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Abstract

Automated question generation is a task to generate questions from structured
or unstructured data. The increasing popularity of online learning in recent
years has given momentum to automated question generation in education field
for facilitating learning process, learning material retrieval, and computer-based
testing. This paper report on the development of question generation framework
based on key-phrase method for online learning with a constraint that the
generated questions should comply with the learning outcomes and skills from
Bloom’s Taxonomy. The proposed method was tested using learning materials
of Software Engineering course for undergraduate level written in Bahasa
Indonesia obtained from Bina Nusantara’s (Binus’s) Online Learning repository.
Using one-semester lecture material, this study generated 92,608 essay-type
questions from 6-level Bloom’s Taxonomy which were further sampled ran-
domly to obtain 120 question samples for method evaluation. Performance
evaluation using average Bilingual Evaluation Understudy (BLEU) involving
five independent reviewers toward samples of these questions achieved 0.921
and 0.6 Cohen’s Kappa. The relevance of Bloom’s Taxonomy level of the
generated questions was evaluated by means of classification model with 0.99
accuracy. The results indicate that not only are the generated questions well
understood and agreed by the reviewers, they are also relevant to the expected
Bloom’s Taxonomy level there for the questions can be delivered to students in
the respected course delivery and evaluation.

Keywords Bloom’s taxonomy - Context-free grammar - Keyphrase extraction - Question
generation - Question template
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1 Introduction

Question generation (QG) is a task to generate question from structured or unstructured
data. This task is an interesting Natural Language Processing problem with wide
potential applications in many domains. In education field, for instance, QG plays
some important roles in learning process and computer-based testing (Herranen and
Aksela 2019). In learning process, question generation can be used to assist students in
an assisted learning system with their comprehension on learning material. By means of
assisted learning system, students learn to respond to the system generated questions
about facts and ideas related to the topics being studied.

In the recent years, research on question generation in education field has
grown rapidly due to the availability of large scale training dataset, the advent
of deep learning, and the development of GPU-based computing technology.
The research topic range from enhancing theoretical aspect of question gener-
ation to improving the varieties of question generating approaches and methods
(Al-Yahya 2011; Lindberg and Sc 2013; Lindberg and Sc 2013; Duan et al.
2017; Rodrigues 2017; Ye and Wang 2018; Elsahar et al. 2018; Huang et al.
2018), Automatic QG system in education is adapted from general QG with an
additional constraint: the generated questions should comply with learning
objectives and skills that educators set for their students in particular topic.
The learning objectives of a particular course are commonly set base on
Bloom’s Taxonomy (Gleason 2018; Quintana and Tan 2019).

So far many QG studies have used general datasets that are not learning content and
produce factual or shallow questions, whereas education and learning require in-depth
questions that are following Bloom’s taxonomy. Research opportunities in the QG field
are still open (Heilman et al. 2011; Adamson et al. 2013; Jouault et al. 2016). The
limitation of this research is that the questions generated by QG are only for lecture
material that is more theoretical, but not for materials that use numbers and calculations,
schemes, or program code such as mathematics, theoretical computer science, systems
programming, etc.

One of the topics which attracts the attention of researchers is how to efficiently
generate questions which comply with higher-level learning objectives and skills.
According to (Willis et al. 2019), the main research challenge is how to generate
questions to support effective teaching especially to promote critical thinking, retention,
and context involvement.

Adressing this problem (Singh et al. 2017) suggest a method to generate question
based-on noun phrases. The method comprises two stages. The first is extracting key-
phrases from input texts. The second is generating questions based on the extracted
key-phrase. The key-phrase based methods is potensial because they have ability to
capture the context of the syntax and semantics of the input text. However, this method
is not practical for real input text as it is not scalable to be applied for large volume of
input text.

Several attempts to overcome the problem of key-phrase extraction have been
proposed by (Meng et al. 2017) who proposed a question generation method based
on a generative encoder-decoder model. Another method was proposed by (Yang et al.
2017) which produces key-phrases based on the semantic meaning of texts, and the
question generation method use tags and linguistic rules.
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One prominent QG method is construction model proposed by (Subramanian et al.
2018). The proposed model uses the probability of word order in the document as key-
phrases which then acts as a target for the construction of question generation.

Although many studies on question generating for education purposes have been
conducted, to the best of our knowledge, there are only few reports on keyphrase-based
method which uses several levels of Bloom’s taxonomy as constraint in generating
questions. Therefore, the objective of this study is to propose a method that generates
questions based on key-phrase which embed Bloom’s taxonomic in selecting contexts
for constructing questions.

Research questions that need to be analyzed with various reference methods such as
information extraction, template-based questions, semantic roles, and evaluating the
Question Generation method use various metrics to measure the performance of the text
generation model to find solutions to research problems, namely:

1) How to identify KeyPhrase to find hidden information in semi-unstructured
documents.

2) How to extract Context and Phrase from a text document to design Bloom’s
Taxonomy based questions.

2 Related work

A prominent definition of question generation was proposed by (Rus et al. 2008)
Question generation is defined as the automatic generation of questions from inputs
such as text, raw data, and knowledge bases. The generated questions can be in such
form as factual-type, Yes/No-type, or why-type questions.

Another definition is proposed by (Yao et al. 2012). Question generation is defined
as the task of generating reasonable questions from various input data such as text,
database, or semantic representation. Further, (Yao et al. 2012; Nema et al. 2019)
defined question generation as a system to generate rational questions from structured
or unstructured data.

According to (Graesser et al. 2009; Heilman and Smith 2010; and Jouault et al.
2016; Kumar et al. 2018), various question generating systems can be categorized
broadly into several categories namely:

1) Shallow question generating: QG systems designed to generate fact questions. For
example question about: “who”, “what”, “where”, “which one”, “how many”, and
“yes/no answer”. Despite the simplicity, these questions do not support deep
learning and discussions (Adamson et al. 2013).

2) Deep question generating: QG systems designed to generate questions that need
logical thinking to answer. For examples, questions which begin with “why”,

“why not”, what if”, “what if not”, and “how”

A study by (Jouault et al. 2016; Divate and Salgaonkar 2017) concluded that there is a
potential gap between the knowledge of QG system and that of human experts used to
generate questions based on input text. This becomes an issue when some human
experts were asked to evaluate questions generated by a QG system. While a QG
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system only generates questions base on explisit representation of information from the
input text, human experts can generate questions might have deep knowledge not
written in the text input. To address this issue, (Jouault et al. 2016) proposed a scheme
to be used by human experts to evaluate deep generated questions produced by a QG
system (see Table 1).

QG approach for general applications that exploits features extracted from input text
has gained wide research interests resulting in a vast number of methods. A study by
(Han et al. 2018) proposed topic phrase extraction method based on features provided
from the input text as a basis for question generation. A method proposed (Chao and Li
2018; Kurdi et al. 2019). refined the previous method by adding contextual information
to the extracted topic phrase. (Li et al., 2019) showed some evidences that context helps
improving performance of question generation.

Topic extraction is also used by (Xie et al. 2017) to set the subject and predicate in
the generated questions. (Tong et al. 2019) proposed a method that uses a word and
expands the word with the context structure of the word context in the input text.

In the area of QG for education, (Diab and Sartawi 2017) proposed a method that
uses the semantic relationship between verbs in the generated questions and learning
outcomes to evaluate compliance of a generated questions with a particular Bloom’s
taxonomy levels. Another study results reported by (Yang et al. 2017) proposed tags
and linguistic rules to extract features as a basis for generating questions.

A study by (Emu et al. 2017) proposed a method base on structure of phrases
extracting important features in the TF x IDF document representation matrix. A
similar method using embedding key phrases to extract unique key phrases from
scientific articles and ranking key phrases using PageRank was proposed by (Mandal
et al. 2018).

The advent of deep learning algorithms has motivated many researchers to use the
algorithm for QG. A recent research used deep learning model to study end-to-end

Table. 1 Deep question evaluation scheme

Question category Evaluation criteria

Cl: Remembering

Questions
asking facts.

C2: Comprehension

Questions
asking causal
relations.

C3: Application Questions are more complex than C2 but does not require complete integrated knowledge
like C4. It requires an understanding of the topic of the questions and its context.

C4: Analysis Questions requiring integrated knowedge of the topic as a whole. It requires knowledge of
the topic of the questions as well as a general understanding of the main topic important
events and theor context.

CS5: Evaluation  Questions requiring a deep thinking. It requires having understanding of global history and
the relations between the topic and other historical topics.

Source: (Jouault et al. 2016; Bloom 1956)
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nerves to produce pairs of questions and answers through context paragraph input
(Willis et al. 2019).

A study by (Gan and Yu 2018) concluded that QG is not merely the syntactical
problem but more to relation between syntac-semantic. The author argue that machine-
learning based methods produce low accuracy due to its limitation to capture phrase
structure, scope of syllabus, difficulty level, and cognitive level as guided by Bloom’s
taxonomy (Kale and Kiwelekar 2013).

3 Research method
3.1 Research framework

The research framework of this study is shown in Fig. 1. The research framework
consist of: (i) translating text document to English, (ii) Phrase extraction using Context-
free grammar, (iii) Question generation, and (iv) Generating question evaluation using
human experts.

3.2 Dataset

The source of dataset for this study is Binus Online Learning repository. The
input dataset comprises course syllabus, lecture materials, case study materials,
student-lecturer discussion forum log, and student grade database for software
engineering course for undergraduate program. The input textual dataset con-
tains 127,299 characters, 19,673 words, 1347 sentences, and 225 paragraphs.

3.3 Topic extraction

Every sentence should contain a topic that reflect the semantic meaning of the sentence.
The topic of a sentence is typically an object or a noun phrase. Hence, topic detection in
this study is implemented by tokenization to extract noun phrases as key-phrase of a
sentence. The candidates noun phrases are then used as the object of the questions
combined with verbs derived from Bloom’s taxonomy.

TopicModelling QuestionTemplate

Bloom
Taxonomy

DOC - TEXT
INDONESIA

Text Document

Translation |0 EN —|

Phrase Detection

[t R ——

DOC - TEXT
ENGLISH

— ./ Referenced
Questions

base on Phrase
Pattern

Question
Evaluation

Question
Template 1D

BLEUscore, Cohen’s Kappa <J

Fig. 1 Research framework

Template-base
Question Generating

KeyPhrase

Text Document
Translation EN, 1D

Question
Template EN
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3.4 Key-phrase selection

Key-phrases can be viewed as high-level representation of a text document.
They have been widely used as input for several document analysis and
modeling such as document summarization, clustering, and topic analysis.
Automatic keyphrase extraction, however, is a challenging task to capture the
main topics of documents. Some prominent studies proposed various methods
from text mining field including indexing, clustering, and summarisation.

A study by (Mikolov et al. 2013), for example, proposed a method based on
probability of the two-word sequence which is measured as follows:

count(w; w; )=6

score(wi,w; ) = count(w; ) x count( w; )

(1)

where: count(w;, w; ) is the number of a sequence of word w; followed by w;,
count(w;) the number of word w;, count(w;) the number of word w; in the input
document, and & is a constant to prevent too many phrases formed by some
less frequent words.

Another method is proposed by (Turney 2003) which treated the problem as
a classification task. In the proposed method, the author proposed Naive Bayes
model as the key-phrase classifier. The proposed method comprises three steps.

1) Document pre-processing: deleting stop words, deleting non-alpha-numerics, sep-
arating text into phrases, and stemming phrases.

2) Extracting the TF xIDF score from all sample phrases. This score is a
standard metric in information retrieval to measure how specific the P
phrase in document D formulated as:

TF x IDF (P, D) = Pr[phin D is P] x (—logPr[P in a doc])

(2)

where, Pr{ph in D is P] is the probability of the phrase P contained in document D, and
logPr[P in a doc] is the document in corpus containing P (excluding D).

3) Calculating the distance of each sample phrase from the beginning of the
corresponding document. The distance is calculated as the number of words
preceding the first appearance, divided by the number of words in the
document. The resulting feature is a number between 0 and 1 that repre-
sents the proportion of documents before the first appearance of the phrase.
In this method the attribute, TF x IDF and the distance between phrases are
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assumed to be independent because the 7F x IDF phrase is discrete with a
T value and the distance is D. Then, the probability of a unique phrase is:

Pr[T|key] x Pr|Dl|key] x Prlkey]
Pr{T, D]

Prikey|T,D] = 3)

Where Pr{7] key] is the probability that a Keyphrase has a TF x IDF with score T,
Pr[D| key] the probability that it has a distance D. Pr{T] key] is the probability a priori
that the phrase is Keyphrase, and Pr{7, D] is the normalization factor, so that the value
of Prlkey| T, D] is between zero and one.

Figure 2 shows the relationship between phrases and the sentences containing the
phrases. Each phrase is identified using a postag to determine the phrase category as
nouns (NN), adjective (JJ) or verb (VB). Phrases that have been marked with a postag
become key phrase and will determine the types of question. Key-phrases of the type
NN will become context questions with operational verbs with correspond to Bloom’s
taxonomic levels.

If both noun-phrase and adjective phrase are found in a sentence, then both of them
will be used to form a question. However, if there is only one adjective key phrase, the
noun phrase from the previous sentence will be used to form a question.

3.5 Question template construction

Context-Free Grammar (CFG) is a class of formal grammar defined as a quadruple
G=(V, X, P,S), where: V is a set of non-terminal symbols. X' is a set of terminal
symbols such that VN X'=; P is a set of rules in a form of P: V— (Vu X)* and S is
a start symbol (Hopcroft et al. 2001). In formal language, CFG rules can be seen as a set

SENTENCE

Software Engineering is a branch of science that focuses on theories, methads or
supporting fools that develop software professionally.

[('maintenance’, 'NN'), ('stage', 'NN')]

[(‘'requirements’, 'NNS'), (‘analysis', 'NN')]

POSTAG

[(‘'software, 'NN'), (‘engineering', 'NN')]

P stage from req analysis, planning, design,

software creation, to mai the atthe stage take up the largest portion. ~ [('software’, 'NN'), (‘creation’, ‘NN')]
[('software’, 'NN'), (‘development’, 'NN'), (‘stage’, 'NN')]
i e 1 [('life’, 'NN'), (‘cycle’, 'NN'), (‘model’, 'NN')]
Some people consider thejlife cycle model fo be fora category pf 00N ((coftware’, NN, (‘development’, "NN'), (‘processes’, 'NNS')]
software~deyelopment processes to refer to the proeéss chosen by an organization.

[('specific', '1)'), (‘category’, 'NN')]

The software development methodology also known as the HR framework does not appear untiL

Accordingto Elliotts, the life cycle of SDLCsystem development can be considered as
the oldest formal methodological framework for building information systems.

0sSe (hal can b used directly by
to llexmle ameworks that lhe o produce
aseries nf tailoreq to the needs gf
It should be noted that since DSOM game ogie

become, but mayfy org amlalmna especially the government,
stilluse afpre-agile process|thatis often a waterfall o similer.

The development team can also approve the programming environment, such as which integrated
development environment is used, ond one or more dominant progromming paradigms, programming style rule:

or choice of software libraries orfsoftware frameworks.

Software design can refer to all activitiesinvotvetin conceptualizing, framing implementing, commissioning, and Vmally
modifyingsystems or|complex activitieq that follow the req and befor

[('software', 'NN'), (‘development’, 'NN'), ('methodology’, 'NN')]
[(‘formal',"))"), (‘methodological’, '))'), (‘framework', ‘NN')]
[(‘information’, 'NN'), (‘'systems', 'NNS')]

[('system", (‘development’, 'NN')]

,  [(information’, 'NN'), ('systems', 'NNS')]

[('initial', '))"), ('idea’, 'NN')]
[('methodical’, 'J))'), (‘'manner’, 'NN')]
[(‘organization', 'NN'), ('uses', 'NNS')]
[(‘organizational’, '))'), (‘inactivity’, 'NN')]
[('proscriptive’, 1)), ('steps', 'NNS')]
[(‘specific', '))'), (‘'steps', 'NNS')]

[(‘agile', 'NN'), ('methodologies’, 'NNS')]
[(‘'pre-agile’, '))'), (‘process’, 'NN')]
[(‘development’, 'NN'), (‘environment', 'NN')]
[(‘development’, 'NN'), (‘team’, 'NN')]
[(‘'software', 'NN'), ('frameworks', 'NNS')]
[(‘'software, 'NN'), ('libraries', 'NNS')]
[("‘complex’, '))'), (‘activities', 'NNS')]

Fig. 2 Sentence Key-phrase PostTag

[(requi ) 'NNS'), (" ', 'NNS'))
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of written recursive rules that are used to produce strings based on specified patterns.
Therefore, CFG is the basis for the syntax of programming languages that provide
efficient algorithms and parsing in programming languages, such as: files and data flow
(Moraes et al. 2018).

In this study, CFG is used to develop question templates based on the structure of
operational phrases and verbs in the Bloom’s taxonomy. In this study, Structure of the
question is constructed using the verb Bloom’s Taxonomy and is paired with two
adjacent key-phrases from the sentence in the document. The assumptions as follows:

1. Noun-phrases in general have a unique meaning or have a clear context,
2. Adjective can not stand alone; it is an explanation of a noun-phrase.

3.6 The construction of questions uses context (noun-phrase), topic (key-phrase),
Bloom’s taxonomy

A set of Question Templates is constructed using the following steps. The first step is,
selecting key phrases in the form of noun (NN) and adjective (JJ). Adjective key-
phrases are paired with noun-phrases from the previous phase. Then, the questions are
formed automatically with key-phrases parsed into the procedure for making template
questions (Fig. 4).

Based on the question construction in Fig. 3, the number of questions generated
from the Question Generation algorithm execution is determined by the number of key-
phrases found from the input document. The results of experiments on the questions
generated, showed that on average there are 2 key-phrases consisting of 1 to 3 words,
and an average sentence length of 140 words. Finally, the automated phrase-based
question construction algorithm generated more than 92,608 questions classified in 6
Bloom taxonomic levels (see Table 2).

CONTEXT TOPIC : KEYFHRASE QUESTION BLOOM TAXONOMY
What ?
the
Grve your i
What IKBW ideas show organizatonal lmuﬁr\l\’oﬂmﬂn}‘l lﬂm’
. Vit bty o compleacintes o s famenrs
Gve
B r»
b
complex mmu Give remember '
[ How weuld et ' Kaontedge
software frameworks | Hike 3 cenai o intial s it fermstonsystems?1
1w you '
Give Evatuation
‘ ::uumm«nmwn«mh softwar elw-wb
‘Whst meaat by Software framaworia? s
o tion hon 1o dentidy the nforma 2
information systems intial idea o oo plasate b & Weatly tha Jaormution mytenet s Creation

e o s s bloneao o s vt
N«mﬂmmm‘ e i psiene s gy o soowars ameworks? .mm.‘

Wh-uhnl—qﬂl mxmxm-\mm.n-yum

agle Mwwn‘ s
Ibﬂwvnldywnqwm u.guemw»m i organiaton uesT Application
jow do you decenstruct information qum’

organization uses.

organization uses ‘
Creste s new et

seftware development methedalogy o woukd You 1308 Sgenterganzaton ks Taskyile

e et e o
Cotect 01 ln«mugh axtiudnogis o crplzaton uses?!

Give ¥
What ideas for valdating sgie methodsiogies in organzation Uses? |
Gather evidence to support organization uses? |

Grve pment methodology? !
Give an explanation how to present the organization uses? |
Tassi '

Give avoid the

Gve cpment your own words! ¢
Grve an explanation how o change software development methodalogy? !
PN s

Gve

Fig. 3 Question template construction
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Table 2 Output from question template algorithm

No ID Quest KEY-Phrase

Question Generating

BLOOM Level

1

19

20

21

22

23

24

20 04

3011

40 01

50 06

60_08

20 06

30 04

40 05

50 12

50 07

60_02

1003

30 10

60_07

50 12

40 01

40 08

20 07

30 05

40 06

50 12

40 11

10_08

60_01

software
engineering
software
engineering
software
engineering
software
engineering
software
engineering
software
engineering
software
engineering
software
engineering
software
engineering

important part

special
attention
state
expenditures
state
expenditures
state
expenditures
state
expenditures
state
expenditures
significant
portion
software
development
software
development
software
development
software
development
overall
development

software
development

What can observe about software engineering?
What information is useful for software engineering?
How to sort the parts software engineering?

What changes to software engineering as
recommendation?

Determine the formula to solve the problem of software
engineering!

What is the significant impact of software engineering?
How to modify software engineering?

Find a number of ways to problem-solving of software
engineering!

How to overcome software engineering weaknesses?

How to handle important part in Software
Re-engineering?

What must change to revise special attention in software
engineering?

How to identify the state expenditures?

What are the instructions for state expenditures?

Develop a proposal that would produce state
expenditures!

How to overcome state expenditures weaknesses?

How to sort the parts state expenditures?

What was the underlying problem with significant portion
in state expenditures?

What software development are most popular?

Base on experience implement for the development of
software development?

What are some of the problems of software development?

How to overcome software development weaknesses?

‘What we must know about overall development in
software development?

How to indicate a software development?

What alternative to suggest for software development?

Comprehension
Application
Analysis
Evaluation
Creation
Comprehension
Application
Analysis
Evaluation
Evaluation
Creation
Knowledge
Application
Creation
Evaluation
Analysis
Analysis
Comprehension
Application
Analysis
Evaluation
Analysis
Knowledge

Creation
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Table 2 (continued)

No ID Quest KEY-Phrase Question Generating BLOOM Level
software

development

25 20 02 requirements How to express requirements analysis? Comprehension
analysis

26 30 02 requirements ~ How to present requirements analysis? Application
analysis

27 40 02 requirements What do you infer about requirements analysis? Analysis
analysis

28 50 05 requirements How to effectively is requirements analysis? Evaluation
analysis

29 60 04 requirements ~ What can invent requirements analysis? Creation
analysis

30 20 06 software What is the significant impact of software creation? Comprehension
creation

4 Model performance evaluation
4.1 Quality evaluation of the generated questions

This evaluation stage aims to evaluate the quality of the generated questions compared
to the manually generated questions (reference questions) by human experts. In this
study, this evaluation step involve five human independent reviewers who have
competence in the field of study or discussion materials used as questions. Each
reviewer independently evaluated a number of generated question samples. The mea-
surement used BLEU score and Cohen’s Kappa metrics.

4.2 Evaluating the effect of context on question quality

This evaluation step aims to evaluate the effect of context on the generated question
quality using statistical test. The hypotheses to be tested are: (i) significant of mean
BLEU test from questions without context, (ii) significant of mean BLEU test from
questions with context, and (iii) significant difference of mean BLEU test from
questions with context and without context.

In this study, the design of this performance evaluation is implemented as follows:

1) The tested questions are those generated by the system using question template
represented by context-free grammar rules and each input text document is
represented by N-gram.

2) BLEU score is computed based on system generated question and referenced
question constructed manually by each reviewer.

3) The number of independent reviewer is 5. Each reviewer understands the course
materials.

4) The number of question samples is 120 chosen randomly from the total of 92,608
generated questions
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4.3 Evaluation the predicted Bloom’s taxonomy of the generated questions

This test aims to evaluate how good the proposed key-phrase based model is in
generating questions that comply with Bloom’s taxonomy levels. This task is
viewed as a classification problem using input data as a labeled data set S = {x;
,¥;i}] where x;€ X is a representation of question, y;€Y is Bloom’s taxonomy
level of a questions, X and Y are domain of question representation and
question label respectively, and »n is the number of sample data. It is assumed
that there is a mapping F: X— Y.

A classification model based on machine learning G is trained using supervised
learning technique to approximate F so that a new question is generated? ¢ then its
Bloom’s taxonomy level can be predicted as:

G(q) = F(q)

Performance of the trained classification model is measured using accuracy, precision,

and recall metrics.
START

/ Text Document // Verb - Bloom’s /

Key-Phrase
Detection

A

POS-TAG

Find Context

Y

Question
Construction

}
/ Question Sentence /

STOP

Fig. 4 Question construction process flow
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5 Research result and discussion
5.1 Evaluation of the generated question quality

The average BLEUscore obtained from questions The score is 0.921 context
seems higher than questions without context 0.861. This shows that the Ques-
tion Generation Algorithm is able to generate questions using words that
resemble the questions compiled by reviewers when making similar questions.
(see Table 3).

The Cohen’s Kappa score of questions using the 0.627 context seems smaller
than the questions without the 0.760 context. However, both of these scores are
in the good category, which means that the reviewers have a good agreement in
capturing the context of the question.

The measurements of BLEUscore and Cohen’s Kappa involve human re-
viewers who have competence in the field of study or discussion material used
as questions.

5.2 Evaluating the effect of context to question quality

The statistical testing evaluation the following results:
Test #1:

H() ZBWOC = O,Hl :Bwoc > 07

With number of samples (r) = 5, mean of BLEU score without context (FW{,C) = 0.86,
standard deviation (s,,,c) = 0.03,

Z = % = 64.10 > 1.96 (a= 0.10).

Conclusion: mean of BLEU score without context is not equal to 0.
Test #2:

Hg : By =0,

Hi : By >0,

With number of samples (7)=5, mean of BLEU score with context (Ewc) =0.92,
standard deviation (s,,c) = 0.03,

7 =B _—68.57>1.96 (a = 0.10).

Swe/v/n
Conclusion: mean of BLEU score with context is not equal to 0.
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Test #2:

Hy : Ewc_gwoc = 07

Hl : Ewciﬁwuc > Oa

With number of samples (1) = 5, mean of BLEU score without context (B,,,c) = 0.86,
BLEU score with context (Bi.) = 0.92, s,,c = Syc=0.03,

7= BuBuc  _316>1.96 (a = 0.10).

2 g2
swe? | SwoC
n

Conclusion: mean of BLEU score with context is higher than that without the
context.

5.3 Evaluation the predicted Bloom’s taxonomy of the generated questions

The following model are trained using 74,881 (80% of the whole generated questions
as input dataset) as training dataset and 18,721 samples (20% of the input dataset) as
testing dataset. Performances of several classification models are summarized into the
following table Table 4.

6 Conclusions and future work

Question generation in the online learning field is a task to generate questions which are
relevant to the text input documents and Bloom’s Taxonomy of the expected learning
output. This task remains a challenging problem.

The main challenges are as follows: (i) there exists a potential gap between the
knowledge that question generation system and human experts use to generate ques-
tions based on input text, and (ii) the generated questions are expected to promote
critical thinking, retention, and context involvement of the students.

This study proposes a question generation model based on key-phrase extracted
from text input documents through syntactic parsing using predefined context-free
grammar rules. The proposed model was tested using learning materials from Bina

Table 4 Testing performance of classifier model

Model Acc. Prec. Recall Fl1

Decision Tree 1.00 1.00 0.99 0.99
Random Forest 0.99 0.99 0.99 0.99
Gradient Boosting 0.99 0.99 0.99 0.99

As can be seen from the above table, the proposed key-phrase model can generate questions with strong
relevance to Bloom’s taxonomy
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Nusantara University’s Online Repository that generates 92,608 essay-type questions
from 6-level Bloom’s Taxonomy.

Performance evaluation using average Bilingual Evaluation Understudy (BLEU)
involving five independent reviewers toward samples of these questions achieved
0.921 and 0.6 Cohen’s Kappa. The relevance of Bloom’s Taxonomy level of the
generated questions is evaluated by means of classification model with 0.99 accuracy.
These results indicate not only were that the generated questions well understood and
agreed by the reviewers they were also relevant to the expected Bloom’s Taxonomy
level so that the questions can be delivered to students in the respected course delivery
and evaluation. Generated questions have been tested in the software engineering
course and are proven (1) to assist teachers in guiding asincronous learning, namely
online discussions, (2) to assist teachers in providing learning practice questions.

In future work, we plan to investigate a method of extracting answers from corpus
text based on machine-generated questions. We also plan to investigate the perfor-
mance of a questioner model with a variety of Encoder-Decoder to extract answers to
questions.
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