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Abstract: A single paragraph of about 200 words maximum. For research articles, abstracts should     Maintaining dental pulp 

vitality and preventing tooth loss are two challenges in endodontic treatment. A tooth lacking a viable pulp loses its defense 

mechanism and regenerative ability, making it more vulnerable to severe damage and eventually necessitating extraction. 

The tissue engineering approach has drawn attention as an alternative therapy as it can regenerate dentin-pulp complex 

structures and functions. Stem cells or progenitor cells, extracellular matrix, and signaling molecules are triad components of 

this approach. Stem cells from human exfoliated deciduous teeth (SHED) are a promising, non-invasive source of stem cells 

for tissue regeneration. Not only can regenerate dentin-pulp tissues (comprises of fibroblasts, odontoblasts, endothelial cells, 

and nerve cells), but SHED also possesses immunomodulatory and immunosuppressive properties. Collagen matrix is a 

material of choice to provide structural and microenvironmental support for SHED-to-dentin pulp tissue differentiation. 

Growth factors regulate cell proliferation, migration, and differentiation into specific phenotypes via signal-transduction 

pathways. This review provides current concepts and applications of tissue engineering approach especially SHED in 

endodontic treatment. 

 

Keywords: Dentin-pulp complex regeneration; Signalling molecules; Stem Cell from Human Exfoliated Deciduous Teeth 

(SHED); Tissue engineering. 

 

 

1. Introduction 

Tissue injury can occur when it is exposed to various stimuli including microbial infections, 
mechanical damage (fractures, cracks, thermal factors), and chemical damage. This condition can 
cause cell apoptosis or necrosis, as well as microvasculature and stroma damage, leading to activation 
of inflammation and wound healing mechanism. During wound healing, mesenchymal stem cells are 
recruited to the site of injury to differentiate into stromal cells and replace damaged cells. However, if 
severe inflammation occurs in the dental pulp, the damaged cells cannot be effectively replaced or 
healed, a condition called irreversible pulpitis. In this condition, endodontic treatment must be carried 
out to remove the damaged pulp and prevent spread of the damage.1–4 

Endodontic treatment involves partial or complete pulp removal (pulp extirpation) and filling the 
empty root canal with artificial material. Even so, the endodontic treatment causes the tooth to 
become more fragile, susceptible to caries and periapical infection and more likely to fracture as the 
tooth losses its vitality due to the absence of blood supply and innervation.5–11  

Therefore, it is crucial to maintain the vitality of the pulp. A tooth without a viable pulp loses its 
defense mechanism and regenerative ability, making it more prone to severe damage and ultimately 
leading to extraction. Dentin-pulp complex reconstruction is an ideal approach to restoring pulp 
vitality by using mesenchymal stem cell or progenitor cells and signalling molecules added to the 
extracellular matrix to recover fibroblasts, odontoblasts, endothelial cells and nerve fibres 
functions.8,10–14 Stem cells can be obtained from various tissues, including teeth, buccal mucosa, skin, 
fat, and bone.15,16 The pulp of deciduous teeth, rich in stem cells known as stem cells from human 
exfoliated deciduous teeth (SHED), is a promising, easy to get, and noninvasive source of stem cells for 
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tissue regeneration.17–21 Not only has the regenerative ability to generate dentin-pulp tissues, but 
SHED also possesses immunomodulatory and immunosuppressive properties.20,22 

Scaffolds are 3-dimensional microstructural materials that provide a biological environment and 
structural support to facilitate cell growth, desirable interactions, and the formation of functional 
tissues.8,23,24 One popular scaffold material is collagen. Collagen is a natural extracellular matrix built 
from protein and abundant in hard and soft tissues.23 Collagen is biocompatible, permeable, and 
biodegradable, so it can function in helping migration, adhesion, proliferation, and cell 
differentiation.8,12 

Growth factors are polypeptides that plays a very important role in the signaling process that 
occurs during tissue formation and regeneration of the dentin-pulp complex.25,26 In the dentin-pulp 
complex regeneration, several Growth Factors work together through different signalling mechanisms, 
including Transforming Growth Factor β (TGF β), Vascular Endothelial Growth Factor (VEGF), Bone 
Morphogenic Protein (BMP), Fibroblast Growth Factor (FGF), Platelet-Derived Growth Factor (PDGF), 
and Nerve Growth Factor (NGF).25,27,28 Growth factors will bind to cell surface receptors that 
subsequently induce cellular processes such as cell proliferation, angiogenesis, neovascularization, and 
all important steps in the regeneration process.28,29 

Growth Factor plays a role in various stages of the healing process and tissue regeneration, 
including cell migration, angiogenesis, and neurogenesis.26 It can also induce odontogenic 
differentiation through ALK5/Smad2/3, TAK1, p38, and MEK/ERK signalling pathways, supporting cell 
proliferation and collagen formation.30,31 Tissue engineering application in endodontic treatment is 
expected to replace damaged or lost tissue with new natural pulp tissue and reduce the use of 
artificial materials, making teeth fully functional again.14  

 

Tissue Engineering (TE) in Endodontic Treatment 

As mentioned before, one challenge in endodontic treatment is maintaining dental pulp vitality 
and preventing tooth loss. Regenerative endodontics can overcome this hurdle.32 According to "The 
American Association of Endodontists", regenerative endodontics is a procedure designed based on 
biological principles to physiologically replace damaged tooth structures, including root and dentin 
structures, as well as cells in the pulp-dentin complex.10,32–34 

There are two concepts in regenerative endodontics, namely:35 (1) Guided Tissue Regeneration 
(GTR), also known as the revascularization or revitalization approach, and (2) Tissue engineering (TE), 
an interdisciplinary approach to repairing damaged tissue using by combining three components: (1) 
cells (especially, stem cells) capable of forming pulp tissue, root dentin, and tooth-supporting tissues, 
(2) scaffolds to facilitate cell proliferation and differentiation, and (3) bioactive molecules (generally 
growth factors).28,35–38  

 

Stem Cells 

Stem cells are unique cells that possess self-renewal and differentiation properties into another 
cell type. Based on their differentiation potency, stem cells are divided into:39–42 

- Totipotent Stem Cells  

Totipotent stem cells are stem cells that can generate all types of cells and tissues that exist in 

organisms, usually can be obtained from embryonic stem cells (1-3 days old embryo). Totipotent cells 



have the highest differentiation potential and allow cells to form embryonic and extra-embryonic 

structures. An example of a totipotent cell is the zygote, formed after a sperm fertilizes an egg. These 

cells can later develop into one of the three germ layers or form the placenta. After about four days, the 

cell mass in the blastocyst becomes pluripotent. This structure is a source of pluripotent cell.35,43 

- Pluripotent Stem Cells 

Pluripotent stem cells are stem cells that can generate most cell types (over 200) and tissues found in 

organisms and have the ability to differentiate into cells of ectodermal, mesodermal, and endodermal 

origin. It can be obtained from a 5-14 day old blastocyst.35,44,45 

 

- Multipotent Stem Cells 

Multipotent stem cells are stem cells that can generate a limited number of cell and tissue types 

depending on their origin. These cells can be obtained from cord blood, fetal tissue and postnatal stem 

cells including dental pulp stem cells.35,45,46 

- Unipotent Stem Cell 

Unipotent stem cells are stem cells that have the narrowest differentiation ability, which is only into one 

cell type, but are able to divide repeatedly.43,45 

- Induced Pluripotent Cells 

Induced Pluripotent Cells are pluripotent stem cells formed by induction of multipotent cells or adult 

somatic cells with pluripotent factors such as Oct4, Nanog, Sox2, Klf4, and C-myc.45,47 

 

There are two approaches to deliver stem cells into the root canal. The first approach is cell 
transplantation, where autologous or allologous stem cells are applied directly to the root canal. The 
major obstacle to this process is immune rejection of allologous stem cells. Second is cell homing 
where stem cells are sent to the injured area, this process is influenced by many factors, such as age, 
cell number, culture conditions, and method of application. This condition involves the use of  
chemotactic factors such as Stromal Cell Derived Factor (SDF)-1 are injected to the site of injury to 
induce stem cell migration from the periapical area to the root canal.27,48 

Based on their stage of development and origin, stem cells can be broadly classified into:32,35,41,47 
(1) Embryonic Stem Cells, which are stem cells derived from embryos, mainly from blastocysts. These 
cells are capable of dividing and renewing themselves over a long period. (2) Adult stem cells, which 
are stem cells derived from postnatal tissue, can be isolated from various body tissues, such as bone 
marrow, adipose tissue, encephalon, epithelium, dental pulp, etc. 

Tissue injury is always associated with the activation of the immune system or inflammatory cells, 
including macrophages, neutrophils, CD4+ T cells, CD8+ T cells, and B cells, triggered by cell apoptosis, 
necrotic cells, microvascular damage, and stroma.40,49–51 Mesenchymal stem cells  can regulate specific 
and non-specific immune systems by suppressing T cells and dendritic cell maturation, decreasing B 
cell proliferation and activation, inhibiting NK cell proliferation and cytotoxicity, and increasing T 
regulatory (Treg) cell formation.49,50 

There are two mechanisms of stem cell immunomodulation: soluble factors secretion and cell-to-
cell direct contact. Prostaglandin E2 (PGE2), indoleamine 2,3-dioxygenase (IDO), nitric oxide (NO), 
interleukin-10 (IL-10), Hepatocyte Growth Factor (HGF), and Transforming Growth Factor 1 (TGFβ1) 
are secreted factors that have immunomodulatory property. Cell-to-cell direct contact mechanism 
involves CD274 (programmed dead ligand 1), vascular cell adhesion molecule-1, and galectin-1 
expression. These molecules reduce effector T cell proliferation and increase the proportion of 
regulatory T cells (Treg).49,50,52 

Various stem cells can be found in teeth and their associate tissues, such as Stem Cell from Human 
Exfoliated Deciduous Teeth (SHED), Dental Pulp Stem cells (DPSC), Stem Cells from the Apical Papilla 



(SCAP), Periodontal Ligament Stem Cell (PDLC), Dental Follicle Precursor Cell (DFPC), and Dental Papilla 
Cell (DPC),Dental mesenchymal stem cells (DMSCs), and dental epithelial stem cells (DESCs). For pulp 
regeneration purposes, SHED, DPSC, and SCAP have strong potential.35,41,53–55 

 

Stem cells from Human Exfoliated Deciduous Teeth (SHED) 

Stem cells from human exfoliated deciduous teeth (SHED) were first obtained by Miura et al. in 
2003. SHED expresses cell surface markers STRO-1, CD10, CD29, CD 31, CD44, CD73, CD90, CD105, 
CD146, CD13, CD166, Nestin, DCX, -tubulin, NeuN, GFAP, S-100, A2B5, CNPaseNanog, Oct3/4 and 
SSEAs (-3, -4) and does not express CD14, CD15, CD19, CD34, CD45, and CD43.41,56–59 

    SHED has two major advantages compared to other stem cells derived from dental tissue: it is 
easier to gain through noninvasive procedure and has high proliferation rate.34,41,56,60,61 SHED exhibits 
higher proliferation rate compared to Dental Pulp Stem Cells (DPSCs) and Bone Marrow derived 
Mesenchymal Stem Cells (BMMSCs).41,45,58,62–64 

 SHED possess higher potential in forming dentin-pulp complex cells, namely osteoblasts, 
chondroblasts, adipocytes, endothelial cells, nerve cells, and odontoblasts.57,58,65–67 The ability of SHED 
to differentiate into odontoblasts is characterized through the expression of dentin matrix protein-1 
(DMP-1) and dentin sialophosphoprotein (DSPP).45,58 DSPP induces stem cells to odontoblast 
differentiation through SMAD 1/5/8 phosphorylation and nuclear translocation via the P38 and 
ERK1/2 pathways. DMP-1 involves maintaining dentin mineralization.68,69 

As for the potential for neural regeneration, SHED show more intensive expression of neural 
differentiation markers than DPSCs, such as b-III-tubulin, and nestin, in neural induction cell culture.37 
SHED is also able to increase the angiogenesis process by forming vascular connective tissue 
structures, expressing and synthesizing VEGF.70 This ability is crucial to maintain pulp viability as it can 
supply oxygen and nutrients needed for cell metabolism for tissue regeneration.71 

SHED also functioned as an immunodulator by suppressing T helper 17 (Th17) cell function and 
upregulating CD206+ M2 macrophages.57,62 SHED are able to induce the secretion of proinflammatory 
cytokines such as interleukin 1b (IL-1b), interleukin 6 (IL-6), interleukin 10 (IL-10), and tumor necrosis 
factor- a. SHED is also capable to inhibit lymphocyte CD178 expression, suppressing the proliferation 
of lymphocytes, and decreasing the secretion of IL-4 and IFN-g while sequentially increasing the 
number of T-reg cells.37,72,73 

 

 Collagen Scaffold 

Scaffolds are required for regeneration or tissue engineering to facilitate cell growth and functions 
in the transplanted area.74–76 Interaction of the cell with the extracellular matrix influences many 
signalling pathways that change cell behaviours, i.e. adhesion, proliferation, and differentiation.76,77 
Scaffolds can be made of both natural and synthetic materials. Nanoscale proteins are the primary 
natural scaffolding materials. Nanoscale proteins include collagen, fibronectin, and vitronectin. 
Synthetic polymers are popular materials because they are biocompatible, biodegradable, 
mechanically stable, and can be designed in a variety of compositions and shapes.77,78 These 
properties enable polymers to biologically affiliate and mimic the natural cell-extracellular matrix.76,79 
Natural scaffolds, such as collagen, have better biocompatibility, whereas synthetic polymers can be 



controlled for their physicochemical properties such as solubility, microstructure, and mechanical 
strength.76,79 

Nanofibrous scaffolds are more popular than microfiber scaffolds due to their high surface area, 
interconnected porosity, and positively stimulating extracellular cell-matrix interactions.76 Nanofibrous 
scaffolds are made in 3 methods, namely electrospinning, self-assembly, and separation phase.77 
Electrospinning knew as the most tissue engineering application method frequently used to synthesize 
collagen or synthetic scaffold and/or transport system for the drug.76 

Collagen is a hydrogel material with high biocompatibility; viscoelasticy similar to soft connective 
tissue; transport of nutrients and waste, uniform cell encapsulation, in situ gelation ability, and 
compatible to be modified by biofunctional molecules or growth factors.80 Collagen contains arginine-
glycine-aspartic acid (RGD) adhesion ligands, which enable cell-biomaterial interactions leading to cell 
adhesion.75  Collagen matrix is compatible for dental pulp stem cells proliferation, adhesion, and 
differentiation as shown by formation of capillary like microvessels.76,81,82 Two commercial injectable 
scaffolds, self-assembling peptide hydrogel and rHCollagen type I had been evaluated. It was found 
that both of those scaffolds promote SHED cell survival and when injected into the root canal, these 
materials promoted of odontoblast putative markers expression.83 

Different collagen materials are compared such as collagen type I and III, alginate, and chitosan 
generating a good result in the proliferative and mineralizing activity of type I collagen. After 
implanting these cells, the formation of vascularized pulp-like tissue, odontoblast-like cells, and new 
dentin is produced. SHED onto PLA cells in dentinal discs.80 

Collagen is a biocompatible material that can be degraded by enzymes; however, natural polymers 
are difficult to produce and may transmit pathogens from animals (as it is usually produced from 
animal products) or stimulate an immune response. No scaffold materials have ideal structures and 
properties that totally resemble natural extracellular matrix as natural ECM comprises of complex 
architecture made up of structural proteins (collagen and elastin), specialized proteins, and 
glycosaminoglycans. This architecture provides not only structural support for tissue but also a 
selective dynamic environment that is remodeled via biochemical signals to direct cellular responses.84 
A scaffold should combine the best properties of biomaterials and be as close to the physiological 
environment of the ECM as possible.80 

 

 Growth Factor as Regulator 

Regulating molecules are required for SHED to generate endothelial cells, odontoblasts, and 
neurons that will form the dentin-pulp complex architecture.71,85,86 They work in signal transduction 
pathways to regulate cell proliferation, migration, and differentiation into specific phenotypes. BMPs, 
PDGF, FGF, TGF, EGF, and IGFs are the most common WNT proteins.87–89 

VEGF stimulates SHEDs to undergo endothelial cell differentiation. In an experiment described by 
Annibali (2014), SHED was incubated in endothelial cell growth medium (EGM-2MV). This medium 
contains ascorbic acid, hydrocortisone, rhEGF, FBS, R3-IGF-1, rhbFGF, rhVEGF, and VEGF.71,85 
MEK1/VEGF/ErK, Wnt/VEGF/-catenin, and Notch-EphrinB2/VEGF-DLL4 signaling pathways regulation 
in response to VEGF stimulation, the expression of VE-Cadherin (endothelial markers), VEGFR2, and 
CD31 increased dramatically.71,85 Furthermore, the endothelial-like cells generated by SHED could 
anastomose with the host vascular network which is demonstrated by an experiment using LacZ tags 
and galactosidase staining.85 



Odontoblast differentiation was observed after BMP-2 stimulation. This regulatory molecule 
involves in the production of tubular dentin, odontogenesis and morphogenesis. Dentin 
sialophosphoprotein (DSPP) marker will be abundantly expressed for this distinction.85,90–92 The 
production of DSPP is also influenced by two catalytic subunit signaling complexes that target 
rapamycin complexes 1 and 2. (TORC 1 and 2). TORC1, which is also required for protein synthesis and 
translation, regulates and directs cell cycle, growth, and proliferation. Suppression of TORC1 
prevented mineralized matrix deposition, which also severely limited synthesis of DSPP. TORC2 
influences both cell survival and cytoskeleton rearrangement. Inhibition of TORC2 promoted 
mineralization.85,93 

SHED culture in DMEM supplemented with vitamin D3, ascorbic 2-phosphate, dexamethasone, 
and glycerol phosphate resulted in odontoblast-specific genes DMP1 and DSPP expression. Culture 
also showed mineralized matrix as visualized using Alizarin red.85,94 

Different techniques for isolating SHEDs revealed various traits for odontoblast differentiation. 
Despite having functioning odontoblasts phenotype, SHEDs isolated by direct outgrowth showed 
decreased rate of mineralization and abnormal cell elongation and polarization due to vertical 
orientation of the cell body alongside the dentin-like matrix. While SHEDs isolated using enzymatic 
dissociation formed fast mineralized tissue and kept spindle-shaped morphology.85,90 

In immunocompromised mice, the ability of SHEDs to develop into odontoblasts was examined. 
The dorsum of subcutaneous tissue was implanted with ceramic tricalcium phosphate/hydroxyapatite 
(TCP/HA) powder and SHED combinations.85 

This resulted in the formation of dentin-like structures. However, transplant cannot form a 
complete dentin-pulp-like complex. Only 25% of the clones from one of the colony-derived SHED 
strains transplanted were found to produce ectopic dentin.85 

In another study, slices of extracted third molar teeth were used. To create a porous 
biodegradable scaffold, poly-L-lactic acid was used to fill the pulp chamber, which was in close contact 
with the predentin layer. After 1428 days, cells adjacent to the predentin exhibited an active dentin-
secreting odontoblast. DSP was also expressed. Cell nuclear location is thought to be polarized 
eccentrically. Cell displayed cell-cell gap junctions, a well-developed rough endoplasmic reticulum, the 
golgi complex, and a large number of vesicles.85 

SHED has also been confirmed to be able to develop into neurons. Several neuronal markers, 
including glutamic acid decarboxylase (GAD), III-tubulin, nestin, 2′,3′-cyclic nucleotide-
3′phosphodiesterase (CNPase), tyrosine-hydroxylase (TH), polysialylated-neural cell adhesion molecule 
(PSA-NCAM), glial fibrillary acidic protein (GFAP) were expressed by SHED derived neuron.10-12, 
Several cytokines include FGF8, SHH, bFGF, and GDNF influence SHED neuronal regeneration.86,95,96 

FGF8 is responsible for the dorsalization of the anterior neural tube.96 The notochord secrets SHH 
during development to induce a general ventral cell destiny in order to generate floor plate and motor 
neurons. bFGF acts as a proliferation and differentiation regulator. After five days of culture on poly-L-
lysine coated dishes without serum, the cells rapidly lost their mesenchymal appearance and took on a 
more neuronal appearance, including neurite-like outgrowth. Continued injection of SHH/FGF8 
generated neurons with developed and extended axon or dendrite like structures.85,96 

Upregulation of lncRNA C21orf121 and the downregulation of miR140-5p aid in the differentiation 
of SHED into neuronal cells. lncRNA C21orf121 prevents BMP2 from binding to miR140-5p, that 
subsequently increases BMP2 production and promotes SHED neurogenesis.86,97 



 

Dentin Pulp Regeneration 

Dentin pulp regeneration aims to revitalize necrotic, infected, or lost pulp teeth by restoring the 
morphology and function of the pulp. Ideal pulp regeneration should possesses natural structures 
such as nerve fibers and blood vessels, allowing nutritional, defense, sensation, and immunological 
functions to be restored.10,98 Growth factors, scaffolds, plasma, or other associated cells such as 
dentin/odontoblasts, fibroblasts, or endothelial cells may provide regenerative signals in this 
regeneration process resulted in cell migration, proliferation, differentiation, angiogenesis and 
extracellular matrix deposition.28,99 

Endothelial cells differentiate into mesodermal precursor cells (angioblasts) during vasculogenesis, 
whereas new blood vessels are formed from previously existing blood vessels during angiogenesis. 
VEGF is the main regulator of angiogenesis and can also increase vascular permeability.28,100 FGF, 
another growth factor with an angiogenic role, can attract DPSCs to migrate and proliferate.28 PDGF 
can significantly boost cell proliferation, angiogenesis, and odontoblast differentiation.101,102 BMP7 
promotes the formation of dentin (dentinogenesis).103 

Nerve Growth Factor (NGF) plays an important role in the nervous system growth, differentiation, 
and defense mechanisms by preventing apoptosis and reducing neuronal degradation. NGF expression 
is typically increased in damaged and developing teeth; this growth factor promotes the proliferation 
of sensory and sympathetic nerve cells.28 NGF is also involved in the processes of angiogenesis by 
inducing VEGF upregulation. NGF binds to tyrosine kinase receptor (TrkA) on the cell surface, resulting 
in TrkA phosphorylation and activation of multiple signaling pathways, including PI3K/Akt, 
Ras/Raf/MEK/ERK 1/2, and PLC/PKC. Activation of each of these pathways result in a variety of 
biological functions, including the prevention of apoptosis.104–106 

 

Conclusion 

In responding to the challenges in dentistry to maintain pulp tissue and prevent tooth loss with 
irreversible or necrotic pulpitis, regenerative endodontics by utilizing tissue engineering technology 
can be developed. In this technology, the utilization of SHED which has excellent potential with high 
proliferation speed and ability to differentiate into various cell-forming dental pulp cells, collagen 
scaffold as a medium for cell growth and function, and growth factor as a regulator can be utilized to 
repair and regenerate pulp tissue by regenerates pulp tissue naturally and fully functional again. 
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