26 0,5320 1,0861 72 0,5552 1,1873 27 0,5332 1,1004 73 0,5555 1,1881 28 0,5343 1,1047 74 0,5557 1,1890 29 0,5353 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39	23	0,5283	1,0811	69	0,5545	1,1844
26 0,5320 1,0861 72 0,5552 1,1873 27 0,5332 1,1004 73 0,5555 1,1881 28 0,5343 1,1047 74 0,5557 1,1890 29 0,5353 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5580 1,1987 41	24	0,5296	1,0864	70	0,5548	1,1854
27 0,5332 1,1004 73 0,5555 1,1881 28 0,5343 1,1047 74 0,5557 1,1890 29 0,5353 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5442 1,1436 87 0,5581 1,1987 41	25	0,5309	1,0915	71		1,1854
27 0,5332 1,1004 73 0,5555 1,1881 28 0,5343 1,1047 74 0,5557 1,1890 29 0,5353 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5442 1,1436 87 0,5581 1,1987 41	26	0,5320	1,0861	72	0,5552	1,1873
29 0,5353 1,1086 75 0,5559 1,1898 30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,2001 44	27	0,5332	1,1004	73		1,1881
30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,2001 43 0,5453 1,1480 89 0,5586 1,2007 45	28	0,5343	1,1047	74		1,1890
30 0,5362 1,1124 76 0,5561 1,1906 31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5586 1,2007 45	29	0,5353	1,1086	75	0,5559	1,1898
31 0,5371 1,1159 77 0,5563 1,1915 32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5586 1,2001 45	30	0,5362		76	0,5561	1,1906
32 0,5380 1,1193 78 0,5565 1,1923 33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46	31			77		
33 0,5388 1,1226 79 0,5567 1,1930 34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2026 48	32	0,5380	1,1193		0,5565	
34 0,5396 1,1255 80 0,5569 1,1938 35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46	33		1,1226	79		1,1930
35 0,5402 1,1287 81 0,5570 1,1945 36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2026 48	34			80		
36 0,5410 1,1313 82 0,5572 1,1953 37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1690 95 0,5593 1,2044 50	35			81		
37 0,5418 1,1339 83 0,5574 1,1959 38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5453 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5485 1,1607 96 0,5595 1,2044 51				82		
38 0,5424 1,1363 84 0,5576 1,1967 39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1690 95 0,5593 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055	37					
39 0,5430 1,1388 85 0,5578 1,1973 40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055	38			84		
40 0,5436 1,1413 86 0,5580 1,1987 41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
41 0,5442 1,1436 87 0,5581 1,1987 42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
42 0,5448 1,1458 88 0,5583 1,1994 43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
43 0,5453 1,1480 89 0,5583 1,2001 44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
44 0,5458 1,1499 90 0,5586 1,2007 45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
45 0,5463 1,1519 91 0,5587 1,2013 46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
46 0,5468 1,1538 92 0,5589 1,2020 47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
47 0,5473 1,1557 93 0,5591 1,2026 48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
48 0,5477 1,1574 94 0,5592 1,2032 49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
49 0,5481 1,1590 95 0,5593 1,2038 50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
50 0,5485 1,1607 96 0,5595 1,2044 51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
51 0,5489 1,1623 97 0,5596 1,2049 52 0,5493 1,1638 98 0,5598 1,2055						
52 0,5493 1,1638 98 0,5598 1,2055						
54 0,5501 1,1667 100 0,5600 1,2065						
55 0,5504 1,1681				100	0,5000	1,2005
33 0,3304 1,1001	33	0,5504	1,1001			

4. Standar Deviasi

$$S = \sqrt{\frac{\sum (R_{\text{max}} - \mu)^2}{N - 1}}$$

5. Curah hujan rencana:

$$R_{Tr} = \mu + \left((Y_{Tr} - Yn) \times \frac{S}{S_n} \right)$$

Analisa Curah Hujan Rencana Distribusi Gumbel

No.	Tahun	R _{max} (mm/hr)	$(R_{max} - \mu)^2$	R _{max-urut} (mm/hr)
1	1992	126,6	1838,266	126,6
2	1993	121,7	1442,101	121,7
3	1994	88,3	20,325	101,8
4	1995	69,1	213,891	92,0
5	1996	81,7	4,375	88,3
6	1997	79,8	15,933	107,0
7	1998	101,8	324,300	79,8
8	1999	56,8	724,956	71,1
9	2000	63,6	405,016	69,1
10	2001	92,0	67,925	93,0
11	2002	71,1	161,078	56,8
12	2003	52,6	970,842	52,6
lumlah I	Data		N	12
	Nilai Data		N ?R _{max} μ	12 1005,100 83,758
lumlah I Nilai Rat	Nilai Data a-rata	an Mean Pangkat Dua	?R _{max}	1005,100
lumlah I Nilai Rat Iumlah S	Nilai Data :a-rata Selisih Denga	ın Mean Pangkat Dua	?R _{max} µ	1005,100 83,758
lumlah I Nilai Rat Jumlah S Standar	Nilai Data :a-rata Selisih Denga	(Constitution)	?R _{max} μ ?(R _{max} - μ) ²	1005,100 83,758 6189,007
Jumlah I Nilai Rat Jumlah S Standar Koefisier	Nilai Data a-rata Selisih Denga Deviasi n Y _n (Reduce	(Constitution)	?R _{max} μ ?(R _{max} - μ) ² S	1005,100 83,758 6189,007 23,720
lumlah I Nilai Rat Iumlah S Standar Koefisier	Nilai Data a-rata Selisih Denga Deviasi n Y _n (Reduce	d Mean)	?R _{max} μ ?(R _{max} - μ) ² S Υ _n	1005,100 83,758 6189,007 23,720 0,504
lumlah I Nilai Rat Jumlah S Standar Koefisier	Nilai Data a-rata Selisih Denga Deviasi Y _n (Reduce S _n (Seduce Tr (thn)	d Mean) d Standar Deviasi) Y _{Tr}	$\begin{array}{c} ?R_{max} \\ \mu \\ ?(R_{max} - \mu)^2 \\ S \\ Y_n \\ S_n \\ \end{array}$	1005,100 83,758 6189,007 23,720 0,504
lumlah I Nilai Rat Jumlah S Standar Koefisier	Nilai Data a-rata Selisih Denga Deviasi Y _n (Reduced Solution S _n (Seduced Tr (thn)	d Mean) d Standar Deviasi) Y _{Tr} 0,37	$\begin{array}{c} ?R_{max} \\ \mu \\ ?(R_{max} - \mu)^2 \\ S \\ Y_n \\ S_n \\ \\ R_{Tr} \ (mm) \\ 80,45 \end{array}$	1005,100 83,758 6189,007 23,720 0,504
lumlah I Nilai Rat Jumlah S Standar Koefisier	Nilai Data a-rata Selisih Denga Deviasi n Y _n (Reduce n S _n (Seduce Tr (thn) 2 5	d Mean) d Standar Deviasi) Y _{Tr} 0,37 1,50	?R _{max} μ ?(R _{max} - μ) ² S Y _n S _n R _{Tr} (mm) 80,45 107,80	1005,100 83,758 6189,007 23,720 0,504
lumlah I Nilai Rat Jumlah S Standar Koefisier	Nilai Data ca-rata Selisih Denga Deviasi n Y _n (Reduce n S _n (Seduce Tr (thn) 2 5 10	d Mean) d Standar Deviasi) Y _{Tr} 0,37 1,50 2,25	?R _{max} μ ?(R _{max} - μ) ² S Y _n S _n R _{Tr} (mm) 80,45 107,80 125,90	1005,100 83,758 6189,007 23,720 0,504
lumlah I Nilai Rat Jumlah S Standar Koefisier	Nilai Data a-rata Selisih Denga Deviasi n Y _n (Reduce n S _n (Seduce Tr (thn) 2 5	d Mean) d Standar Deviasi) Y _{Tr} 0,37 1,50	?R _{max} μ ?(R _{max} - μ) ² S Y _n S _n R _{Tr} (mm) 80,45 107,80	1005,100 83,758 6189,007 23,720 0,504

Distribusi Log Pearson Type III

Langkah-langkah:

- 1. Ubah data hujan Rmax-1, Rmax-2, Rmax-3,..... Rmax-12 menjadi LogRmax-1, LogRmax-12, LogRmax-3,....LogRmax-12.
- 2. Hitung nilai mean

$$\frac{1}{\log R_{\max}} = \frac{\Sigma(\log R_{\max})}{N}$$

3. Hitung standar deviasi

$$S_{\log} = \sqrt{\frac{\sum \left(LogR_{\max} - \overline{LogR_{\max}}\right)^2}{N-1}}$$

4. Hitung koefisien kemencengan

$$C_{S} = \frac{\Sigma \left(LogR_{\text{max}} - \overline{R_{\text{max}}}\right)^{3}}{(N-1)\times(N-2)\times(S_{\text{log}})^{3}}$$

5. Menentukan nilai KTr

Skew			Return I	Periode ((Year)		Lesegua
Coef.	2	5	10	25	50	100	200
C			Exceede	nce Prob	ability	Λ	
Cs	0.500	0.200	0.100	0.040	0.020	0.010	0.005
-3.0	0.396	0.636	0.666	0.666	0,666	0,667	0,667
-2.9	0.390	0.651	0.681	0.683	0.689	0.690	0.690
-2.8	0.384	0.666	0.702	0.712	0.714	0.714	0.714
-2.7	0.376	0.681	0.747	0.738	0.740	0.740	0.741
-2.6	0.368	0.696	0.771	0.764	0.768	0.769	0.769
-2.5	0.360	0.711	0.795	0.793	0.798	0.799	0.800
-2.4	0.351	0.725	0.819	0.823	0.830	0.832	0.833
-2.3	0.341	0.739	0.844	0.855	0.864	0.867	1.869
-2.2	0.330	0.752	0.869	0.888	0.900	0.905	0.907
-2.1	0.319	0.765	0.895	0.923	0.939	0.946	0.949
-2.0	0,307	0.777	0.920	0.959	0.980	0.990	0.995
-1.9	0.294	0.788	0.945	0.996	1.023	1.038	1.044
-1.8	0.282	0.799	0.970	1.035	1.069	1.087	1.097
-1.7	0.268	0.808	0.884	1.075	1.116	1.140	1.155
-1.6	0.254	0.817	0.994	1.116	1.166	1.197	1.216
-1.5	0.240	0.825	1.018	1.157	1.217	1.256	1.282
-1.4	0.225	0.832	1.041	1.198	1.270	1.318	1.351
-1.3	0.210	0.838	1.064	1,240	1.324	1.383	1.424
-1.2	0.195	0.844	1.086	1.282	1,379	1.449	1.501
-1.1	0.180	0.848	1.107	1.324	1,435	1.518	1.581
-1.0	0.164	0.852	1.128	1.366	1.492	1.588	1.664
-0.9	0.148	0.854	1.147	1.407	1.549	1.660	1.749
-0.8	0.132	0.856	1.166	1.448	1.606	1.733	1.837

II -0.7	0.116	0.857	1.183	1.488	1,663	1,806	1.926
-0.6	0.099	0.857	1,200	1,528	1.720	1.880	2.016
-0.5	0.083	0.856	1,216	1.567	1.770	1.955	2.108
2000000	302752	- 70107G-000	13/70/55/75/50		VC3040005	ACCOUNT OF THE PARTY OF THE PAR	2,201
-0.4 -0.3	0,066	0,855 0,853	1,231	1.606	1.834	2.029	2,201
-0.3	0.033	0.850	1.258	1.680	1.945	2.178	2,388
-0.2	0.033	0.846	1.270	1.716	2.000	2.252	2,482
0.0	0.000	0.842	1.282	1.716	2.054	2,326	2,576
0.0	-0.017	0.842	1,292	1.785	2.107	2,400	2.670
0.1		0.830	1,301	2.7000000000	2.159	AND THE RESERVE	2,763
B 82742783	-0.033			1.818		2.472	
0,3	-0.050	0.824	1,309	1.849	2.211	2.544	2.856
0.4	-0.066	0.816	1.317	1.880	2.261	2.615	2,949
0.5	-0.083	0.808	1,323	1.910	2.311	2,686	3.041
0.6	-0.099	0.800	1.328	1.939	2,359	2,755	3.132
0.7	-0.116	0.790	1,333	1.967	2.407	2.824	3.223
0.8	-0.132	0.780	1,336	1.998	2.453	2.891	3,312
0.9	-0.148	0.769	1,339	2.018	2,498	2.957	3,401
1.0	-0.164	0.758	1,340	2.043	2.542	3.022	3,489
1.1	-0.180	0.745	1.341	2.066	2,585	3.087	3.575
1.2	-0.195	0.732	1,340	2.087	2.626	3.149	3.661
1.3	-0.210	0.719	1,339	2.108	2.666	3.211	3.745
1.4	-0.225	0.705	1.337	2.128	2,706	3.271	3.828
1.5	-0.240	0.690	1,333	2.146	2.743	3.330	3.910
1.6	-0.254	0.675	1.329	2.163	2.780	3,388	3.990
1.7	-0.268	0.660	1,324	2.179	2.815	3,444	4.069
1.8	-0.282	0.643	1.318	2.193	2.828	3.499	4.147
1.9	-0.282	0.627	1,310	2.207	2.881	3,553	4.223
2.0	-0.307	0.609	1,302	2,219	2.912	3,605	4.298
2.1	-0.319	0,592	1,294	2.230	2.942	3,656	4,372
2.2	-0.330	0.574	1.284	2.240	2.970	3,705	4.444
2.3	-0.341	0.555	1,274	2,248	3.997	3,753	4,515
2.4	-0.351	0.537	1.262	2.256	3.023	3,800	4,584
2.5	-0,360	0.518	1,250	2,262	3.048	3.845	4.652
2.6	-0.368	0.799	1.238	2.267	3.017	3,899	4.718
2.7	-0.384	0.460	1.210	2.275	3,114	3.937	4.847
2.8	-0.376	0.479	1,224	2,272	3.093	3,932	4.783
2.9	-0,390	0.440	1.195	2.277	3.134	4.013	4.909
3.0	-0.396	0.420	1.180	2,278	3.152	4.051	4.970

6. Hitung logaritma hujan rencana

$$\log R_{Tr} = \overline{\log R_{\max}} + \left(S_{\log} \times K_{Tr}\right)$$

7. Curah hujan rencana

$$R_{Tr} = 10^{\log R_{Tr}}$$

Latihan

Analisa Curah Hujan Rencana Distribusi Log Pearson Type III

No.	Tahun	R _{max} (mm/hr)	logR _{max}	$(\log R_{max} - \log R_{max})^2$	(logR _{max} - logR _{max}) ³
1	1992	126,6333333	2,103	0,03805541	0,00742377
2	1993	121,7333333	2,085	0,03166244	0,00563400
3	1994	88,26666667	1,946	0,00146893	0,00005630
4	1995	69,13333333	1,840	0,00459448	-0,00031143
5	1996	81,66666667	1,912	0,00002093	0,00000010
6	1997	79,76666667	1,902	0,00003191	-0,00000018
7	1998	101,7666667	2,008	0,01002711	0,00100407
8	1999	56,83333333	1,755	0,02336830	-0,00357224
9	2000	63,63333333	1,804	0,01077141	-0,00111792
10	2001	92	1,964	0,00317169	0,00017862
11	2002	71,06666667	1,852	0,00311410	-0,00017378
12	2003	52,6	1,721	0,03477641	-0,00648525
Jumlal	n Data			N	12
	n Nilai 'log	gR _{max} '		?logR _{max}	22,890
Nilai R	ata-rata '	logR _{max} ' (mean)	550	logR _{max}	1,907
Jumlal	n Selisih I	Dengan Mean Pan	gkat Dua	?(logR _{max} - logR _{max}) ²	0,161
Standa	ar Deviasi	'logR _{max} '		S _{log}	0,121
Jumlal	n Selisih I	Dengan Mean Pan	gkat Tiga	$(\log R_{max} - \log R_{max})^3$	0,003
Koefis	ien Keme	ncengan		C _s	0,162
	Tr (thn)	K _{Tr}	logR _{Tr}	R _{Tr} (mm)	
		B/C			The section of
	2	-0,030	1,9038	80,14	
	5	0,850	2,0103	102,41	
	10	1,332	2,0686	117,11	
	25	1,834	2,1293	134,69	
	50 100	2,173 2,477	2,1705 2,2073	148,07 161,16	
23	1000	2,4//	2,2073	101,10	
	1000				

Distribusi Pearson Type III

 Untuk perhitungan curah hujan rencana dengan menggunakan distribusi ini mempunyai prosedur perhitungan sama dengan distribusi log pearson type III, dengan catatan data curah hujan tidak perlu dirubah menjadi log dulu.

Analisa Curah Hujan Rencana Distribusi Pearson Type III

No.	Tahun	R _{max} (mm/hr)	$(R_{max} - \mu)^3$			
1	1992	126,6333333	78815,64			
2	1993	121,7333333	54763,77			
3	1994	88,26666667	91,63			
4	1995	69,13333333	-3128,15			
5	1996	81,66666667	-9,15			
6	1997	79,76666667	-63,60			
7	1998	101,7666667	5840,10			
8	1999	56,83333333	-19519,43			
9	2000	63,63333333	-8150,94			
10	2001	92	559,82			
11	2002	71,06666667	-2044,35			
12	2003	52,6	-30249,81			
Jumlah Data		N	12			
Jumlah Nilai	Data	?R _{max}	1005,100			
Nilai Rata-ra	ta	μ	83,758			
Standar Dev	iasi	S	23,720			
Koefisien Ke	mencengan	C _s	0,629			
— (11)						
Tr (thn)	K _{Tr}	R _{Tr} (mm)				
2	-0,118	80,96				
5	0,842	103,73				
10	1,388	116,69				
25	2,029	131,89				
50	2,676	147,23				
100	2,855	151,47				

Dari keempat cara tsb maka dirangkum :

Resume Analisa Curah Hujan Rencana

	Analisa Frekuensi Curah Hujan Rencana (mm/hr)								
Periode Ulang	Normal	Gumbel	Pearson III	Log Pearson III					
Tr ₂	83,76	80,45	80,96	80,14					
Tr_{5}^{7}	102,83	107,80	103,73	102,41					
Tr ₁₀	112,83	125,90	116,69	117,11					
Tr ₂₅	121,00	148,77	131,89	134,69					
Tr ₅₀	130,31	165,74	147,23	148,07					
Tr ₁₀₀	136,67	182,58	151,47	161,16					

 Dari tabel diatas dapat dijelaskan bahwa dari hasil perhitungan curah hujan dengan berbagai periode ulang menunjukan, perhitungan dengan distribusi gumbel relatif lebih besar dari distribusi lainnya untuk periode ulang 5, 10, 25, 50, 100 tahun. Sedangkan untuk periode ulang 2 tahun, perhitungan curah hujan dengan distribusi normal relatif lebih besar dari distribusi yang lainnya.

Uji Kecocokan

Dalam menghitung curah hujan rencana digunakan beberapa distribusi, dari beberapa distribusi ini hanya satu yang akan dipakai. Untuk menentukan distribusi mana yang akan dipakai dilakukan uji kecocokan dengan maksud untuk memberikan informasi apakah suatu distribusi data sama atau mendekati dengan hasil pengamatan dan kelayakan suatu fungsi distribusi. Ada empat metoda yang digunakan untuk pengujian tersebut:

- Rata-rata prosentase error, digunakan untuk menguji fungsi kerapatan probabilitas dan fungsi kerapatan kumulatif.
- **Deviasi**, digunakan untuk menguji fungsi kerapatan probabilitas dan fungsi kerapatan komulatif.
- Chi-Kuadrat, digunakan untuk menguji fungsi kerapatan probabilitas.
- Kolmogorof-Smirnov, digunakan untuk menguji fungsi kerapatan kumulatif.

Debit Rencana

Dalam perencanaan dimensi, kemampuan dan ketahanan suatu bangunan utama yang ada di alur sungai diperlukan beberapa parameter aliran sungai yang salah satunya yaitu debit sungai, Untuk lebih tepatnya debit banjir desain. Dalam perhitungan debit banjir rencana dapat digunakan beberapa metode perhitungan, diantaranya yaitu:

- Rasional
- Hidrograf Satuan Sintetik

1. Cara Rasional

Dalam perhitungan debit rencana dengan cara rasional, ada beberapa cara diantaranya yaitu:

- 1. Metoda Der Weduwen, untuk DAS ≤ 100 km2
- 2. Metoda Melchior, untuk DAS > 100 km2
- 3. Metoda Haspers
- 4. Metoda Rasional Praktis

Metoda di atas mempunyai syarat dalam perhitungan sehingga dalam perhitungan debit perencanaan untuk desain pengambilan daerah irigasi pada contoh sebelumnya yang mempunyai luas DPS (daerah pengaliran sungai) sebesar 65 km2 maka metoda perhitungan yang bisa digunakan yaitu metoda weduwen, haspers dan rasional.

Metoda Weduwen

 Metoda Der Weduwen bisa digunakan dalam perhitungan apabila luas daerah pengaliran sungai ≤ 100 km2. Formulasi pendekatan dalam perhitungan debit banjir desain dengan metoda Der Weduwen dapat disajikan sebagai berikut:

$$Q_{Tr} = \alpha.\beta.q_t.A$$

$$\alpha = 1 - \frac{4,10}{(\beta - q_t + 7)}$$

$$q_t = \frac{R_{Tr}}{240} \times \frac{67,65}{t + 1,45}$$

$$\beta = \frac{120 + A(t+1)/(t+9)}{120 + A}$$

$$t = 0,25.L.Q_{Tr}^{-0.125}.I^{-0.25}$$

- QTr = debit banjir rencana dengan periode ulang tertentu (m3/dt)
- α = koefisien limpasan
- β = koefisien pengurangan limpasan
- qt = luas curah hujan dengan periode ulang tertentu (m3/det/km2)
- A = luas daerah aliran sungai (km2)
- L = panjang sungai (km)
- I = kemiringan sungai
- RTr = curah hujan rencana dengan periode ulang tertentu (mm/hari)

Prosedur perhitungan debit rencana dengan menggunakan metoda weduwen :

- 1. Menentukan waktu awal (t0)
- 2. Hitung koefisien pengurangan limpasan
- 3. Hitung luasan curah hujan
- 4. Hitung koefisien limpasan
- 5. Hitung debit banjir
- 6. Hitung waktu hujan (t)
- 7. Ulangi perhitungan sampai didapatkan t = t0

Metoda Haspers

$$Q_{Tr} = \alpha.\beta.q_t.A$$

QTr = debit banjir rencana dengan periode tertentu (m3/dt)

 α = koefisien limpasan air hujan

$$\alpha = \frac{1 + 0,012.A^{0,7}}{1 + 0,075.A^{0,7}}$$

β = koefisien pengurangan daerah untuk curah hujan pada aliran sungai

$$\frac{1}{\beta} = 1 + \frac{t + 3,7.10^{-0.4t}}{t^2 + 15} \cdot \frac{A^{-0.75}}{12}$$

qt= run off per km2

$$= \frac{r_t}{3,6t}$$

$$\frac{t \times R_{Tr}}{t+1}$$

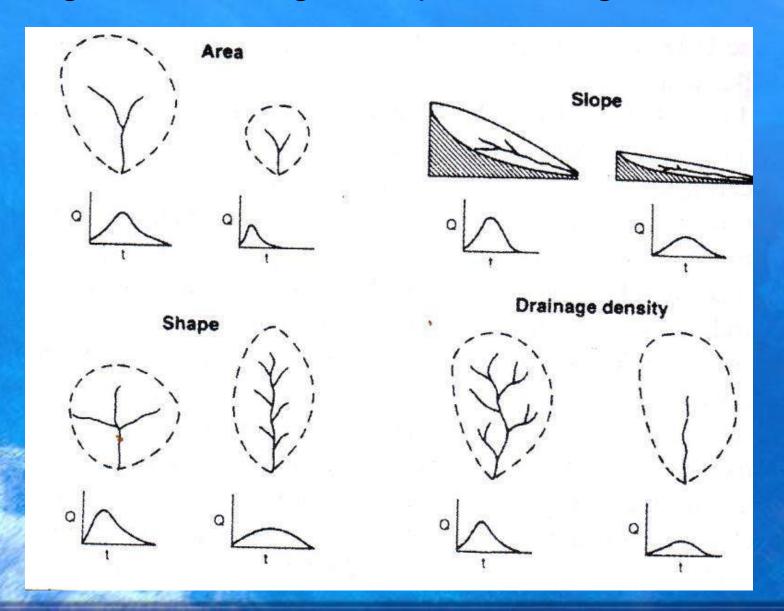
MATERI SETELAH UTS

Memperkirakan debit rencana dapat dilakukan dengan beberapa cara, sebelum UTS telah dibahas dengan menggunakan cara analisa statistik.

Cara lainnya yang belum dibahas yaitu cara perhitungan infiltrasi, cara Rasional, cara empiris

Sebelum menjelaskan tentang berbagai cara tersebut, ada baiknya kita mempelajari pengetahuan pendukung/penunjang dahulu:

AIR PERMUKAAN (Surface Water)


- Air permukaan berasal dari air hujan yang mengalir diatas permukaan tanah menuju ke sungai, danau atau laut.
- Air hujan yang jatuh ke permukaan tanah ada yang langsung masuk ke tanah (infiltrasi), tetapi ada juga yang mengalir diatas permukaan tanah (air larian/surface runoff).
- Bagian penting dari air larian yang perlu diketahui adalah besarnya debit puncak (peak flow) dan waktu tercapainya debit puncak dan volume air larian.

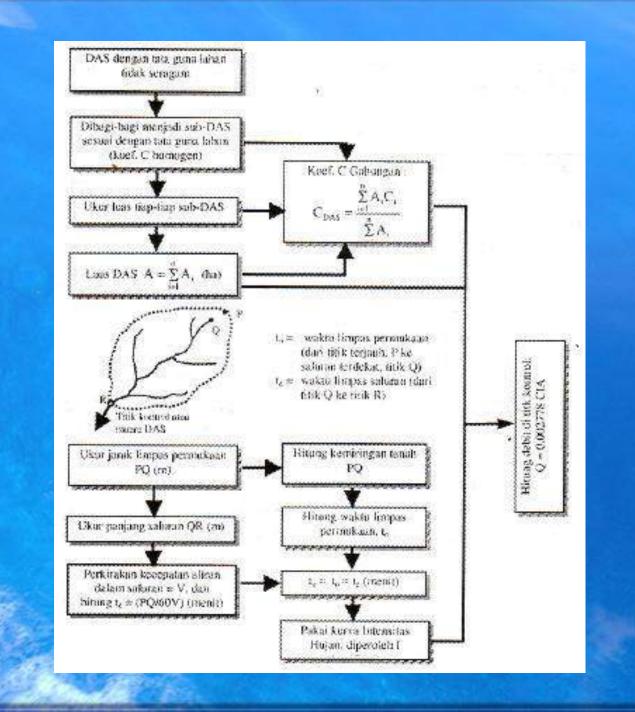
Faktor-Faktor Penentu Air Larian

- Faktor karakteristik curah hujan : lama waktu hujan, intensitas, penyebaran hujan mempengaruhi laju dan volume air larian.
- Faktor karakteristik daerah aliran sungai : morfometri (bentuk dan ukuran) DAS, topografi, geologi, tata guna lahan, jenis dan kerapatan vegetasi.

 Beberapa pengaruh morfologi DAS seperti luas, kemiringan lereng, bentuk dan kerapatan drainase DAS terhadap besaran dan waktu dari hidrograf aliran yang dihasilkannya.

Pengaruh morfologi DAS pada hidrograf aliran

Cara Rasional


- Model hanya berlaku untuk SubDAS kecil (< 300 hektar) dengan komponen tataguna lahan utamanya adalah pertanian.
- Metoda ini digunakan untuk memperkirakan besarnya air larian puncak (Qp)
- Qp = 0.00278 CiA
- Faktor-faktor yang mempengaruhi: koefisien air larian (c), intensitas curah hujan (i) dan luas DAS yang dikaji (A)

Qp= debit puncak (m3/det) koefisien 0,278 bila luas daerah dalam km2 dan 0,00278 bila luas daerah dalam ha

C=koefisien limpasan, lihat tabel

I = intensitas hujan rata-rata (mm/jam)

A= luas daerah tangkapan hujan (ha atau km2)

Koefisien Air Larian (c)

- Adalah bilangan yang menunjukkan perbandingan antara besarnya air larian terhadap besarnya curah hujan.
- Contoh: C untuk hutan adalah 0.1 artinya 10% dari total hujan akan menjadi air larian.
- Angka koefisien air larian merupakan indikator untuk menentukan apakah suatu DAS telah mengalami perubahan/gangguan fisik.
- Besarnya nilai C berarti jumlah air larian semakin besar, sehingga dapat mengakibatkan erosi dan banjir.
- Angka C berkisar 0 < C < 1

Tataguna lahan	C	Tataguna lahan	C
Perkantoran •	den an i	Tanah Lapang	
Daerah pusat kota	0,70-0,95	Berpasir, datar, 2 %	0,05-0,10
Daerah sekitar kota	0,50-0,70	Berpasir, agak rata, 2-7 %	0,10-0,15
Perumahan		Berpasir, miring, 7 %	0,15-0,20
Rumah tunggal	0,30-0,50	Tanah berat, datar, 2 %	0,13-0,17
Rumah susun, terpisah	0,40-0,60	Tnh berat, agak rata, 2-7 %	0,18-0,22
Rumah susun, bersambung	0,60-0,75	Tanah berat, miring,7 %	0,25-0,35
Pinggiran kota	0,25-0,40	Tanah Pertanian, 0-30 %	
Daerah Industri		Tanah Kosong	
Kurang padat industri	0,50-0,80	Rata	0,30-0,60
Padat industri	0,60-0,90	Kasar	0,20-0,50
constituted above the notice		Ladang Garapan	
Taman, Kuburan	0,10-0,25	Tnh berat, tanpa vegetasi	0,30-0,60
Tempat Bermain	0,20-0,35	Tnh berat, dngn. vegetasi	0,20-0,5.0
Daerah Stasiun KA	0,20-0,40	Berpasir, tanpa vegetasi	0,20-0,25
Daerah Tak Berkembang	0,10-0,30	Berpasir, dngn. vegetasi	0,10-0,25
Jalan Raya		Padang Rumput	
Beraspal	0,70-0,95	Tanah berat	0,15-0,45
Berbeton	0,80-0,95	Berpasir	0,05-0,25
Berbatu bata	0,70-0,85	Hutan/bervegetasi	0,05-0,25
Trotoar	0,75-0,85	Tanah Tidak Produktif, > 30 %	
		Rata, kedap air	0,70-0,90
Daerah beratap	0,75-0,95	Kasar	0,50-0,70

- Nilai koefisien (C) banyak diteliti oleh banyak ilmuan sehingga banyak nilai koefisien yang ditemukan dengan kondisinya masing-masing
- Bila kita menggunakan tabel sebelumnya maka bila dalam suatu DAS terdiri dari banyak tata guna lahan

maka

$$C_{DAS} = \frac{\sum_{i=1}^{n} C_{i} A_{i}}{\sum_{i=1}^{n} A_{i}}$$

Intensitas Curah Hujan (I)

- Adalah tinggi atau kedalaman air hujan per satuan waktu.
- Sifat umum hujan adalah makin singkat hujan berlangsung intensitasnya cenderung makin tinggi
- Data hujan yang diperlukan hanya yang berasal dari penakar hujan otomatis.
- Hubungan antara intensitas, lama hujan dan frekuensi hujan biasanya dinyatakan dalam lengkung/kurva Intensitas-Durasi-Frekuensi (IDF)
- Diperlukan data hujan jangka pendek (misalnya 5 menit, 10 menit, 30 menit maupun jam-jaman untuk membentuk lengkung IDF.
- Rumus yang digunakan : Rumus Talbot, Rumus Sherman, Rumus Ishiguro, Rumus Mononobe (data yang digunakan data hujan harian)

Rumus Talbot (1881)

- Rumus ini banyak digunakan karena mudah diterapkan
- Rumus:

$$I = a / (t+b)$$

$$I = \frac{a}{t+b}$$
di mana
$$I = \frac{a}{t+b}$$

$$t = \frac{a}{t+b}$$
intensitas hujan (mm/jam)
$$t = \frac{a}{t+b}$$

 Konstanta a dan b dicari dgn harga-harga terukur

$$a = \frac{\begin{bmatrix} I.t \end{bmatrix} I^2 - \begin{bmatrix} I^2.t \end{bmatrix} I}{N[I^2] - \begin{bmatrix} I \end{bmatrix} I}$$

$$b = \frac{[I][I.t] - N[I^2.t]}{N[I^2] - [I][I]}$$

Rumus Sherman (1905)

- Cocok untuk jangka waktu curah hujan yang lamanya lebih dari 2 jam.
- Rumus:

$$I = \frac{a}{t^n}$$

```
di mana
I = intensitas hujan (mm/jam)
```

t = lamanya hujan (jam)

n = konstanta.

$$log a = \frac{[log I](log t)^{2} - [log t. log I]log t]}{N(log t)^{2} - [log t][log t]}$$

$$n = \frac{[log I][log t] - N[log t. log I]}{N(log t)^{2} - [log t][log t]}$$

Rumus Ishiguro (1953)

• Rumus:
$$I = \frac{a}{\sqrt{t+b}}$$

di mana

I = intensitas hujan (mm/jam) t = lamanya hujan (jam) a dan b = konstanta.

$$a = \frac{\begin{bmatrix} I.\sqrt{t} & I^2 \\ - & I^2\sqrt{t} & I \end{bmatrix}}{N[I^2] - [I][I]}$$

$$b = \frac{\begin{bmatrix} I & I.\sqrt{t} \\ - & N[I^2\sqrt{t} \end{bmatrix}}{N[I^2] - [I][I]}$$

Rumus Mononobe

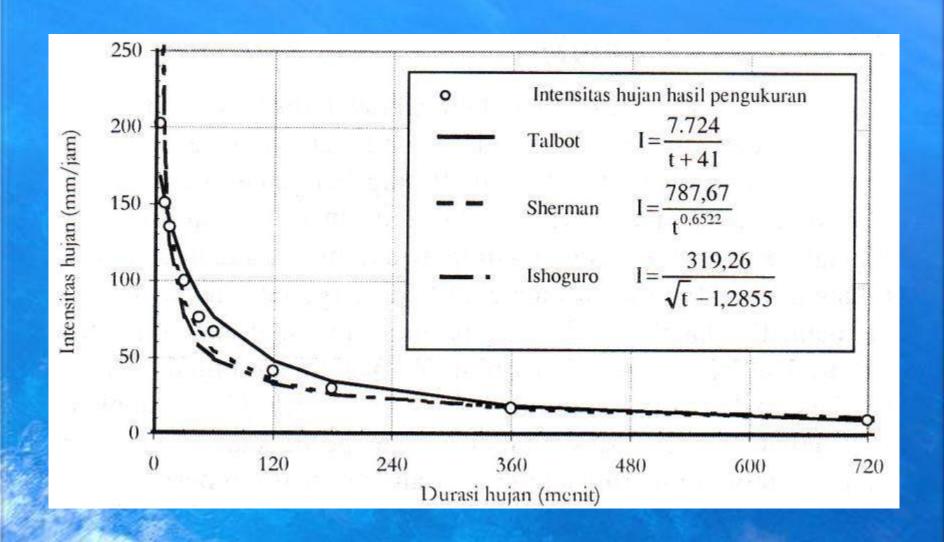
Menurut Dr. Mononobe intensitas curah hujan (I) dalam rumus rasional dapat dihitung berdasarkan rumus :

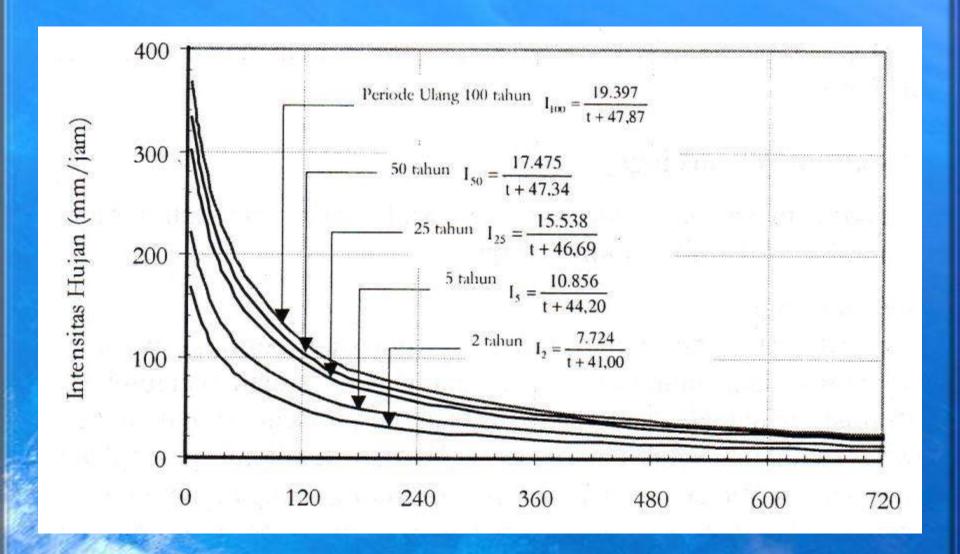
$$I = \frac{R}{24} \left[\frac{24}{t_c} \right]^{2/3} \quad mm/jam$$

Dimana:

R = Curah hujan rancangan setempat (mm)

tc =Lama waktu konsentrasi (jam)


I = Intensitas curah hujan (mm/jam)


Contoh Perhitungan

No. T		= =======				Durasi (menit)					1 hari	2 hari
	Tahun	5	10	15	30	45	60	120	180	360	720	1 (lati	_ mair
1	1959	20	25	30	50	52	53	55	55	55	55	75	
	1960	18	22	32	46	46	47	51	57	67	71	87	115
2 3 4	1961	21	26	28	40	43	44	50	66	87	116	124	=
4	1962	11	20	25	30	35	38	45	52	73	76	100	*
5	1963	22	150	25	38	40	40	44	62	70	118	120	+
6	1964	21	31	42	62	78	80	89	91	98	100	100	-
7	1965	11	15	18	28	38	40	41	44	91	125	166	270
	1966	27	30	34	43	50	54	72	80	90	91		32
8	1976	17	20	32	4.3	59	75	107	107	135	183	206	249
10	1978	17	25	36	60	72	85	98	102	115	115	115	149
11	1979	15	24	29	37	50	56	99	114	:26	126	126	126
12	1980	14	28	62	82	82	91	175	185	192	192	192	192
13	1981	20	40	50	65	70	80	113	120	204	228	253	260
14	1982	10	10	16	47	-	69	80	103	131	131	157	247
15	1983	18	36	54	73	61	93	93	96	96	96	- 96	116
16	1984	15	27	35	47	61	67	79	83	85	91	91	128
17	1985	15	25	35	55	71	95	149	149	149	247	253	282
18	1986	31	46	62	72	43	100	105	123	129	130	130	130
19	1987	27	32	37	60	8	88	93	93	96	138	138	155
20	1988	15	26	36	51	71	81	102	101	117	174	174	198
21	1989	16	26	30	44	55	80	100	100	108	142	142	226

No.	Tahun -	Durasi (menit)									oerosa mormosa	a 1	
	ranun -	5 -	10	15	30	45	60	120	180	360	720	- 1 hari	2 hari
1	1959	240	150	120	100	69	53,0	27,5	18,3	9,2	4,6	3,1	-
2	1960	216	132	128	92	61	47,0	25,5	19,0	11,2	5,9	3,6	2.4
3	1961	252	156	112	80	57	44,0	25,0	22,0	14,5	9,7	5,2	
4	1962	132	120	100	60	47	38,0	22,5	17,3	12,2	6,3	4,2	
5	1963	264	500 E	100	76	53	40,0	22,0	20,7	11,7	9,8	5,0	÷
6	1964	252	186	168	124	104	80,0	44,5	30,3	16,3	8,3	4,2	ů.
7	1965	132	90	72	56	51	40,0	20,5	14,7	15,2	10,4	6,9	5.6
8	1966	324	180	136	86	67	54,0	36,0	26,7	15,0	7,6		
9	1976	204	120	128	86	79	75,0	53,5	35,7	22,5	15,3	8,6	5.2
10	1978	204	150	144	120	96	85,0	49,0	34,0	19,2	9,6	4,8	3.1
11	1979	180	144	116	74	67	56,0	49,5	38,0	21,0	10,5	5,3	2.6
12	1980	168	168	248	164	109	91,0	87,5	61,7	32,0	16,0	8,0	4.0
13	1981	240	240	200	130	93	80,0	56,5	40,0	34,0	19,0	10,5	5.4
14	1982	120	60	64	94		69,0	40,0	34,3	21,8	10,9	6,5	5.1
15	1983	216	216	216	146	141	93,0	46,5	32,0	16,0	8,0	4,0	2.4
16	1984	180	162	140	94	81	67,0	39,5	27,7	14,2	7,6	3,8	2.7
17	1985	180	150	140	110	95	95,0	74,5	49,7	24,8	20,6	10,5	5.9
18	1986	372	276	248	144	-	100,0	52,5	41,0	21,5	10,8	5,4	2.7
19	1987	324	192	148	120		88,0	46,5	31,0	16,0	11,5	5,8	3.2
20	1988	180	156	144	102	95	81,0	51,0	33,7	19,5	14,5	7,3	4.1
21	1989	192	156	120	88	73	80,0	50,0	33,3	18,0	11,8	5,9	4.7
22	1990	120	126	124	104	79	59,0	32,5	22,7	13,5	8,3	4,8	2.6

Waktu Konsentrasi

 Definisi dari waktu konsentrasi untuk daerah tangkapan hujan adalah waktu yang dibutuhkan air untuk mengalir dari titik terjauh daerah tangkapan hujan ke saluran keluar (outlet), atau waktu yang dibutuhkan oleh air dari awal curah hujan sampai terkumpul serempak mengalir ke saluran keluar (outlet).

Adapun waktu konsentrasi ditentukan berdasarkan :

- Waktu yang dibutuhkan bagi aliran untuk melintasi permukaan alamiah atau beraspal, termasuk di dalamnya retardance kolam di permukaan atau di samping halangan.
- Waktu aliran air di selokan dan saluran alamiah lainnya.
- Waktu aliran air di pipa atau saluran buatan.

Rumus menghitung Waktu Konsentrasi:

 Banya rumus yang digunakan untuk menghitung waktu konsentrasi antara lain Rumus Kirpich (1940):

$$T_{\rm c} = 0.0195 \ L^{0.77} \ S^{-0.385}$$

• Dimana:

tc = waktu konsentrasi (jam)

L = panjang saluran utama dari hulu (km)

S = kemiringan rata-rata saluran (m/m)

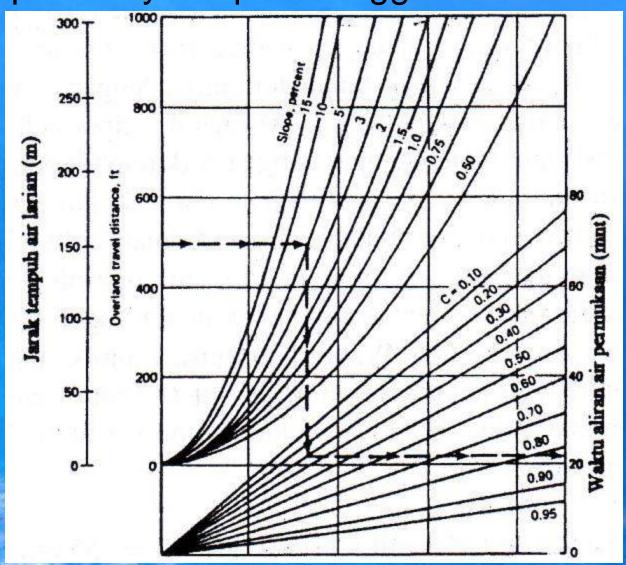
 Waktu konsentrasi (t_c) dapat juga dihitung dengan membedakannya menjadi dua komponen yaitu: (1) waktu yang diperlukan air untuk mengalir di permukaan lahan sampai saluran terdekat (t₀) dan (2) waktu perjalanan dari pertama masuk saluran sampai titik keluaran (t_d) sehingga : $t_c = t_0 + t_d$ Dimana:

$$t_o = \left[\frac{2}{3} \times 3,28 \times L \times \frac{n}{\sqrt{S}}\right]$$
 menit

$$t_d = \frac{L_s}{60V}$$
 menit

di mana

angka kekasaran Manning,

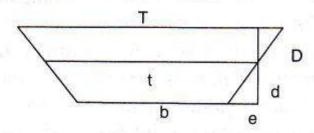

S = kemiringan lahan, L = panjang lintasan aliran di atas permukaan lahan (m),

panjang lintasan aliran di dalam saluran/sungai (m),

kecepatan aliran di dalam saluran (m/detik).

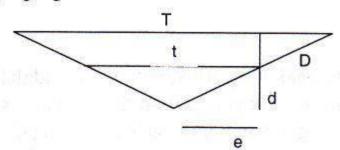
Metode	Persamaan	Keterangan
California (1942)	$t_c = 60 \left(11.9 \frac{L^3}{H} \right)^{0.385}$ $L = \text{saluran air terpanjang, mil}$ $H = \text{perbedaan elevasi antara batas}$	Secara prinsip sama dengan metode Kirpich, dikembangkan untuk DAS berbukit di California (USBR, 1973)
Federal Aviation Administration (FAA, 1970)	DAS dan pengurasan $t_c = \frac{41.025(0.0007i + c)L}{S^{0.335}i^{0.007}}$ $i = intensitas hujan, in/jam$ $c = koefisien retardasi$ $L = panjang lintasan aliran, ft$ $S = kemiringan lintasan aliran$	Dikembangkan di laboratorium oleh Bureau of Public Roads, USA. Nilai oleh berkisar antara 0,007 untuk permukaan sangat halus, sampai 0,012 untuk permukaan beton, dan 0,06 untuk turf Penyelesaian memerlukan iterasi, hasi kali i dan L ≤ 500.
Kinematic wave formulas (1965)	$t_c = \frac{0.94L^{0.6}L^{0.6}}{i^{0.4}S^{0.3}}$ L = panjang lintasan aliran, ft n = koefisien kekasaran Manning i = intensitas hujan, in/jam S = kemiringan lintasan aliran	Persamaan limpasan permukaan dikembang-kan dari analisis gelombang kinematik. Metode ini memerlukan iteras mengingat I dan te belum diketahui Grafik intensaty-duration-frequency memberikan solusi langsung untuk te.
SCS lag equation (1973)	$t_c = \frac{100L^{0.8} \left[\left(\frac{100}{CN} \right) - 9 \right]^{0.7}}{1900S^{0.5}}$ $L = \text{panjang lintasan terpanjang, ft}$ $CN = \text{nomor lengkung SCS}$ $S = \text{kemiringan rata-rata, } \%$	Dikembangkan oleh SCS untuk daeral pertanian.
SCD average velocity charts (1975, 1986)	$t_c = \frac{1}{60} \Sigma \frac{L}{V}$ L = panjang lintasan aliran, ft V = kecepatan rata-rata, ft/Ut	Menggunakan grafik limpasan permukaan

Cara praktisnya dapat menggunakan flowchart:

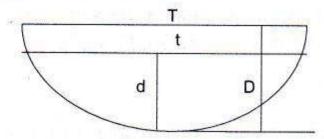

Langkah-langkah yang diperlukan dalam menerapkan metoda rasional untuk perhitungan kapasitas saluran adalah sbb:

- 1. Menentukan batas dan luas DAS
- 2. Menentukan nilai koefisien air larian C yang sesuai dengan daerah penelitian (lihat tabel)
- 3. Menentukan lama waktu aliran air permukaan dengan menggunakan monograf. (perlu data panjang lereng, persen kemiringan lereng dan nilai c)
- 4. Menentukan intensitas hujan (satuan harus mm/jam)
- 5. Menentukan debit puncak dengan persamaan Qp = 0.00278 CiA
- 6. Dengan persamaan manning dan ilmu hidraulika, tentukan kedalaman dan kecepatan aliran air di saluran (lihat tabel dimensi saluran)
- 7. Menentukan waktu perjalanan air dalam sungai dengan cara membagi panjang saluran (meter) dengan kecepatan aliran air (menit).

- 8. Menentukan waktu konsentrasi total dengan cara menjumlahkan langkah (3) dan (7)
- Ulangi langkah (4) hingga (6) untuk mencocokkan hasil perhitungan yang pertama. Gunakan angka intensitas hujan berdasarkan waktu konsentrasi total dari langkah (8)
- 10. Menentukan ketepatan ukuran saluran air dengan cara membandingkan kedalaman aliran air dengan ukuran saluran dan kemudian membandingkan kecepatan aliran terhitung dengan kecepatan aliran yang dibolehkan untuk saluran tersebut.


Bila kedalaman aliran ditambah cadangan ketinggian (free board) minimum lebih dalam dari kedalaman saluran, maka sebaiknya dipilih saluran yang lebih dalam/besar dan ulangi perhitungan tersebut untuk memperoleh hasil yang lebih baik.

1. Penampang melintang trapesium


DZ = e/d

2. Penampang melintang segi tiga

Z = eld

3. Penampang melintang parabola

Luas penampang (a)	Wetted perimeter (p)	Hydraulic radius L $(r = a/p)$	ebar bagian atas
$1. bd + Z(d \times d)$	$b + 2d\sqrt{(Z \times Z)} + 1$	$\{bd + Z(d \times d)\}/\{b + 2d\sqrt{(Z \times Z)} + 1\}$	t = b + 2dZ $T = b + 2DZ$
$2. Z(d \times d)$	$2d\sqrt{(Z\times Z)}+1$	$\{Zd\} / \{2\sqrt{(Z\times Z)} + 1\}$	t = 2dZ $T = (D/d) t$
3. (2/3) td	$\{t + 8(d \times d)\}/\{3t\}$	$\{(t \times t) d\}/\{1,5(t \times t) + 4(d \times d)\}$	$t = a/(0,67)d$ $T = t\sqrt{D}d$

Catatan: Free board = D - d, untuk semua bentuk penampang

Latihan Soal 1

Suatu DAS seluas 2 ha di daerah Kendal Jawa Tengah.
 Panjang lereng 152 m

No	Jenis Tata Guna Lahan	Luas (ha)	koefisien c
1	Lahan terbuka (lahan)	140	0.2
2	Hutan	128	0.15
3	Perumahan	90	0.35
4	Industri berat	42	0.9
5	Jalan Aspal	50	0.8

Penyelesaian:

- 1. Dengan menggunakan rumus C_{DAS} maka : (140x0.2)+(128x0.15)+(90x0.35)+(42x0.9)+ (40x0.8)/(140+128+90+42+50) = 0.35
- 2. Hitung Q_p : $Q_p = 0.002778 \times 0.35 \times 90 \times 450 = 36.13 \text{ m}^3/\text{det}$

Latihan Soal 2

Diketahui suatu DAS dengan keadaan sebagai berikut : Curah hujan dengan periode 10 tahun :

- untuk waktu 30 menit, sebesar 36 mm
- untuk waktu 1 jam, sebesar 49 mm

Luas daerah aliran = 8.1 ha

Keadaan daerah aliran : 70% daerah kosong, tidak rata (ambil c = 0.2); 30% daerah bervegetasi alamiah (ambil c = 0.1)

Kondisi air larian: panjang permukaan air larian 259m, kemiringan rata-rata daerah aliran 5%.

Karakteristik saluran air: panjang saluran air 305m, kemiringan permukaan air 0.1% dengan dasar saluran berupa tanah liat, lebar dasar saluran 0.305m dengan kedalaman saluran

Lebar dasar saluran 0.305m dengan kedalaman saluran 0.305m, kemiringan tebing saluran V:H=1:2, koefisien manning (n) = 0.02

- 1. Tentukan debit puncak untuk periode ulang 10 thn
- 2. Kedalaman dan kecepatan aliran air pada saluran tsb

Penyelesaian:

- 1. Luas daerah aliran 8.1 ha
- 2. Nilai c terbobot = [(0.7x0.2)+(0.3x0.1)/(0.7+0.3)] = 0.17
- 3. Waktu yang diperlukan air larian mencapai panjang daerah aliran 259m. Aliran paling lambat berlangsung di daerah bervegetasi dengan nilai c=0.1, Waktu air larian diperoleh dari nomograf waktu aliran air permukaan. Dengan panjang aliran 259m, kemiringan daerah aliran 5%, dan nilai c=0.1, diperoleh lama waktu = 37 menit.

4. Waktu yang diperlukan air larian untuk mencapai panjang saluran. Ukuran kedalaman saluran=0.305m. Diasumsikan bahwa air mengalir penuh dalam saluran:

A= luas segiempat+(2xluas segitiga)= (0.305x0.305)+(2x0.5x0,305x2x0.305)=0.28 m²

P= alas+sisi miring kiri dan kanan = $0.305+2\sqrt{(0.305^2+0.61^2)} = 1.67$ m

R = A/P = 0.168 m

 $V = (1/n)R^{2/3}S^{1/2} = (1/0.02)x0.168^{2/3}x0.001^{1/2} = 0.5 m/det$

Waktu perjalanan dalam saluran = L/(60V) = [305m]/[(60 dtk/mnt)(0.49 m/dtk)] = 10.4 menit

5. Waktu konsentrasi:

 T_c = waktu air larian permukaan (step3) + waktu air larian saluran (step4) = 37 + 10.4 = 47.4 menit

6. Dari hasil waktu konsentrasi didapat intensitas hujan dari grafik hub intensitas hujan dan waktu pada periode ulang 10 thn. Namun karena disoal hanya diketahui data 30 menit dan 1 jam, maka supaya aman diambil waktu 1 jam dengan intensitas hujan 49 mm/jam

7. Debit puncak:

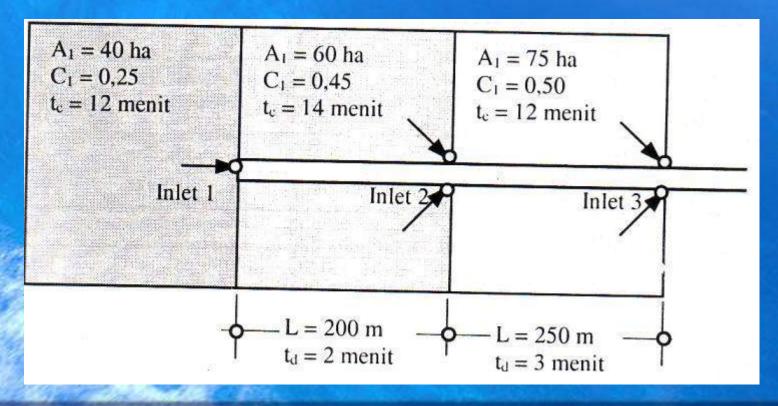
 $Q_p = 0.002778CiA = 0.002778x0.17x49x8.1 = 0.19m^3/det$

Debit puncak pada daerah ini diperkirakan 0.19m³/det sementara pada step 4 telah dihitung kecepatan max pada saluran adalah 0.49 m³/det dengan luas penampang saluran (A) sebesar 0.28 m².

Bila debit puncak yang terjadi hanya sebesar 0.19m³/det maka kecepatan yang terjadi hanya sebesar 0.68 m/det (V=Q/A=0.19/0.28) Hal ini berarti aliran air dalam saluran tsb tidak penuh dan berkisar antara 0.49 s/d 0.68 m/det

Untuk itu kita hitung kembali dimensi saluran bila yang kita gunakan adalah debit puncak yang terjadi :

Q = AV =A(1/n)R^{2/3}S^{1/2} 0.19 = A x (1/0.02)x(A/P) $^{2/3}$ x(0.001) $^{1/2}$


Untuk kasus DAS dengan beberapa Sub-DAS: skip

Perhitungan dilakukan dengan menggunakan dua aturan berikut :

- Metode Rasional dipergunakan untuk menghitung debit puncak pada tiaptiap daerah masukan (*inlet area*) pada ujung hulu Sub-Das.
- 2. Pada lokasi dimana drainase berasal dari dua atau lebih daerah masukan, maka waktu konsentrasi terpanjang yang dipakai untuk intensitas rencana, koefisien dipakai C_{DAS}, dan total area drainase dari daerah masukan

Contoh Perhitungan skip

Suatu DAS terdiri dari beberapa Sub DAS dengan karakteristik seperti pada gambar. Intensitas hujan yang terjadi sebesar 251.87 mm/jam. Hitung debit yang terjadi pada masing-masing segmen saluran!

Penyelesaian: skip

- Cari Debit puncak pada inlet 1 : $Q_{p1} = 0.002778x0.25x251.87x40 = 7 \text{ m}^3/\text{det}$
- Aliran dari inlet 1 mengalir melalui pipa sepanjang 200 m dengan waktu perjalanan 2 menit.

Metode rasional adalah metode lama yang masih digunakan hingga sekarang untuk memperkirakan debit aliran daerah perkotaan kecil. Asumsi dasar dari metode ini adalah sebagai berikut:

- 1. Intensitas hujan seragam di seluruh daerah dan mempunyai waktu yang tetap/konstan.
- 2. Puncak limpasan terjadi pada saat seluruh daerah juga mengalami limpasan.
- 3. Debit puncak pada satu titik merupakan fungsi dari intensitas hujan rata-rata dari hujan deras yang mempunyai durasi sama dengan waktu konsentrasi di titik tersebut.
- 4. Frekuensi banjir sama dengan curah hujan.

 Besar intensitas curah hujan tidak sama di segala tempat, hal ini dipengaruhi oleh topografi, durasi dan frekuensi di tempat atau lokasi yang bersangkutan. Ketiga hal ini dijadikan pertimbangan dalam membuat lengkung IDF (IDF curve = Intensity-Duration Frequency Curve). Lengkung IDF ini digunakan dalam metode rasional untuk menentukan intensitas curah hujan rata-rata dari waktu konsentrasi yang dipilih. Namun pembuatan lengkung IDF ini cukup sulit dan membutuhkan banyak data curah hujan, sehingga secara periodik perlu diperbaharui bila ada tambahan data, dan hal ini akan memakan waktu yang cukup lama terutama bila dilakukan secara manual.

Waktu Konsentrasi

 Definisi dari waktu konsentrasi untuk daerah tangkapan hujan adalah waktu yang dibutuhkan air untuk mengalir dari titik terjauh daerah tangkapan hujan ke saluran keluar (outlet), atau waktu yang dibutuhkan oleh air dari awal curah hujan sampai terkumpul serempak mengalir ke saluran keluar (outlet).

Adapun waktu konsentrasi ditentukan berdasarkan :

- Waktu yang dibutuhkan bagi aliran untuk melintasi permukaan alamiah atau beraspal, termasuk di dalamnya retardance kolam di permukaan atau di samping halangan.
- Waktu aliran air di selokan dan saluran alamiah lainnya.
- Waktu aliran air di pipa atau saluran buatan.

Rumus menghitung Waktu Konsentrasi:

 Banya rumus yang digunakan untuk menghitung waktu konsentrasi antara lain Rumus Kirpich (1940):

$$T_{\rm c} = 0.0195 \ L^{0.77} \ S^{-0.385}$$

• Dimana:

tc = waktu konsentrasi (jam)

L = panjang saluran utama dari hulu (km)

S = kemiringan rata-rata saluran (m/m)

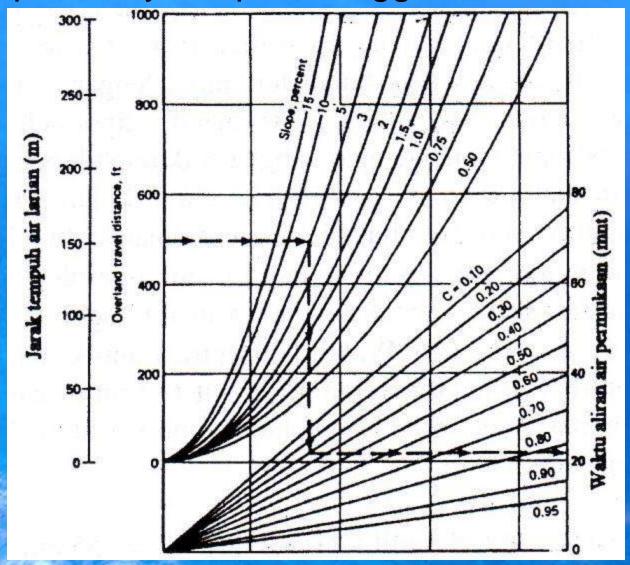
 Waktu konsentrasi (t_c) dapat juga dihitung dengan membedakannya menjadi dua komponen yaitu: (1) waktu yang diperlukan air untuk mengalir di permukaan lahan sampai saluran terdekat (t₀) dan (2) waktu perjalanan dari pertama masuk saluran sampai titik keluaran (t_d) sehingga : $t_c = t_0 + t_d$ Dimana:

$$t_o = \left[\frac{2}{3} \times 3,28 \times L \times \frac{n}{\sqrt{S}}\right]$$
 menit

$$t_d = \frac{L_s}{60V}$$
 menit

di mana

angka kekasaran Manning,


S = kemiringan lahan, L = panjang lintasan aliran di atas permukaan lahan (m),

panjang lintasan aliran di dalam saluran/sungai (m),

kecepatan aliran di dalam saluran (m/detik).

Metode	Persamaan	Keterangan
California (1942)	$t_c = 60 \left(11.9 \frac{L^3}{H} \right)^{0.385}$ $L = \text{saluran air terpanjang, mil}$ $H = \text{perbedaan elevasi antara batas}$	Secara prinsip sama dengan metode Kirpich, dikembangkan untuk DAS berbukit di California (USBR, 1973)
Federal Aviation Administration (FAA, 1970)	DAS dan pengurasan $t_c = \frac{41.025(0.0007i + c)L}{S^{0.335}i^{0.007}}$ $i = intensitas hujan, in/jam$ $c = koefisien retardasi$ $L = panjang lintasan aliran, ft$ $S = kemiringan lintasan aliran$	Dikembangkan di laboratorium oleh Bureau of Public Roads, USA. Nilai oleh berkisar antara 0,007 untuk permukaan sangat halus, sampai 0,012 untuk permukaan beton, dan 0,06 untuk turf Penyelesaian memerlukan iterasi, hasi kali i dan L ≤ 500.
Kinematic wave formulas (1965)	$t_c = \frac{0.94L^{0.6}L^{0.6}}{i^{0.4}S^{0.3}}$ L = panjang lintasan aliran, ft n = koefisien kekasaran Manning i = intensitas hujan, in/jam S = kemiringan lintasan aliran	Persamaan limpasan permukaan dikembang-kan dari analisis gelombang kinematik. Metode ini memerlukan iteras mengingat I dan te belum diketahui Grafik intensaty-duration-frequency memberikan solusi langsung untuk te.
SCS lag equation (1973)	$t_c = \frac{100L^{0.8} \left[\left(\frac{100}{CN} \right) - 9 \right]^{0.7}}{1900S^{0.5}}$ $L = \text{panjang lintasan terpanjang, ft}$ $CN = \text{nomor lengkung SCS}$ $S = \text{kemiringan rata-rata, } \%$	Dikembangkan oleh SCS untuk daeral pertanian.
SCD average velocity charts (1975, 1986)	$t_c = \frac{1}{60} \Sigma \frac{L}{V}$ L = panjang lintasan aliran, ft V = kecepatan rata-rata, ft/Ut	Menggunakan grafik limpasan permukaan

Cara praktisnya dapat menggunakan flowchart:

Latihan Soal

 Suatu DAS seluas 450 ha dengan komposisi tata guna lahan seperti pada tabel dibawah. Masing-masing tata guna lahan tersebar di DAS tsb. Perkirakan debit puncak yang terjadi jika intensitas hujan dengan kala ulang 25 tahunan sebesar 90 mm/jam

No	Jenis Tata Guna Lahan	Luas (ha)	koefisien c
1	Lahan terbuka (lahan)	140	0.2
2	Hutan	128	0.15
3	Perumahan	90	0.35
4	Industri berat	42	0.9
5	Jalan Aspal	50	0.8

Penyelesaian:

1. Dengan menggunakan rumus C_{DAS}

Cara perhitungan waktu konsentrasi cukup bervariasi tergantung dari versi metode rasional yang ingin digunakan, apakah daerah tangkapan hujan berada di pedesaan maupun di perkotaan, yang lebih lanjutnya dibahas seperti di bawah ini:

Daerah Pedesaan

Untuk luas daerah tangkapan hujan lebih besar dari 5 km2 waktu konsentrasi diasumsikan sebagai level puncak dari perencanaan banjir. Bila selanjutnya perhitungan hidrolik menunjukkan terjadi kesalahan lebih dari 0,3-0,6 m, maka nilai tersebut harus dikalkulasi ulang berdasarkan Formula Friend berikut:

$$\underline{t}_{c} = \frac{8.5 L}{\text{Ch.A}^{0.1}.\text{Se}^{0.4}}$$

Dimana:

tc = Waktu konsentrasi (jam)

= Panjang sungai induk (*mainstream*) (km)

Ch = Koefisien Chezy R0,166

n

R = Radius hidrolik

= 0,75Rs bila slope di seluruh sungai cukup seragam.

• = 0,65Rs bila slope cukup besar dan bervariasi sepanjang sungai

Rs = Radius hidrolik pada perkiraan awal level banjir pada jembatan/gorong-gorong

n = Koefisien kekasaran manning untuk seluruh sungai induk (mainstream) sepanjang L

A = Luas daerah tangkapan hujan (km2)

Se = Equal area slope (%), yang ditentukan berdasarkan grafik di bawah ini.

Perhitungan Evapotranspirasi

Ada 3 cara yang biasa digunakan:

- 1. Metode Blaney Criddle
- 2. Metode modifikasi Blaney Criddle
- 3. Metode Thornthwhite
- 4. Metode Penman

Transpirasi

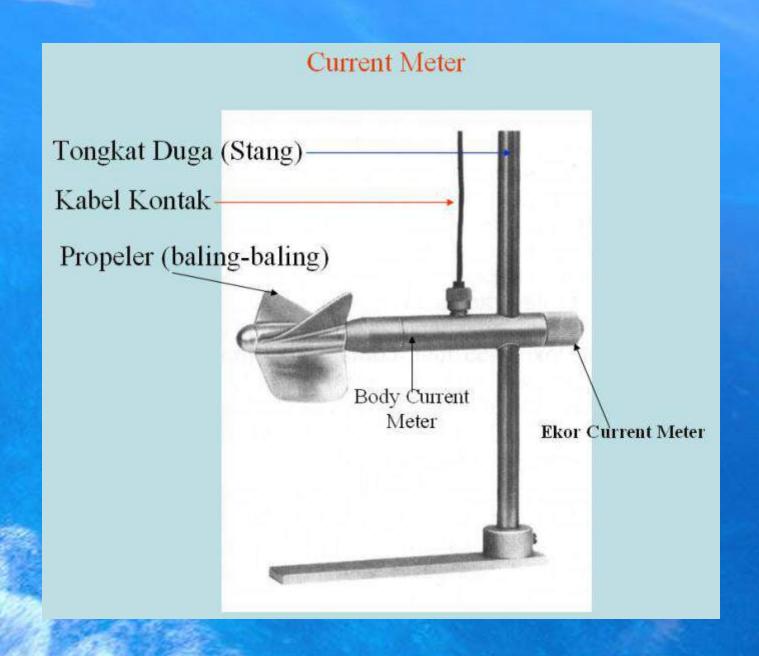
Transpiration - the ability of living plants to transfer water from their roots to their leaves where it escapes to the atmosphere as water vapor.

Aliran Pada Sungai

Pengukuran Aliran (pada Sungai):

- 1. Pengukuran Aliran dengan Alat Ukur Halus
- 2. Pengukuran Aliran dengan Cara Tak Langsung
- 3. Pengukuran Aliran dengan Cara Pelampung
- 4. Pengukuran Aliran dengan Cara Volumetrik
- 5. Pengukuran Aliran dengan Cara Sekat Ukur
- 6. Pengukuran Aliran dengan Cara Lain: Metode zat warna, metode garam, metode isotop
- 7. Pengukuran Aliran dengan Ultrasonik
- 8. Pengukuran Aliran dengan Elektromagnetik

1. Pengukuran Aliran dengan Alat Ukur Arus


- Menggunakan alat ukur arus yang disebut current meter, Alat duga kedalaman dan Alat ukur lebar
- Ada beberapa cara :
 - >Garis lengkung kecepatan ke arah vertikal
 - ➤ Pengukuran 2 titik kedalaman
 - ➤ Pengukuran pada titik 0.6 kedalaman
 - Pengukuran pada titik 0.2 kedalaman
 - ➤ Pengukuran pada 3 titik kedalaman
 - > Pengukuran bawah permukaan

Pengukuran pada 3 Titik Kedalaman

- Pengukuran dilakukan pada 3 titik yaitu 0.2; 0.6; 0.8 kedalaman dari permukaan air
- Kecepatan rata-rata tiap jalur vertikal diperoleh dengan merata-ratakan hasil pengukuran pada 0.2 dan 0.8 kedalaman kemudian hasil rata-ratanya dirata-ratakan lagi dengan hasil pengukuran pada 0.6 kedalaman.

Peralatan Pengukuran dengan Current meter:

- Kabel ukur
- Tongkat duga
- Kabel kontak
- Propeler (baling-baling)
- Stop watch
- Pemberat (bandul)
- Jaket pelampung
- Kartu pengukuran dll

Prosedur Pengukuran

Siapkan Kartu Pengukuran

Tahapan Pengukuran

- Catat tanggal, nama sungai, tempat pengukuran, rumus kecepatan, tinggi muka air hasil pembacaan peilskal pada kartu pengukuran
- 2. Ukur lebar penampang basah;
- Tentukan jumlah vertikal kedalaman dan jarak antara dua vertikal disesuaikan dengan keadaan;
- Periksa dan rakit alat ukur;
- Hitung lama putaran propeler sebelum pengukuran pada tempat yang bebas pengaruh angin;
- 6. Siapkan kartu pengukuran;
- Ukur kedalaman jalur vertikal yang akan diukur kecepatan alirannya, kemudian tentukan titik kedalaman pengukuran;
- Catat pada kartu pengukuran jumlah putaran propeler pada setiap titik pengukuran;
- Hitung kecepatan aliran pada titik-titik pengukuran dalam satu jalur vertikal dengan rumus current meter dan ratakan;
- 10. Hitung luas bagian penampang melintang untuk setiap jalur vertikal kedalaman;
- Hitung debit bagian untuk setiap jalur vertikal;
- Ulangi butir 8) sampai dengan butir 12) untuk setiap jalur vertikal pada seluruh penampang melintang;
- Catat tinggi muka air tiap 10 menit apabila fluktuasi muka air selama pengukuran cukup menyolok;
- 14. Jumlahkan debit bagian dari seluruh jalur vertikal;

Merawas

Kereta Gantung

Perahu

Jembatan

Pelaksanaan Pengukuran:

Sebelum mulai mengukur aliran sungai, terlebih dulu harus dipilih lokasi sekitar pos duga air yang memenuhi persyaratan sebagai berikut :

- Palung sungai harus sedapat mungkin lurus dengan arah arus kecepatan yang sejajar satu dengan yang lain.
- 2. Dasar sungai sedapat mungkin tidak berubahubah, bebas dari batu-batu besar, tumbuhan air dan bangunan air yang menyebabkan jalur kecepatan tidak sejajar satu sama lain.
- 3. Dasar penampang sungai sedapat mungkin rata supaya pada waktu menghitung penampang basah hasilnya mendekati sebenarnya.

Pelaksanaan Pengukuran dapat dilakukan:

- Dengan merawas
- Dengan perahu
- Dengan kabel gantung melintang
- Dari Jembatan yang ada

Setelah didapat data kecepatan aliran/arus maka dilakukan perhitungan debit :

1. MID SECTION METHOD

Lebar 1 Sub Section ditentukan oleh ½ jarak pengukuran vertikal di sebelah kiri dan ½ jarak pengukuran vertikal di sebelah kanannya.

$$Q = \sum_{i=1}^{i=n} Q_i = \sum_{i=1}^{i=n} \overline{V}_i . A_i$$

$$= \sum_{i=1}^{i=n} V_i . H_i \left[\frac{W_{kiri} + W_{kanan}}{2} \right]$$

MEAN SECTION METHOD Lebar 1 Sub Section ditentukan oleh 2 pengukuran vertikal yang bersebelahan (Wi dan Wi+1)

$$\begin{cases} P_{i} & P_{i+1} \\ P_{i+1} & P_{i+1} \\ P_{i$$

2. Pengukuran aliran dengan cara tak langsung

Cara ini biasa dilakukan untuk pengukuran aliran puncak banjir. Karena pengukuran aliran puncak banjir dengan alat ukur arus sangat sulit untuk dilaksanakan. Sulitnya pengukuran banjir, karena :

- Kebanyakan banjir sungai di Indonesia terjadinya banjir pada malam hari.
- Tidak bisa diperkirakan saat tibanya banjir sehingga tidak bisa diadakan persiapan untuk melakukan pengukuran aliran banjir.
- Kadang-kadang tidak tersedianya sarana pengukuran banjir.
- 4. Apabila dilakukan pengukuran dengan alat ukur arus kadang-kadang membahayakan keselamatan team pengukur dan alat.

Disebutkan cara pengukuran aliran tidak langsung karena besar aliran tidak langsung didapat dari pengukuran akan tetapi harus dihitung dengan menggunakan rumus-rumus hidrolika. Variabel untuk rumus yang diperlukan diobservasi di lapangan. Cara ini dikenal dengan nama metoda "Slope Area".

Ada dua macam metoda "slope area" yaitu yang biasa dilakukan oleh United State of Geological Survey (USGS) dengan dasar rumus Manning dan yang biasa dilakukan oleh "Institute of Hydrology (IOH) Inggris dengan dasar rumus Darcy Weisbach.

3. Pengukuran Aliran dengan Cara Pelampung

Apabila keadaan lapangan tidak memungkinkan untuk melakukan pengukuran dengan menggunakan alat ukur arus aliran maka pengukuran dapat dilakukan dengan alat pelampung. Alat pelampung terbuat dari kayu, bambu atau bahan apa saja yang dapat mengapung di permukaan air. Alat pelampung yang dipergunakan dapat mengapung seluruhnya atau sebagian melayang dalam air.

Lokasi pengukuran harus pada bagian sungai yang lurus dan sebaiknya di hulu lokasi pengukuran terdapat jembatan guna melemparkan pelampung ke dalam sungai.

4. Pengukuran Aliran dengan Cara Volumetrik

Pada sungai yang alirannya snagat kecil dimana pengukuran dengan alat ukur arus standar maupun alat ukur arus pigmy tidak dapat dilakukan maka untuk mendapatkan hasil yang cukup teliti pengukuran aliran pada sungai tersebut dapat dilakukan dengan cara volumetrik. Pengukuran aliran cara volumetrik ini adalah dengan cara mencatat waktu yang diperlukan untuk mengisi tempat ukur yang kapasitasnya sudah diketahui.

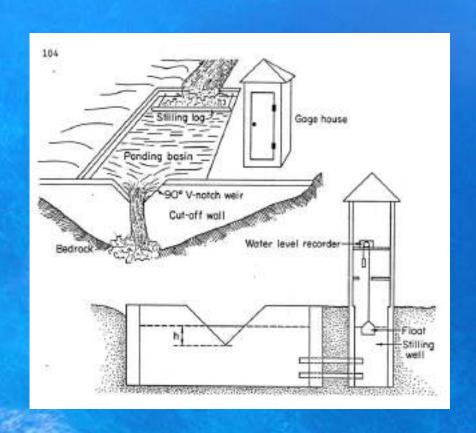
Peralatan pokok yang diperlukan untuk pengukuran dengan cara ini adalah tempat ukur yang sudah ditera dan alat pencatat waktu. Volume pengukuran dapat ditentukan dengan menggunakan rumus :

$$V = \frac{W_2 - W_1}{W}$$

Dimana:

V = volume air dalam tempat ukur (1)

W₂ = berat tem pat ukur berisi air (kg)


W₁ = berat tempat ukur kosong (kg)

W = berat jenis air (kg)/l)

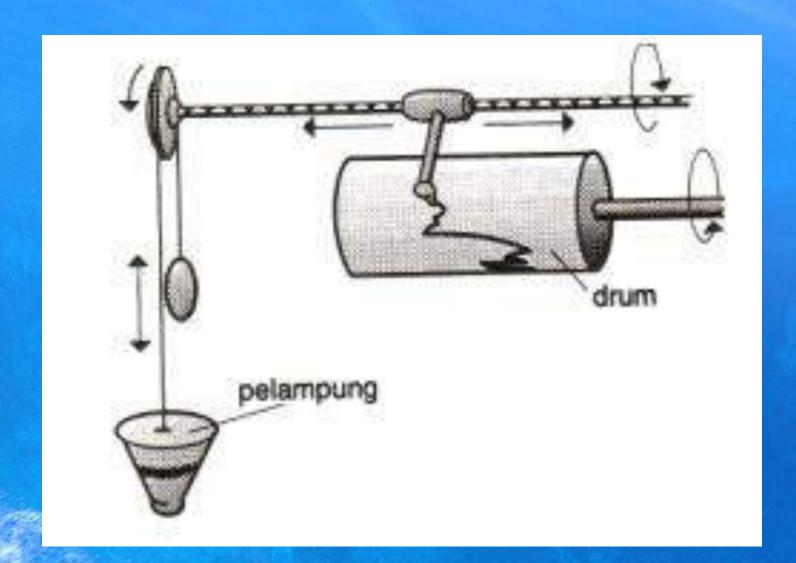
5. Pengukuran Aliran Dengan Alat Sekat Ukur

Pengukuran Debit Sungai

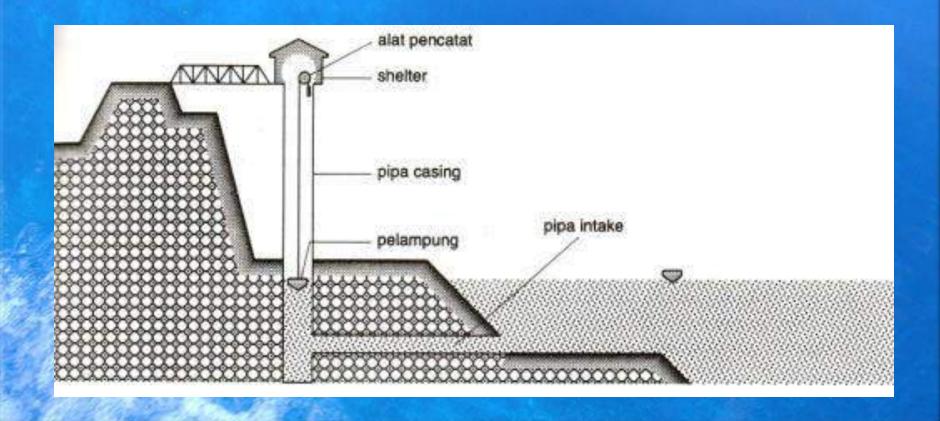
Data debit diperlukan untuk menentukan volume aliran dan perubahannya sebagai akibat dari bangunan yang dibuat disungai seperti bendung.

Cara-cara untuk mengukur debit antara lain:

- a) Pengukur duga air
- b) Pencatat duga air
- c) Pengukur debit

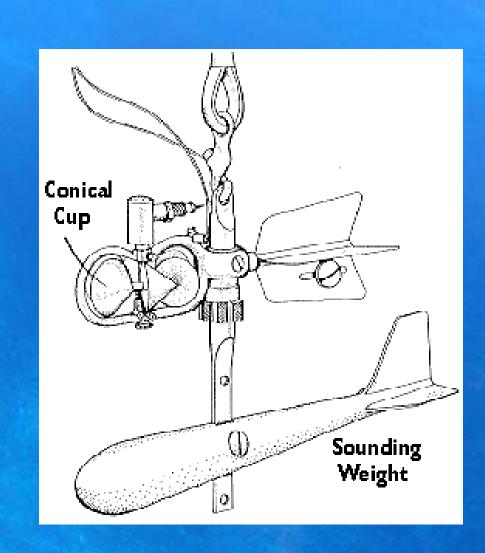

Pengukur Duga Air

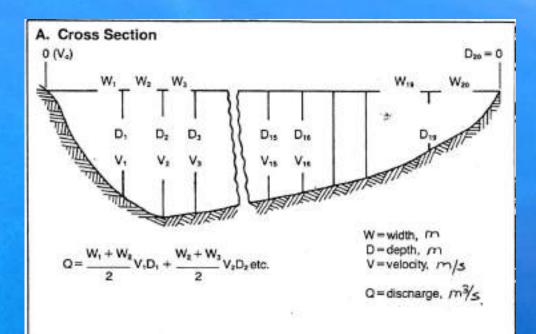
- Cara paling sederhana untuk mengukur tinggi muka air sungai adalah dengan alat mistar ukur (staff gauge) yaitu mistar yang dipasang sedemikian rupa sehingga sebagian selalu berada didalam air.
- Biasanya mistar ini dipasang ditiang/pinggir jembatan

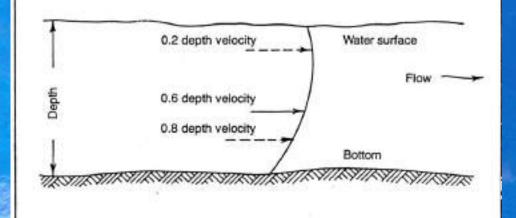

Pencatat Duga Air

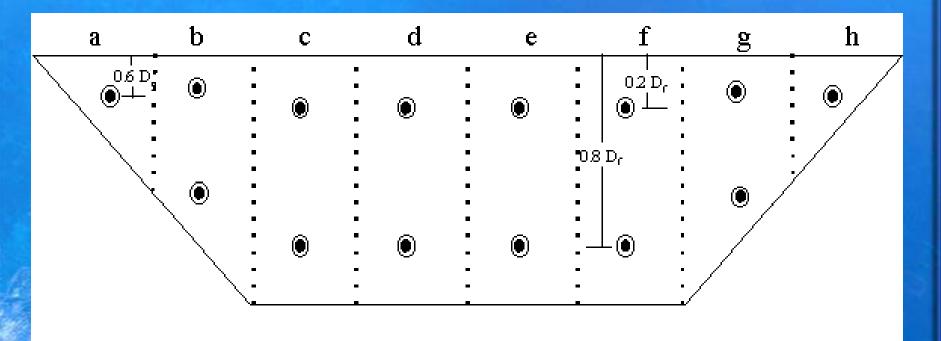
Alat pencatat duga air (automatic waterlevel recorder) menggunakan pelampung untuk mengetahui perubahan permukaan air sungai dan dicatat pada suatu grafik.

Pencatatan ini dilakukan oleh suatu pena diatas grafik yang diletakkan pada suatu drum yang diputar oleh peralatan jam.




Alat pencatat tersebut ditempatkan di dalam pipa suatu shelter dan pelampungnya ditempatkan di dalam pipa casing yang dihubungkan dengan pipa intake ke sungai agar tidak terganggu oleh sampah


Pengukur Debit


Cara-cara untuk mengukur

B. Distribution of Velocities in a Vertical Section

noint of velocity measurement

 $D_a = depth of subdivision a$ $D_f = depth of subdivision f$

Perhitungan Volume Air Larian