Approach to clinical laser application in pediatric dentistry by Turnitin Turnitin

Submission date: 07-Dec-2023 02:23PM (UTC+0700) Submission ID: 2251102155 File name: 648-Article_Text-1083-1-10-20221221.pdf (163.85K) Word count: 3388 Character count: 22311 Jeffrey & Vinna K. Sugiaman: Approach to clinical laser application in pediatric dentistry

Approach to clinical laser application in pediatric dentistry

Pendekatan aplikasi laser secara klinis dalam kedokteran gigi anak

¹Jeffrey, ²Vinna K. Sugiaman

¹Bagian Ilmu Kedokteran Gigi Anak, Fakultas Kedokteran Gigi, Universitas Jenderal Achmad Yani, Cimahi ²Bagian Oral Biologi, Fakultas Kedokteran Gigi, Universitas Kristen Maranatha, Bandung Indonesia

Corresponding author: Jeffrey, e-mail: Jeffrey_dent2000@yahoo.com

ABSTRACT

The modem concept of pediatric dentistry today is based on minimally invasive dentistry. Light amplification by the stimulated emission of radiation or Laser is one of the newest technologies available and is used for dental and oral care. This technology causes patient compliance with treatment to be maximized because the discomfort caused is very minimal. Lasers are an exciting technology and make pediatric dental care more optimal without causing many of the fear factors found in conventional dental care. This protocol has been developed long ago so that laser treatment can continue to evolve and is a safe and effective part of treatment. Although it has some disadvantages regarding cost and training, its use in pediatric dentalprocedures is well received by patients and their patents. Because of this, the use of lasers, especially in pediatric dentistry, is increasingly important and needs to be developed. The American Academy of Pediatric 2 Dentistry (AAPD) states that the use of laser as an alternativemethod in the treatment of additional training to apply it to pediatric dental care. **Keywords**: application, biostimulation, minimally invasive, laser dentistry

ABSTRAK

Konsep modern kedokteran gigi anak saat ini didasarkan pada kedokteran gigi minimal invasif. *Lightamplification by the stimulatedemission of radiation* atau Laser adalah salah satuteknologi terbaru dan digunakan untuk melakukan perawatan gigi dan mulut. Teknologi ini menyebabkan kepatuhan pasien terhadap perawatan menjadimaksimal karena ketidaknyamanan yang ditimbulkan sangat minimal. Laser adalah teknologi yang menarik dan menjadikan perawatan gigi anak lebih optimal tanpa banyak menyebabkan faktor ketakutan seperti yang ditemukan dalam perawatan gigi konvensional. Protokol ini telah dikembangkan sejak dulu sehingga perawatan laser dapat terusberkembang dan merupakan bagian perawatan yang aman dan efektif. Meskipun memiliki beberapa kelemahan terkaitbiaya dan pelatihan, penggunaannya dalam prosedur gigi anak dapat diterima dengan baik oleh pasien dan orang tua mereka. Oleh karena hal tersebut maka pemanfaatan laser khususnya dalam kedokteran gigi anak semakin penting dan perlu dikembangkan. *American Academy of Pediatric Dentistry* (AAPD) menyatak a bahwa penggunaan laser sebagai metode altematif dalam perawatan jaringan keras dan lunak dalam rongga mulut untuk bayi, anak-anak, remaja, dan pasien dengan kebutuhan perawatan kesehatan khusus, namun dokter gigi memerlukan pelatihan tambahan untuk

Kata kunci: aplikasi, biostimulasi, minimal invasif, *laser dentistry* Received: 10 July 2022 Accepted: 15 Ocotober 2022

Published: 1 December 2022

PENDAHULUAN

Kedokteran gigi anak merupakan salah satu spesialisasi dalam kedokteran gigi yang mencakup semua aspek perkembangan anak dalam keadaan sehat dan sakit. Laser pada bidang kedokteran gigi anak cukup menjanjikan dalam kedokteran gigi invasif minimal modern dan dapat menjadi pendekatan *childfriendly*. Perawatan laser dalam kedokteran gigi anak sebagai perawatan alternati fyang menjanjikan pada saat ini dan masa depan masih perlu dievaluasi dan memiliki protokol standar.¹⁻³

Tujuan dari perawatan kedokteran gigi anak adalah perawatan preventi fatau perawatan gigi dan mulut pada lingkungan yang bebas stres dan tekanan. Pengendalian perilaku anak dan pengurangan waktu perawatan merupakan pilar penting dalam kedokteran gigi anak sehingga penggunaan laser dapat sangat bermanfaat. Laser dalam kedokteran gigi anak memiliki manfaat dan juga beberapa keterbatasan. Metode laser lebih konservatif pada jaringan keras dan lunak, dengan sedikit ketidaknyamanan dan perdarahan, tapi dapat mengurangi stres dan ketakutan pada pasien selama perawatan gigi.^{4,5} Pada artikel kajian pustaka ini dibahas tentang pendekatan aplikasi laser secara klinis pada anak.

TINJAUAN PUSTAKA

Laser adalah singkatan dari *light amplification by the stimulated emission of radiation*. Prototipe pertama laser dikembangkan oleh Maximan pada tahun 1960. Penggunaan laser pertama kali dijelaskan oleh Mester, etal pada tahun 1971.⁶ Laser pertama dipasarkan dalam kedokteran gigi pada tahun 1989;sejak itu, telah diteliti secara terus menerus pada berbagai aplikasi jaringan lunak dan keras.⁷ Laser yang umum digunakan dalam kedokteran gigi adalah laser neodymium-YAG (Nd: YAG), erbium: yttrium aluminum garnet (Er: YAG), karbon dioksida (CO2), erbium chromium:yttrium scandium gallium garnet, holmium: YAG, laser diode.^{24,5,8,9}

Selama beberapa dekade terakhir lasertelah menjadi

DOI 10.35856/mdj.v11i3.648

310

Makassar Dental Journal 2022; 11(3): 310-314, p-ISSN:2089-8134, e-ISSN:2548-5830

metode alternatif populer bagi metode konvensional karenadapat menurunkan kerusakan sel, inflamasi jaringan, perdarahan, peningkatan visualisasi area pembedahan, dan mengurangi kebutuhan dalam penjahitan. Di antara berbagai laser dalam kedokteran gigi, laser diode saat ini palingumum digunakan pada penatalaksanaan kelainan jaringan lunak hingga photoactivated disinfection padapoket periodontal, perawatan endodontik, dan pemutihan gigi. Melihat manfaatnya yang banyak, ukuran kecil, pengoperasian yang mudah, dan efektivitas biaya apabila dibandingkan dengan laser lainnya, menjadikan laser diode sebagai pilihan utama dalam perawatan kedokteran gigi. Teknik minimal invasif yang menyebabkan bebas rasa sakit untuk menghilangkan lesi jaringan lunak seperti lesi eksofitik, operkulum, depigmentasi gingiva, paparan implan, biostimulasi, desinfeksi saluran dalam endodontik, dan pemutihan gigi dapat dilakukan menggunakan laser diode.1,7,10-12

Instrumen gigi yang tajam, suara bising saat pengeboran gigi, dan getaran dapat dihindari selama prosedur perawatan gigi sehingga sangat membantu dalam praktek kedokteran gigi anak. Seiring dengan perkembangan dalam pemanfaatannya, laser secara efektif dapat digunakan untuk penentuan diagnosis, pencegahan, dan perawatan karies, serta untuk prosedur minimal invasif.⁴

American Academy of Pediatric Dentistry (AAPD) menyatakan bahwa penggunaan laser sebagai instrumen dalam melakukan prosedur di bidang gigi dan mulut pada bayi, anak-anak, dan remaja, termasuk anak berkebubutuhan khusus harus dilakukan secara bijaksana agar mendukung penggunaan laser yang aman dan *evidencebased* diperoleh melalui tinjauan dasar-dasar, jenis, aplikasi diagnostik dan klinis, manfaat, dan batasan penggunaan laser dalam kedokteran gigi anak.^{13,14}

Penerapan laser dalam kedokteran gigi dianggap sebagai teknik yang menguntungkan bagi pasien karena memiliki banyak kelebihan dibandingkan dengan metode lain saat ini. Lasertersedia dalam berbagai jenis perangkatdanberbagai panjang gelombang, sehinggadapat digunakan untuk berbagai prosedur dalam kedokteran gigi. Empatjenis interaksi dapat terjadi ketika sinar laser mengenai jaringan target, tergantung pada sifat optik jaringantarget dan panjang gelombang sinar laser. Interaksi ini adalah penyerapan, transmisi, refleksi, dan hamburan sinar laser. Prinsip utama dalam penerapan laser adalah penggunaan energi cahaya sebagai pengganti gaya rotasi dan bilah tajam. Saat menggunakan laser dalam kedokteran gigi restoratif, ketakutan anakanak dapat dihilangkan apabila dibandingkan dengan penggunaan bor biasa yang dapat menyebabkan fraktur mikro pada struktur gigi, getaran, dan kebisingan yang dianggap sebagai faktor utama penyebab ketakutan padaanak. Pemanfaatan laser memungkinkan penghilangankaries tanpa anestesi atau dengan anestesi lokal yang

lebih sedikit.4,7,15-17

Pengaplikasianlaserdalam kedokteran gigi anak digunakan secara luas dan dibagi dua, yaitu pada jaringankeras dan jaringan lunak; pada jaringan keras digunakan untuk deteksi karies dengan laser-induced fluorescence, pencegahan karies gigi, menghilangan karies, preparasi kavitas, pit and fissure sealant, curing lightactivated resins, preparasi mahkota gigi anak, bleach gigi vital dan non vital, fraktur akar vertikal, menghilangkan bahan restorasi sebelumnya, analgesia laser, pergerakan gigi pada perawatan ortodontik, dan trauma gigi. Selain itu, aplikasi laserpada jaringan lunak digunakan untuk eksposur gigi dalam membantu erupsi gigi, frenektomi, ankiloglosia, ulkus aphthous, lesi herpes labialis, kista dentigerous, leukoplakia, pengobatan mukokel, endodontik gigi sulung, remodeling gingiva, dan gingivektomi.2,3,18

Penggunaan laser dalam kedokteran gigi anak memberikan banyak manfaatapabila dibandingkan dengan metode lainnya seperti pisaubedah dan electrosurgery. Beberapa manfaatnya adalah 1) laser memiliki interaksi selektifdantepatdenganjaringan yang mengalami kerusakan,2) nekrosis jaringan yang berdekatan dengan laser lebih sedikit dibandingkan dengan electrosurgery, 3) hemostasis dapat dicapai tanpa penjahitan pada kebanyakan kasus, 4) penyembuhan luka pasca penggugunaan laser lebih cepat dengan sedikit ketidaknyamanan, sehingga kebutuhan analgesik berkurang, 5) tidak diperlukan atau berkurangnya penggunaan anestesi untuk prosedur bedah di jaringan lunak, 6) mengurangi waktu perawatan pasien di dental unit, 7) pemberian resepantibiotik pascaoperasi lebih sedikit karena laser memiliki sifat dekontaminasi dan bakterisida, 8) nyeri dari ulkus apthous dan herpetic dapat dihilangkan dengan laser tanpa intervensi farmakologis,9)karies dapatdihilangkan secara efektif dengan laser, dengan sedikit keterlibatan struktur gigi di sekitarnya karena jaringan yang terkena karies memiliki kadar air yang lebih tinggi daripada jaringan sehat, 10) tidak ada suara dan getaran saat penggunaan laser, 11) laser yang tidak berkontak dengan jaringan keras menghilangkan getaran dari handpiece konvensional berkecepatan tinggi membuat preparasi gigi menjadi nyaman dan bebas kecemasan bagi anak, 12) erbium dan Nd: Laser YAG memiliki efek analgesik pada jaringan keras sehingga menghilangkan kebutuhan akan anestesi lokal.1,7,8,17

Kekurangan laser dalam kedokteran gigi anak, yaitu 1)dokter gigi mungkin membutuhkan lebih dari satu laser karena panjang gelombang yang berbeda diperlukan untuk berbagai prosedur pada jaringan lunak dan jaringan keras, 2) relatif mahal, 3) sebagian besar instrumen adalah *sight cutting and end cutting*, 4) memerlukan pendidikan dan pelatihan tingkatlanjut, 5) memerlukan modifikasi teknik klinis disertai preparasi tam-

DOI 10.35856/mdj.v11i3.648

bahan dengan *handpiece* berkecepatan tinggi untuk me-nyelesaikan preparasi gigi.^{1,3,7,17}

Ronggamulut manusia terdiri atas jaringan keras dan jaringan lunak sehingga dokter gigi harus memilih laser terbaik untuk setiap perawatan. Untuk perawatan pada jaringan lunak, praktisi dapat menggunakan laser gigi jenis apapun terlepas dari panjang gelombang karena semua laser diserap oleh satu atau lebih komponen jaringan lunak. Namun, untuk penatalaksanaan pada jaringan keras, hanya laser berasal dari jenis Eryang dapat digunakan. Laser Er memiliki durasi gelombang yang sangat pendek dan dapat dengan mudah mengurangi lapisan jaringan yang terkal si fikasi dengan efek termal yang minimal.⁸

Pada pasien-pasien yang menggunakan alat pacu jantung, penderita lupus, pasien penderita tumor serta memiliki kecenderungan ke arah keganasan merupakan kontraindikasi dalam penggunaan laser untuk perawatan gigi. Selain itu, laser juga tidak dapat digunakan pada bagian uterus wanita yang sedang hamil, kelenjar (kelenjar tiroid), pasien epilepsi (dengan frekuensi <800 Hz), dan pasien dengan riwayat aritmia atau nyeri dada.⁸

PEMBAHASAN

Aplikasi laser pada jaringan keras

Penggunaan laser dalam mendeteksi karies pada anak sangat efisien, mengingat ketakutan anak terhadap dokter gigi dan kurangnya sikap kooperatif dari anak. Pada penggunaan laser, operator perlu menjelaskan perangkatnya kepada anak dan membiarkannya turut serta dalam penanganannya, untuk membuatnya lebih kooperatif. Perangkat ini juga memiliki kemampuan untuk menunjukkan karies pada tahap awal yang tidak terlihat pada radiografi sehingga perawatan profilaksis dapat dilakukan dengan cepat untuk mencegah perkembangan karies. Pada waktu kontrol, laser adalah perangkat yang tepat untuk evaluasi perkembangan atau pencegahan hasildari perawatan.^{4,15,19}

Laser dapat digunakan untuk membersihkan dan mensterilkan fisur pada email gigi, sehingga dapat digunakan untuk perawatan pit dan *fissure sealant*. Penelitian telah menunjukkan bahwa permukaan email yang dipreparasi dengan laser erbiummemiliki struktur yang mirip dengan email yang telah dietsa asam.^{4,15,18}

Tujuan utama perawatan preventif dalam kedokteran gigi modern adalah untuk mencegah karies. Terapi fluoride sistemik ataupun topikal dapat mencegah karies pada tahap awal dan mencegah perkembangan karies. Laser melalui perubahan struktur kristal email secara efisien akan meningkatkan ketahanan terhadap asam dan mencegah penyebaran serta perkembangan lesi karies. Penggunaan fluorida sebelum dan sesudah iradiasi laser akan meningkatkan penyerapan fluorida dan menurunkan kelarutannya dalam asam. Iradiasi laser memiculebihbanyak adesi fluorida kelapisan bawahemail dan dentin yang dimungkinkan dengan penetrasi fluoriida pada email dan dentin secara mikro. Gambaran SEM dari struktur yang disinari laser disertai dengan aplikasi fluoridamenunjukkan bahwa iradiasi laser dapat memicupembentukan banyak presipitasi spherical atau globular di permukaan. Efek panas laser dan pembentukan celahmikrosertaretakan kecil memfasilitasi penetrasi fluorida ke dalam gigi. Penggunaan laser dan fluorida secara bersamaan pada berbagai panjang gelombang merupakan metodeterbaik yang dapat digunakan untuk mencegah lesi karies. Laser yang dapa digunakan dalam pencegahan lesi karies terdiri atas Nd: YAG, CO2, Er:YAG, Er;Cr:YSGG, argon dan diode. Belakangan ini terdapat beberapa penelitian yang membuktikan bahwa laser ternyata efektif dalam menangani lesi karies progresif, yang didukung dengan sifat kooperatif dari anak dan penetrasi fluorida pada permukaan gigi yang lebih baik. Dalam perawatan gigi, jenis laser erbium telah digunakan, meskipun aplikasinya harus menggunakan parameter yang sesuai dan gelombangnya harus berada di bawah ambang untuk pengangkatan jaringan. Jenis laser lainnya yaitu laser argon yang memiliki keuntungan dapat mengevaluasi efek klinis pada lesi setelah iradiasi. Laser jenis lain yang memiliki efek bakterisidanya adalah laser diode. Laser CO2 digunakan dalam pencegahan lesi karies karena penyerapannya yang tinggi oleh radikal hidroksiapatit fosfat. Hasil terbaik dengan laser ini diperoleh bila digunakan dengan panjang gelombang 9600.^{2,4,8,9,15,20}

Laser YAG telah mendapatkan persetujuan Food and Drug Administration (FDA) sejak tahun 1997 untuk menghilangkan karies serta preparasi kavitas termasuk preparasi email dan dentin tanpa menyebabkan kerusakan pada pulpa gigi. Penyinaran menggunakan laser dengan panjang gelombang tertentuke gigi, menyebabkan sejumlahkecilair yang berada di email dan dentin menguap yang memicu terjadinya perpindahan eksplosif dari struktur yang rusak. Secara klinis, penatalak sanaan pada jaringan gigi dengan memanfaatkan laser dan adanya perubahan tekanan udara di sekitar gigi akan memicu timbulnya suara letupan. Pada jaringan yang memiliki jumlah air lebih banyak akan menimbulkan suara lebih besar (karies>dentin>email). Berbagai karakteristik ini membantu dokter gigi untuk menghilangkan jaringan karies secara selektif tanpa mengenai jaringan yang sehat. Penggunaan laser dapat dikombinasikan dengan semprotan air yang membantu penyebaran partikel dari preparasi jaringan, dan menciptakan lingkungan yang sejuk di jaringan target.15,21

Sesuai prinsip-prinsip kedokterangigi restoratif dengan minimal invasif, membuat penggunaan laser untuk menghilangkan jaringan karies secara tepat tanpa mengenai jaringan sehat gigi. Kecepatan preparasi de-

Makassar Dental Journal 2022; 11(3): 310-314, p-ISSN:2089-8134, e-ISSN:2548-5830

ngan laser erbium sedikit lebih lambat dibandingkan denganturbinkecepatan tinggi, tetapi pemanfaatannya dapat mengurangi kebutuhan anestesi dan waktu tunggu efek anestesi. Selain itu jenis laser erbium dapat menurunkan populasi bakteri pada jaringan target dibandingkan dengan menggunakan metode konvensional saat ini. Preparasi kavitas metode konvensional menimbulkan rasa sakit, kebisingan, dan getaran yang dihasilkan, sehingga membuat pasien merasa tidak nyaman yang akan mempengaruhi sifat kooperatif anak dan remaja saat perawatan. Dengan menimbang alasan tersebut, penggunaan laser pada anak untuk menghilangkan email dan dentin dengan sedikit atau tanpa anestesi tampaknya sangat logis, juga dapat meniadakan terjadinya trauma pada bibir dan lidah yang sering menjadi masalah pada anak. Selain itu, jika terjadi kerusakan pada pulpa gigi, perawatan yang dilakukan akan dapat diselesaikan lebih cepat apabila dibandingkan dengan menggunakan bor biasa. Pada penggunaan laser, besarnya daya yang dibutuhkan untuk menghilangkan email adalah 6W, dentin 4W dan jaringan karies 2W.2,9,15,17,21

Aplikasi laser pada jaringan lunak

Laser juga dapat dimanfaatkan dalam pengangkatan jaringan lunak dan ekspose gigi permanen yang belum erupsi untuk tujuan ortodontik; yang dilakukan dengan menggunakan panjang gelomban ang berbeda. Laser yang dapat digunakan, yaitu laser Er; Cr:YSGG, Nd:YAG, Er:YAG dan diode. Laser erbium memiliki kemampuan untuk menghilangkan jaringan lunak dan jaringan keras sehingga saat menggunakan laser ini harus memperhatikan struktur jaringan yang akan dirawat. Pemanfaatan laserdiode dan Nd:YAG, biasanya tidak memilikirisiko yang berarti, karena panjang gelombangnyatidak berinteraksi dengan jaringan keras sehingga tindakan pengangkatan jaringan lunak dapat dilakukan dalam jangka waktu yang cukup lama tanpa anestesi lokal. Pada kondisi ini hanya diperlukan aplikasi gel anestesi, sehingga pemanfaatan laser memberikan keuntungan yang sangat besar pada saat merawat pasien bayi. Laser erbium dengan energi lebih dari 100 mJ dan frekuensi 20 Hz dapat digunakan untuk pemotongan jaringan lunak dan pengangkatan tulang. Sedangkan untuk memperkuathemostasis, dapat digunakan laser erbium dengan energi energi 65 mJ, frekuensi 20 Hz, dan durasi 600 µs 15,19

Trauma yang sering kali terjadi pada anak dan remaja, biasanya akan menyebabkan lesi pada jaringan lunak yang menyebabkan terjadi lesi fibrotik jinak akibat trauma pada bibir. Lesi berpigmen dapat dihilangkandengan laser argon, diode, dan Nd:YAG. Sedangkan jika lesi tidak berpigmen, maka lebih mudah dihilangkan dengan laser erbium dan CO₂, karena panjang gelombang mudah diserapdalam air. Biasanya tindakan operasi pada jaringan lunak dengan kondisi seperti ini memerlukan anestesi lokal, tetapi jarang membutuhkan jahitan. Keuntungan laser dalam menghilangkan lesi ini adalah sedikitnya perdarahan.^{2,15,21,22}

Trauma yang terjadi pada gigi sulung anterior dapat menyebabkan kerusakan pulpa, perubahan warna gigi, dan atau kerusakan gigi permanen di bawahnya. Kondisi lain yang dapat terjadi yaitu gigi bergeserataupun terlepas, dapat ditangani dengan iradiasi selama 1 menit yang dilakukan setelah posisi gigi dikembalikan dengan benar.^{15,22}

Anak penderita hipertrofi gingiva dapat menggunakan berbagai jenis laser untuk meremodeling gingiva. Hipertrofi gingiva biasanya disebabkan oleh efek samping obat seperti dilantin atau kebersihan mulut yang kurang baik, dan pasca pemakaian peranti ortodontik. Padakasus kelainan gingiva, laser dapat digunakan untuk menghilangkanjaringan gingiva dan penyembuhan biasanya dapat terjadi tanpa perdarahan pada gingiva. Pada kondisi seperti ini, maka dapat digunakan laser erbium dengan energi 55-80 mJ dan frekuensi 20-30 Hz tanpa semprotan air.^{15,19}

Terapi laser juga dapat dimanfaatkan untuk tindakan frenektomi untuk penutupan diastema; dengan laser Er:YAG pada pengaturan 30 Hz dan 50 mJ tanpa air untuk memotong frenulum. Energi laser diarahkan pada frenulum dan area antara dua gigi insisivus sentralis. Laser Er:YAG juga digunakan untuk penatalaksanaan bedah frenulum labialis yang parah atau ankiloglosia pada bayi dan anak.1,4 Kelainan lain pada jaringan lunak yang dapat ditangani dengan laser, yaitu ankiloglosia yang sering ditemukan pada bayi baru lahir. Kondisi ini dapat menyebabkan masalah yang signifikan saat menyusuidan berbicara. Laser dapat digunakan tanpa anestesi atau sedasi. Melindungi mata bayi dan dokter gigi dengan kacamata laser sangat penting dan juga perlu diperhatikan kelenjar sublingual. Jahitan umumnya ditempatkan di persimpangan frenulum dan potongan untuk mencegah perlekatan kembali.1,15

Penerapan laser juga secara umum dapat mengurangi keperluan penggunaan anestesi. Penelitian telah menunjukkan bahwa gigi yang disinari laser menunjukkan tingkat rasa sakit yang lebih rendah dibandingkan dengan kelompok kontrol. Untuk mendapatkan efek ini, laser dapat diaplikasikan pada jarak 1-3 mm di atas permukaan dentin dan akar gigi selama 1-2 menit.¹⁵

Disimpulkanbahwa aplikasi laserkhususnya dalam kedokteran gigi anak semakin penting. Meskipun AAPD mengakui penggunaan laser sebagai metode alternatif untuk prosedur perawata2 baik jaringan lunak dan keras dalam rongga mulut bayi, anak-anak, remaja, dan pasien dengan kebutuhan perawatan khusus, dokter gigi memerlukan pelatihan tambahan untuk menerapkannya pada perawatan gigi anak.

DAFTAR PUSTAKA

- JAFTAR PUSTAKA 1. Hyder T. Diode lasers in dentistry: Current and emerging applications. J Pak Dent Assoc 2022;31(2):100-5. DOI: https://doi. org/10.25301/JPDA.312.100
- 2. American Academy of Pediatric Dentistry. Policy on use of lasers for pediatric dental patients. Pediatr Dent2017;39(6):93-5
- 3. American Academy of Pediatric Dentistry. Policy on the use of lasers for pediatric dental patients. The Reference Manual of Pediatric Dentistry 2020: 116-8.
- 4. Mester E, Szende B, Spiry F, Sacher A. Effects of laserin wound healing. Lyon Chir 1971;67:416-9.
- 5. Nilotpol K. Lasers in paediatric dentistry, a boon or a bane: a systemic review. J Dent Sci 2019; 4(1): 217. DOI: 10.23880/ oaids-16000217
- 6. Neena IE, Poornima P, Ganesh E, Roopa KB, Bharath KP. Lasers in pediatric dentistry: A review. Int J Contemp Dent Med Rev 2015, Article ID: 030115, 2015. doi: 10.15713/ins.ijcdmr.29
- 7. Fatima T. Lasers in pediatric dentistry. J Adv Med Dent Scie Res 2015;3(3):59-64.
- 8. Ghadimi S, Chiniforush N, Bouraima SA, Johari M. Clinical approach of laser application in different aspects of pediatric dentistry. J Lasers Med Sci 2012; 3(2):84-90.
- 9. Shanthi M. Laser prescience in pediatric dentistry. Int J Sci Study 2015;3(2):197-203. DOI: 10.17354/ijss/2015/240
- 10. Martens LC. Laserphysics and a review of laser applications in dentistry for children. Eur Arch Paediatr Dent 2011; 12(2): 61-7.
- 11. Galui S, Pal S, Mahata S, Saha S, Sarkar S. Laser and its use in pediatric dentistry: A review of literature and a recent update. Int J Pedod Rehabil 2019;4:1-5.
- 12. AbdulsameeN, Elkhadem A, Nagi P. Laser; from fundamental principles to applied pediatric dentistry-review. J Dent Oral Health 2021;3(2):1-11.
- 13. Aldelaimi TN, Mahmood AS. Laser-assisted frenectomy using 980nm diode laser. JDent Oral Disord Ther 2014; 2(4):1-6 14. Calazans TA, de Campos PH, Melo AVG, Oliveira AVA, Amaral SF, Diniz MB, et al. Protocol for low-level laser therapy
- in traumatic ulcer after troncular anesthesia: case report in pediatric dentistry. J Clin Exp Dent 2020;12(2):e201-3
- 15. ZhangY, Yan Wang Y, Chen Y, Chen Y, Zhang O and Zou J. The clinical effects of laser preparation of tooth surfaces for fissure sealants placement: a systematic review and metaanalysis. BMC Oral Health. 2019; 19:203.
- 16. Asadollah FM, Mojahedi SM, Nojedehian H, Asnaashari M, Asnaashari N. The effect of Er: YAG laser irradiation combined with fluoride application on the resistance of primary and permanent dental enamel to erosion. J Lasers Med Sci 2019; 10 (4):290-6.
- 17. Verma SK, Maheshwari S, Singh RK, Chaudhari PK. Laser in dentistry: An innovative tool in modern dental practice. Natl J Maxillofac Surg 2012; 3:124-32.
- 18. Thribhuvanan L, Saravanakumar MS. Management of ankyloglossia in pediatric patients using diode laser-case report. Int J Dent Clin Studies 2022;3(1):01-05.
- 19. Sharma A, Agarwal N. Lasers in pediatric dentistry. Acta Sci Dent Sci 2019;3(7): 76-7. DOI: 10.31080/ASDS.2019.03.0574.
- 20. Ambika S, Suchithra. Diode Laser in Pediatric Dentistry. Int J Sci Res 2018;7(2):363-9. DOI: 10.21275/ART20179821.
- 21. Rajan JS, Muhammad UN. Evolution and advancement of lasers in dentistry-A literature review. Int J Oral Health Sci 2021; 11:6-14.
- 22. Nazemisalman B, Farsadeghi M, Sokhansanj M. Types of lasers and their applications in pediatric dentistry: a review. J Lasers Med Sci 2015;6(3):96-101. doi:10.15171/jlms.2015.01.

DOI 10.35856/mdj.v11i3.648

Approach to clinical laser application in pediatric dentistry

ORIGIN	ALITY REPORT				
3	% ARITY INDEX	3% INTERNET SOURCES	0% PUBLICATIONS	1% STUDENT PA	
			FOBLICATIONS	STODENTF	
PRIMAR	Y SOURCES				
1	Submitt Student Pape	ed to Istanbul N	ledeniyet Âniv	versitesi	1 %
2	pdfcoffe Internet Sour				1%
3	WWW.aa Internet Sour				1%
4	journals Internet Sour	s.sbmu.ac.ir			1%
5	WWW.jp Internet Soul	da.com.pk			1 %

Exclude quotes	On	Exclude matches	< 1%

Exclude bibliography On