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The sudden climate change occurring in different places in the world has
made disasters more unpredictable than before. In addition, responses are
often late due to manual processes that have to be performed by experts.
Consequently, major advances in computer vision (CV) have prompted
researchers to develop smart models to help these experts. We need a strong
image representation model, but at the same time, we also need to prepare
for a deep learning environment at a low cost. This research attempts to
develop transfer learning models using low-cost masking pre-processing in
the experimental building damage (xBD) dataset, a large-scale dataset for
advancing building damage assessment. The dataset includes eight types of
disasters located in fifteen different countries and spans thousands of square
kilometers of satellite images. The models are based on U-Net, i.e., AlexNet,
visual geometry group (VGG)-16, and ResNet-34. Our experiments show
that ResNet-34 is the best with an F1 score of 71.93%, and an intersection

over union (loU) of 66.72%. The models are built on a resolution of 1,024
pixels and use only first-tier images compared to the state-of-the-art
baseline. For future orientations, we believe that the approach we propose
could be beneficial to improve the efficiency of deep learning training.
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1. INTRODUCTION

A considerable amount of unprecedented weather changes around the world have made disasters more
unpredictable and more severe than before [1]. On the other hand, the advance in machine learning (ML) and
computer vision (CV) has brought computer science algorithms the capability of building intelligent and
independent solutions for disaster prevention all around the world. Additionally, the increasing availability of
satellite images from the United States and European scientific agencies, such as the united states geological
survey (USGS), national oceanic and atmospheric administration (NOAA), and European space agency (ESA)
has further cultivated more and more research on ML and CV with the help of domain experts, such as
humanitarian assistance and disaster recovery (HADR) and remote sensing experts [2]-[4]. Training accurate
and robust CV models needs large-scale and a variety of datasets; moreover,all buildings have different designs
from one another. The differences between designs depend on locations or countries where the buildings are
located. It may seem a challenge for CV models to recognize all types of building from various places.
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The experimental building damage (xBD) dataset [2] comprises satellite images utilized for
detecting building shapes and assessing building damages. Furthermore, the dataset encompasses eight types
of disasters located in fifteen different countries and covers thousands of square-kilometer satellite images.
The dataset consists of pairs of images; specifically, the first and second images represent conditions of a
region before and after a disaster respectively. Additionally, the dataset has been annotated in javascript
object notation (JSON) form; therefore, there is no need for further annotation processes. This research
attempts to build CV models which are capable of detecting and segmenting building shapes on satellite
images before and after disasters occur.

One of the important issues in image processing is the complexity during the feature extraction
process. In this sense, we need a powerful image representation model, but on the other hand, we also need to
prepare for a low-cost deep learning environment. In this research, our main research question is thus, how to
prepare a simple yet powerful image preprocessing for transfer learning.

The transfer learning approach has been chosen for the approach of this research because the
technique has utilized best practices for state-of-the-art models [5]-[7]. Particularly, the trained models for
detecting building shapes from given images employ convolutional neural networks (CNN) architectures
such as AlexNet [8], visual geometry group (VGG) [9], and ResNet [10]. Furthermore, we postulate that by
using a low complexity pre-processing algorithm, the entire transfer learning process will be more efficient.

2. METHOD
2.1. State-of-the-art techniques

Image segmentation refers to segmenting or partitioning an image into different areas, with each
area commonly representing a class. Specifically, CV techniques can be employed on satellite images to
extract a partition of the image as an object of a predefined class. Various techniques for satellite image
segmentation consist of thresholding, clustering, region-based, and artificial neural networks (ANN). Among
those techniques, ANN proves to be giving the best accuracy [11].

CNN is known as one of the deep learning techniques used for CV tasks. Specifically, CNN is
developed from multilayer perceptron (MP) to process two-dimensional data such as images [7], [12], [13].
CNN technique has three layers which are divided into two main parts, feature learning, and classifier parts.
The feature learning part consists of convolution layers and pooling layers. The classifier part comprises a
fully connected layer. Arrangements of CNN shall construct various forms of CNN architectures such as
AlexNet [8], VGG [9], and ResNet [10].

U-Net has the capability of processing large-size images and generating outputs whose sizes are the
same as the ones of inputs. Another advantage of U-Net is the processing speed which is constant during the
training phase. The U-Net training process adopts the CNN training method which replaces a pooling
operation with the upsampling operation so the convolutional and pooling layers of the model can return the
size of an input image [14]. The u-Net architecture resembles a letter U which is divided into contracting and
expansive parts. A contracting part tackles the feature extraction process while an expansive part involves
transferring features and reconstructing images to the original input size.

Previous satellite image datasets before xBD only cover one type of natural disaster with various
label criteria for damaged buildings [4], [15], [16]. Furthermore, datasets [17], and [18] provide locations of
disaster occurrences; however, these datasets do not include damaged building structure images. There are
also datasets with multi-view imagery such as change detection and land classification [19]-[21] where
several visits to one site and a time series of satellite images are provided. Prominent satellite image
segmentation techniques are applied to road segmentation; specifically, the techniques are unsupervised [22],
[23]. However, there are limited amounts of literature that discuss road segmentation and identification with
obstructions. Other segmentation approaches to detect damaged buildings propose a ML model trained on
non-building shapes. [24]. Ronneberger et al. [14] develop a U-Net architecture whose model is specifically
designed to segment objects in medical images with a limited size of training data. They employ both the
Glioblastoma-astrocytoma U373 cells on a polyacrylamide substrate (PhC-U373) and the Henrietta Lacks
cells on a flat glass recorded by differential interference contrast microscopy (DIC-HeLA) datasets to
measure the model's intersection over union (loU) value. The loU values for PhC-U373 and DIC-HeLa
datasets are 0.9203 and 0.7756 respectively. Gupta et al. [2] establish a baseline model for the xBD dataset.
Particularly, they utilize SpaceNet, a variant of U-Net architecture as shown in Figure 1. The loU values of
their model for ground and building are 0.97 and 0.66 respectively. Kurama et al. [11] use U-Net architecture
trained on 2,000 images of the defence science and technology laboratory (DSTL) dataset and achieve 98%
accuracy.

Masking preprocessing in transfer learning for damage building detection (Hapnes Toba)
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Figure 1. U-Net architecture [10]

2.2. Contributions
This research contributes to CV recent literature in the following aspects:
i)  We experimented with a lightweight masking preprocessing procedure for the disaster images in the
xBD dataset which gives low complexity yet powerful feature extraction in the U-Net architectures.
ii) We compare several variants of CNN U-Net architectures utilized for detecting building shapes before
and after disasters from the xBD dataset. The CNN segmentation techniques analyzed in this research
are AlexNet, VGG-16, and ResNet-34 as these techniques are the most widely used in the literature [5].
We believe that this research shall give some insights into the masking preprocessing procedure and
its potential during transfer learning. As far as we know. Our research is the first which compares the original
experiment in the xBD dataset in various U-Net architectures.

2.3. Experiments
2.3.1. Dataset

This research uses the xBD dataset which is one of the publicly available annotated satellite images
with high resolution. The dataset has more than 850,000 polygons for 22,000 building images from six types
of disasters worldwide, which encompass more than 45,000 square kilometers [2]. The dataset annotations
are done by experts in their fields such as California air national guard (CAL FIRE) and federal emergency
management agency (FEMA). Each satellite image has red green blue (RGB) values which form three
squares of 1,024 pixels. In this research, the first tier of the dataset is used and divided by xView2 into two
portions, train and validation set. The number of images in the train set and validation set is 5,598 and 1,866
respectively which consist of the types of disasters described in Table 1.

Table 1. Number of images for each disaster
Number of images

Disaster Train Validation
guatemalare-volcano 36 10
hurricane-orence 638 238
hurricane-harvey 638 190
hurricane-matthew 476 188
hurricane-michael 686 218
mexico-earthquake 242 68
midwest-flooding 558 172
palu-tsunami 226 82
santa-rosa-wildfire 452 154
socal-fire 1,646 546 1,646 546

Total 5,598 1,866

2.3.2. Image preprocessing
The xBD dataset annotations are saved into JSON format and one of the annotations is building
information coordinates on an image. Furthermore, this coordinate information is preprocessed into creating

Int J Artif Intell, Vol. 12, No. 2, June 2023: 552-559
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a masking image [25]. The masking image consists of two classes, which are ground and building. A zero-
value pixel in a masking image refers to a ground; on the other hand, a one-value pixel indicates a building.
Figures 2 and 3 show an image before and after the masking process is applied. Furthermore, the masking
image is used as a label or target during the training of a CV model.

Figure 2. An image before masking Figure 3. An image after masking is applied

2.3.3. Model training
A model (f) is trained on satellite images to detect buildings at pixel levels shows in Algorithm 1,
that is:

Algorithm 1 Preprocessing images algorithm

1: procedure Preprocessing (images, json_file)

2: read the json_file containing building coordinates

3: for each image in images do

4: for each pixel (i, j) in the image do

5: if (i, j) is part of a building then #utilize the JSON file
6: (i, J) =1

7: else

8: (i, 3J)

0

For every pixel in an image, pij with (i; j) as the coordinate of the pixel. This training method is a well-
known technique known as image segmentation in CV literature [26]. We opt to choose the transfer learning
approach as this approach gives the best performance results which are elaborated by Raffel et al. [27]. The
convolutional base of CNN has been trained on the ImageNet dataset [5]; therefore, the xBD dataset is
normalized by the statistics of ImageNet to have the same range of input distribution [28]. An illustration of
the transfer learning approach is Figure 4.
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Figure 4. Transfer learning approach illustration
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The transfer learning approach utilizes a convolutional base learner which has learned a lot of
features from a dataset for a specific task. Next, this knowledge will be used to perform the task on a
different dataset without initializing weights randomly. If the dataset is quite large, the weights of the model
can be updated wholly; this training process is commonly called fine-tuning. Similarly, our model undergoes
a two-stage training process. Firstly, only the head of the model is trained on the dataset. Next, the model is
trained for updating the weights of all layers [29].

The deep learning library which was used during the training is fast.ai which is run on n1-highmem-
4 and graphics processing unit (GPU) NVidia tesla T4 of google cloud platform for 4 days the learning rate is
0.0003 obtained from the cyclical learning rate finder algorithm [30]. During training, data augmentation
techniques such as flipping images horizontally, rotating images, magnifying images, adjusting brightness,
contrasting images, and wrapping images are also used. In addition, the performance parameters for this task
are precision, recall, and F1, given in (1)-(3), with true positive (TP), false positive (FP), and false negative
(FN) carefully assessed.

TP

Precision = 1)
TP + FP
Recall = —= 2
TP + FN
F1 = 2 x Precision x Recall (3)

Precision + Recall
Additionally, loU metric in (4), the metric used in Gupta et al. [2], is also utilized to evaluate our model.

IoU = Area of Overlap (4)

Area of Union

3. RESULTS AND DISCUSSION

Three CNN-based architectures, i.e.: AlexNet, VGG-16, and ResNet-34, are trained on 512 by 512-
pixel images with 10 epochs. Our best-performing models are chosen based on the F1 score because of the
imbalance between ground and building image instances in our dataset. The comparison of the three models
when only the heads are trained is displayed in Table 2.

The best model among the three models, that is ResNet-34 is trained on 512 and 1,024 pixels on the
head only with the number of epochs of 40 and a learning rate of 0.0003. Next, all layers are fine-tuned with
a learning rate ranging from 0.000001 to 0.0001. Results of the training process are Tables 3 and 4. Both
tables display that the models give better F1 scores and loU results than the ones in Table 2.

Table 2. Comparison of the three models at the tenth epoch

Model Accuracy  Precision Recall F1 Score
AlexNet 0.950 0.640 0.271 0.357
VGG-16 0.958 0.696 0.391 0.474

ResNet-34 0.966 0.700 0.674 0.683

Table 3. Training ResNet-34 model at 512 pixels resolution

Train Accuracy  Precision Recall F1 Score Mean loU Building
Head 0.974 0.803 0.708 0.751 0.592
Fine-tuning 0.975 0.804 0.720 0.758 0.609

Table 4. Training ResNet-34 model at 1,024 pixels resolution

Train Accuracy  Precision Recall F1 Score Mean loU Building
Head 0.978 0.789 0.681 0.719 0.667
Fine-tuning 0.978 0.791 0.676 0.717 0.669

Figure 5 presents a sample of our ground truth pixel values, while Figure 6 presents the predictions.
The performances of the trained model on the validation set are measured by loU [14], specifically the loU
building. Table 5 (512 pixels) and Table 6 (1,024 pixels) depict the segmentation results and loU values of the

Int J Artif Intell, Vol. 12, No. 2, June 2023: 552-559
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validation set from ten disasters. Image segmentation of hurricane-matthew gives the least value while the one

of guatemala-volcano surprisingly displays a good result considering the size of its dataset which is the least.

Label:

Building

Figure 5. The ground truth pixel values of one
sample in the validation set. The image size is
1,024x1,024 pixels (in the x and y-axis directions)

true_imsegment

Table 5. loU of disasters at 512 pixels resolution

Label:

Building

pred_imsegment

x-pixel

Figure 6. The predicted pixel values of the sample.
The image size is 1,024x1,024 pixels (in the x and y-
axix directions)

loU segmentation at 512 pixels per disaster

Disaster Training Head Fine Tuning
loU ground loU building loU ground loU building
guatemala-volcano 0.992716 0.516159 0.992850 0.528130
hurricane-florence 0.996835 0.651713 0.996637 0.666267
hurricane-harvey 0.976307 0.672333 0.975674 0.688640
hurricane-matthew 0.993617 0.276589 0.993091 0.314112
hurricane-michael 0.986097 0.675072 0.985711 0.689483
mexico-earthquake 0.905966 0.671344 0.902866 0.687535
midwest- 0.994258 0.640343 0.994310 0.656130
palu-tsunami 0.953890 0.700680 0.947037 0.729558
santa-rosa-wildfire 0.986534 0.623966 0.986657 0.638125
socal-fire 0.996651 0.532794 0.996702 0.541918

Table 6. loU of disasters at 1,024 pixels resolution

loU segmentation at 512 pixels per disaster

Disaster Training Head Fine Tuning
loU ground loU building loU ground loU building
guatemala-volcano 0.995799 0.582504 0.995598 0.577696
hurricane-florence 0.997853 0.744014 0.997796 0.749505
hurricane-harvey 0.978948 0.734031 0.979413 0.731891
hurricane-matthew 0.994308 0.364812 0.994263 0.375385
hurricane-michael 0.988052 0.742830 0.987936 0.742655
mexico-earthquake 0.914349 0.705674 0.916219 0.700831
midwest- 0.996147 0.726253 0.996176 0.726788
palu-tsunami 0.957746 0.742502 0.958971 0.744839
santa-rosa-wildfire 0.989383 0.708836 0.989252 0.700055
socal-fire 0.997107 0.611816 0.997081 0.614974

4. CONCLUSION

This research delves into satellite image segmentation using a U-Net architecture with convolutional
bases such as AlexNet, VGG-16, and ResNet-34. The final model is ResNet-34 with an accuracy of
0.9784009, precision of 0.789098, recall of 0.681466, and F1-score of 0.719300 when the head of the model is
trained. The mean of the loU is 0.667237, and this number is similar to the loU of our baseline as reported in
the initial xBD dataset exploration. However, our research utilizes a smaller dataset, which is only the first
tier compared to the baseline. Moreover, our architecture is simpler than the one of the baseline, that is
ResNet-34. We also trained the model in 4 days compared to the baseline which is in 7 days. These
advantages can be achieved because of the transfer learning approach. For future directions, we believe that
our proposed method can be beneficial to improve the training efficiency in deep learning. It is strongly
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recommended to cooperate with satellite image experts to obtain in-depth interpretation and information.
Furthermore, a greater number of images should also give better performances at detecting buildings from
satellite images. Consequently, models can be improved to detect levels of damage to buildings after
successful segmentation.
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