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Abstract

Background: Dementia is a neurocognitive disorder associated with the aging brain and mainly
affects the hippocampus and cerebral cortex. The Hippo signaling pathway and autophagy
proteins have been found to be perturbed in the brain affected by dementia processes.

Objective: This systematic review aims to elaborate on the involvement of the Hippo signaling
pathway and autophagy in modulating the progression and severity of dementia in aging.

Methods: Searches were conducted on MEDLINE, Google Scholar, Scopus, and Web of Science
databases.

Results: The Hippo signaling pathway is dependent upon the transcriptional co-activator
YAP/TAZ, which forms complexes with TEAD in the nucleus in order to maintain cell
homeostasis. When the expression YAP/TAZ is reduced, transcriptional repression-induced
atypical cell death, ballooning cell death, and necrosis will consequently occur in the neurons.
Moreover, the autophagic proteins, such as LC3, ATG proteins, and Beclin, are reduced,
resulting in the disruption of autophagosome formation and accumulation and the spread of
misfolded proteins in the brain suffering from dementia.

Conclusion: The impairment of the Hippo signaling pathway and autophagy in the dementia
process in aging should be considered since it might predict the severity, treatment, and
prevention of dementia.
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 Abstract: Background: Dementia is a neurocognitive disorder associated with the aging brain and 
mainly affects the hippocampus and cerebral cortex. The Hippo signaling pathway and autophagy 
proteins have been found to be perturbed in the brain affected by dementia processes.  

Objective: This systematic review aims to elaborate on the involvement of the Hippo signaling 
pathway and autophagy in modulating the progression and severity of dementia in aging.  

Methods: Searches were conducted on MEDLINE, Google Scholar, Scopus, and Web of Science 
databases.  

Results: The Hippo signaling pathway is dependent upon the transcriptional co-activator 
YAP/TAZ, which forms complexes with TEAD in the nucleus in order to maintain cell homeosta-
sis. When the expression YAP/TAZ is reduced, transcriptional repression-induced atypical cell 
death, ballooning cell death, and necrosis will consequently occur in the neurons. Moreover, the 
autophagic proteins, such as LC3, ATG proteins, and Beclin, are reduced, resulting in the disruption 
of autophagosome formation and accumulation and the spread of misfolded proteins in the brain 
suffering from dementia.  

Conclusion: The impairment of the Hippo signaling pathway and autophagy in the dementia pro-
cess in aging should be considered since it might predict the severity, treatment, and prevention of 
dementia.  
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1. INTRODUCTION 

 Dementia is a term that refers to a group of neurocogni-
tive disorders marked by gradual memory impairment and  
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cognitive and motor deterioration. It is mainly a form of neu-
rodegeneration that typically occurs during and is associated 
with aging [1, 2]. However, the dementia process is not the 
norm and does not occur in all aging processes. The loss of 
executive and memory function and attention, the reduction 
of grey and white matter volume, and other alterations of 
activity level in the brain occur in normal aging, but more 
gradually [3]. The progression of dementia accelerates in 
some populations with various risk factors, such as cardio-
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vascular diseases. According to the CDC, African Americans 
and Hispanics have the highest prevalence of dementia 
among other races or ethnic groups. Alarmingly, the future 
generations of these groups are predicted to have a threefold 
increase in risks of dementia in their old age [4].  
 Moreover, the dementia progression in aging is accelerated 
in certain diseases, such as Alzheimer’s disease, vascular de-
mentia, or Lewy body disease. These diseases affect parts of the 
brain, albeit manifested in different types and levels of protein 
changes and gene expression belonging to similar pathways [5, 
6]. Consequently, the hippocampus and cerebral cortex, the 
crucial structures in learning and memory functions, are dam-
aged morphologically and functionally in dementia [2, 7]. 
 The alteration and inactivation of the Hippo signaling 
pathway in the hippocampus and cerebral cortex have been 
causally linked to dementia-causing diseases. The reduction 
of Hippo signaling effectors proteins in the hippocampus and 
cerebral cortex is associated with the progression and severity 
of dementia [8, 9]. The Hippo signaling pathway modulates 
cell growth and death. It has been identified in Drosophila 
melanogaster and mammals [10]. Yes-Association Protein 
(YAP) and the transcriptional co-activator with PDZ-binding 
motif (TAZ) are essential components of the Hippo pathway. 
In Drosophila, YAP/TAZ or Yorkie binds to the TEA domain 
family member 1 (TEAD) transcription factor to regulate cell 
survival and death. Increased TEAD activity mediated by 
YAP is linked to cell proliferation and differentiation. An in-
crease in p73 activity and a decrease in TEAD activity, on the 
other hand, promoted apoptosis and necrosis [10, 11]. 
 The modulation of the Hippo pathway by amyloid pre-
cursor protein (APP) and amyloid β peptides has been stud-
ied. In agreement with the study by Tanaka et al., intracellu-
lar amyloid β (Aβ) accumulation removes YAP from the 
nucleus in Alzheimer’s disease. Reduced levels of nuclear 
YAP due to activation of the Hippo pathway in cortical neu-
rons stimulate Hippo pathway-dependent necrosis and accu-
mulation of the inflammatory cytokines [9, 11-13]. There-
fore, the Hippo signaling pathway appears to be induced by 
Aβ accumulation in the hippocampus, which promotes neu-
ronal cell death and triggers neurodegeneration [14].  
 Proteins, such as amyloid β peptides and tau, accumulate 
in the brain and cause the simultaneous occurrence of micro-
glia activation and neuronal damage. The activation of mi-
croglia is initiated by the senescence-associated secretory 
cytokines and chemokines, such as IFNγ, IL-6, and IL-8, 
produced by astrocytes that undergo senescence [15, 16]. Aβ 
accumulation has also been associated with the occurrence of 
fewer neurons and more microglia [14, 17]. In the hippo-
campus, the accumulation of Aβ can cause aberrant mito-
chondrial dynamics and biogenesis defects [18]. 
 According to the research conducted by Chen et al. and 
Manczak et al., autophagy and mitophagy also play a signifi-
cant role in the progression of dementia. The expression of 
the autophagy-associated genes, such as ATG5, Beclin1, and 
LC3, and mitophagy genes BNIP3L, PINK1, and BCL2, in-
creases in the early onset of Alzheimer’s disease but de-
creases in the late onset of disease. The dysregulation of au-
tophagy genes will reduce misfolded protein degradation and 
consequently promote the accumulation of those proteins, 

thus increasing the severity of neurodegeneration and de-
mentia [17-19]. 
 The Hippo signaling pathway proteins, YAP/TAZ, play a 
role in regulating the autophagic flux by controlling the au-
tophagosome and autolysosome. In addition, the autophagic 
flux maintains the homeostasis of cell proliferation and death 
by keeping YAP/TAZ at a constant level to prevent them 
from overpromoting nuclear cell growth [20]. When the 
Hippo signaling pathway is activated by external stimuli and 
the co-activator protein YAP/TAZ expression is reduced, the 
dysregulation of the formation and maturation of intracellu-
lar autophagosome and autolysosome occurs. This dysregu-
lation will result in the failure of ‘recycling’ misfolded or 
damaged proteins and organelles, and consequently, untime-
ly cell death occurs [11, 14]. To our knowledge, there is no 
systematic review exploring the relationship between the 
Hippo signaling pathway and autophagy in neurodegenera-
tion and neuronal death in terms of the progression of de-
mentia. Thus, the present review attempted to discuss the 
involvement of the Hippo signaling pathway and autophagy 
in modulating the progression and severity of dementia in 
aging. 

2. MATERIALS AND METHODS 

 The systematic review was conducted by searching the 
MEDLINE database, Scopus, Google Scholar, and Web of 
Science in August 2021. The guiding question was as fol-
lows: Are the Hippo pathway and autophagy involved in the 
process of dementia, and what are the roles of the Hippo 
pathway and autophagy in the progression of dementia? The 
search strategy is shown in Supplementary Table S1. The 
search was limited to papers published between 2011 and 
2021. We included articles, not limited to in vitro studies, 
animal models, and clinical trials, that describe the outcome 
of any process of dementia concerning the Hippo pathway 
and autophagy and any condition influencing the Hippo 
pathway and autophagy in dementia. This study’s exclusion 
criteria were review articles as they might impart biases and 
studies that do not explicitly illustrate the role of the Hippo 
pathway and autophagy in relation to dementia and aging.  
 The titles and abstracts of the papers that fulfilled the 
eligibility criteria were evaluated independently by two in-
vestigators. If feasible, the full text of the publications was 
retrieved. Only English-language publications were included. 
Any disagreements regarding the eligibility of a particular 
article were resolved through discussion with a third investi-
gator. The papers were then exported to Mendeley. The data 
were collected from the article, such as methodology, the 
outcome of the study, and references. The collected data 
were then tabulated in Microsoft Excel. 

3. RESULTS AND DISCUSSION 

3.1. Characteristics of the Included Studies 

 A total of 425 scientific articles were retrieved from 
MEDLINE, Scopus, Google Scholar, and Web of Science 
(Fig. 1). The articles were first screened through the titles 
and abstracts, resulting in sixty articles. Further screening of 
the full texts was carried out, and nineteen articles were ex-
cluded because they did not explore the relationship between 
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the Hippo pathway or autophagy and dementia. As a result, 
forty-one articles were included in the present systematic 
review. A summary of the included studies and their findings 
are shown in Supplementary Table S2. 
 A total of 24 animal studies (59%) were included in this 
review, followed by 9 (22%) mixed studies (in vitro and in 
vivo animal studies), 7 (17%) in vitro studies, and 1 (2%) 
microarray study (Fig. 2). From the animal and mixed stud-
ies, 27 (77%) studies conducted the research using mam-
mals, and 5 (23%) studies using insects. 

3.2. Dementia and Hippo Signaling Pathway 
 The Hippo signaling pathway, often called Salva-
dor/Warts/Hippo (SWH) pathway, was first discovered in 
Drosophila melanogaster and, subsequently, in mammals. 
The Hippo signaling pathway is a serine/threonine kinase 
signaling cascade, with the involvement of prostate-derived 

sterile 20-like kinases/TAO kinases (PSK/TAOK), mamma-
lian Ste20-like kinases 1/2 (MST1/2), large tumor suppressor 
1/2 (LATS1/2), and transcriptional co-activator yes associa-
tion protein (YAP) and its paralog TAZ, as well as TEA do-
main-containing sequence-specific (TEAD) transcription 
factors. PSK/TAOK phosphorylates and activates MST1/2 
when the Hippo pathway is active, and MST1/2 activation 
phosphorylates SAV1 and MOB1A/B, consequently promot-
ing the phosphorylation of LTS1/2 (Fig. 3). The YAP/TAZ 
transcriptional co-activator is inactivated when LATS1/2 is 
phosphorylated and activated. When the Hippo pathway is not 
active, the active proteins of YAP and TAZ bind directly to 
the nucleus and interact with TEAD, activating several genes 
involved in cell growth and organ size control [10, 22]. 
 Cell death can occur when the Hippo signaling system is 
disrupted. The accumulation of Aβ peptide, the product of 
amyloid precursor protein miscleavage, in the hippocampus 

 
Fig. (1). The screening process of the included studies. Forty-one research articles from 425 articles were included in the systematic review. 
The screening process was adopted by Page et al. [21]. 

 
Fig. (2). The characteristics of the study. (A) The majority of the studies in the review were animal studies, followed by mixed studies, in 
vitro experiments, and microarray studies; (B) The majority of the experimental animals involved in the studies in the review were mammals 
(transgenic mice) and insects (Drosophila melanogaster). (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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and cerebral cortex, as well as the downregulation and acti-
vation of the Hippo signaling pathway, are linked to demen-
tia, specifically in Alzheimer’s disease [23]. YAP deficiency 
enhances transcriptional repression-induced atypical cell 
death (TRIAD), ballooning cell death (BCD), and necrosis in 
Alzheimer’s disease and Huntington’s disease, resulting in 
TEAD suppression [14, 24, 25]. Intracellular Aβ also subse-
quently activates the Hippo signaling pathway, which in turn 
induces the JNK signaling pathway, which initiates neuroin-
flammation and neuronal cell necrosis [11, 12, 14]. YAP 
expression is found to be down-regulated in a Hippo path-
way-dependent manner in the hippocampus astrocytes of 
aged mice and mice models of Alzheimer’s disease. Conse-
quently, at least in the in vitro and in vivo models, the signal-
ing cascade appears to promote astrocyte senescence [13]. In 
addition, the core component MST1 appears to provoke neu-
ronal apoptosis via regulator Bcl-2. Moreover, the increased 
level of MST1 activates Bax and inhibits the Bcl-2 expres-
sion in cells, thus promoting mitochondrial dysfunction [26]. 
Furthermore, PSK/TAOK, an upstream regulator of the Hip-
po pathway, is also involved in the pathogenesis of Alz-
heimer’s disease-related dementia. In cell cultures, tau phos-
phorylation had been shown to be modulated by the activa-
tion of PSK1 and PSK2 in the cortex and the hippocampus. 
Other kinases stimulated by PSKs, such as JNK, p38, and 
MARK, have also been found to aggravate tau phosphoryla-
tion, and consequently promote neurodegeneration [27]. 
 In neurodegenerative diseases, the overexpression of 
YAP and the inactivation of the Hippo pathway are benefi-
cial in ameliorating neurodegeneration and suppressing the 
progression of the illness. In the research conducted by 
Dubey et al., the neurodegeneration of eye disks mediated by 

mutant huntingtin (Htt) was overcome by Yorkie, the effec-
tor protein YAP in Drosophila melanogaster [23]. Moreo-
ver, the activation of the Hippo pathway and the phosphory-
lation of MST1/2 and LATS 1/2 can phosphorylate and inac-
tivate YAP by sequestration or degradation in the cytoplasm. 
The inactivation of the Hippo pathway results in the unphos-
phorylated YAP, essential for cell longevity as YAP can 
bind with nuclear TEAD to express the protein. The unphos-
phorylated YAP helps the cortical neurons from degenera-
tion and cell death, as reported in the study by Mao et al.. In 
the report, YAP/YAPdeltaC and the transcription of YAP 
and TEAD1 prevented neuronal death by suppressing BCD 
and TRIAD in primary cortical neurons affected by Htt pro-
teins [25]. Thus, the expression and nuclear transcription of 
YAP and TEAD are essential in neuronal health and survival 
from neurodegeneration. 

3.3. Dementia and Autophagy 
 Autophagy is a cellular mechanism in which damaged 
cell structures are degraded and recycled from the cytoplasm 
through the lysosomes [28]. There are several forms of au-
tophagy, each with its purposes and processes. Macroau-
tophagy, often generalized as autophagy, is the non-selective 
process of degrading damaged cell organelles with autopha-
gosome involvement. It starts when ULK1/2 induces and 
nucleates the phagophore. Subsequently, the elongation of 
the phagophore is induced and transformed into an autopha-
gosome (Fig. 4). The autophagosome would then fuse with 
the damaged structure or the targeted cargo. The process is 
regulated by ATG12-ATG5-ATG16L1, ATG9, LC3-II, and 
Class III PtdIns3K. The autophagosome subsequently com-
bines with lysosomes to generate autolysosomes, which de-
grade the structure/cargo, after which the resulting broken-

 
Fig. (3). Hippo signaling pathway. When the Hippo signaling pathway is inactive (left-hand side), PSK/TAOK protein kinases do not acti-
vate MST1/2 protein kinases. Therefore, YAP and TAZ can interact with TEAD and bind directly to the nucleus to activate several genes 
that regulate organ size and cell proliferation. However, when the Hippo signaling pathway is active (right-hand side), external stimuli acti-
vate PSK/TAOK protein kinases, and then the kinases phosphorylate and activate MST1/2. The activation of MST1/2, in turn, phosphory-
lates LATS1/2 and inactivates YAP/TAZ. The inactive form of YAP/TAZ cannot bind to TEAD in the nucleus, causing the sequestration of 
the YAP/TAZ with 14-3-3 protein or the degradation of YAP/TAZ protein in the cytoplasm. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 
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down components are transferred back to the cytoplasm via 
the lysosomal permeases [29, 30]. 
 Microautophagy is a selective degradation process using 
small parts of the cytoplasm without autophagosome in-
volvement. The cytoplasmic material reaches the lysosome 
by a lysosomal membrane invagination [31]. A microau-
tophagy process has been known to include the delivery of 
cytosolic proteins directly into the vesicle of late endosome 
multivesicular bodies [32]. 
 The other type of autophagy, called chaperone-mediated 
autophagy, involves the KFERQ motifs in transferring cyto-
solic proteins into the lysosomal membrane. In this process, 
KFERQ motifs are linked to the HSPA8/HSC70 and other 
co-chaperones, which are then delivered to lysosomes via the 
LAMP2A substrate receptor and degraded in the lysosomal 
lumen [30]. 
 Another type of autophagy is called mitophagy. Mitoph-
agy focuses on mitochondrial breakdown involving 
BNIP3L/NIX, PINK1, and PARK2 proteins. BCL2 Interact-
ing Protein 3 Like (BNIP3L/NIX) is an autophagy-selective 
protein found on the mitochondria’s outer membrane, which 
is required for mitochondrial elimination [33, 34]. PTEN-
induced putative kinase-1, often known as PINK1, is a ser-
ine/threonine-protein kinase that sticks to the depolarized 
mitochondria. PARK2, also known as Parkin, is an E3-
ubiquitin-protein ligase that binds to PINK1 and ubiqui-
tinates the mitochondrial outer membrane protein, which 
subsequently interacts with LC3 with the assistance of 
SQSTM1 to initiate the process of mitophagy [35]. 

 Both the BNIP3L-mediated mitophagy and PINK1-
PARK2-mediated mitophagy have been shown to be critical 
in cell maturation and the removal of aged or defective mito-
chondria to support cellular functions. In the maturation of 
red blood cells, BNIP3L is the mitochondrial outer mem-
brane protein that binds to the microtubule-associated protein 
1A/1B-light chain 3 (LC3) and gamma-aminobutyric acid 
receptor-associated protein (GABARAP) on the phagophore 
to allow the recognition and the subsequent degradation of 
mitochondria. The removal of damaged mitochondria is as-
sumed to be aided by PINK1 and PARK2. The outer mem-
brane kinase PINK1 connects to the cytosolic E3 ubiquitin 
ligase PARK2 in defective mitochondria, leading to the ubiqui-
tination of PARK2 mitochondrial proteins and mitophagy [30]. 
 The autophagy processes to clear misfolded or damaged 
proteins are needed in a healthy human brain to preserve 
brain functions. Defective autophagy processes have been 
linked to the pathophysiology of dementia (Fig. 5). In Alz-
heimer’s disease and other forms of dementia, circulating 
levels of autophagic markers, including ATG5, ATG7, Be-
clin, LC3, and NRBF2, are significantly reduced. The defi-
ciency of these markers leads to the gradual deterioration of 
brain neurons, which manifests in physiological and behav-
ioral impairments [19, 36-39]. 
 Autophagy has been demonstrated to be inhibited by the 
aggregation of amyloid precursor protein (APP), Aβ peptide, 
and tau protein, particularly in the hippocampal neurons [40–
43]. When autophagic markers are reduced or depleted, the 
autophagosome formation is disrupted and consequently 

 
Fig. (4). The typical pathway of autophagy and mitophagy. (1) The process of autophagy is initiated by ULK1/2 protein kinase complex acti-
vated by AMPK; (2) The phagophore is induced and nucleated by ULK1/2 and regulated by ATG9, ATG12-ATG5-ATG16L1, LC3-II, and 
Class III PtdIns3K; (3) The elongation of phagophore to the targeted cargo appears after the nucleation of phagophore and later develops into 
autophagosome; (4) The autophagosome fuses with the damaged structure or the targeted cargo; (5) The autophagosome then merges with 
the lysosome to form autolysosomes; (6) The formed autolysosome degrades the cargo. The proteins are subsequently transferred back to the 
cytoplasm. In mitophagy, the dysfunctional or damaged mitochondria on the outer membrane of PINK1 attach to PARK2 to stimulate the 
elongation of phagophore and mitophagy. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle). 
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exacerbates the aggregation and spread of Aβ and tau pro-
teins in the brain [37, 44, 45]. Interestingly, in studies con-
ducted by Yu et al. (2011), Chen et al. (2015), Ma et al. 
(2017), and Villamil Ortiz et al. (2021), autophagy was 
shown to be boosted in the early stages of Alzheimer’s dis-
ease but deteriorated as the disease progressed [2, 17, 46, 
47].  

 Furthermore, Joshi et al. (2015) found that in the late 
stage of Alzheimer’s disease, p62 and pAkt/mTOR kinase 
activity were enhanced in transgenic mice models, but Bcl-2 
levels were considerably lowered. Since the inactivation of 
Akt/mTOR promotes autophagy, it implies that p62 and 
mTOR activities inhibit autophagy in dementia [48].  

 Mitophagy also decreases in dementia and aging. The 
progression of Alzheimer’s disease is exacerbated by, among 
other factors, the accumulation of defective and dysfunction-
al mitochondria [49]. The simultaneous rise in PINK1 levels 
and reduction in PARK2 levels are some of the consequences 
of severe mitochondrial breakdown. In addition, APP and 
Tau suppress the action of the mitochondrial-targeting 
PINK1/PARK2 complex, resulting in the failure of mitopha-
gy [50, 51]. The mitophagy impairment appears to be related 
to the early tau accumulation in the brain [52]. 

 Vascular and Lewy body dementia have different patho-
physiology compared to Alzheimer’s disease with regards to 
autophagy regulation. The activation of autophagy-mediated 
chronic cerebral hypoperfusion exacerbates the degree of 
dementia in vascular dementia patients. Therefore, in vascu-
lar dementia patients, cognitive and motor function decline 
can be alleviated by inhibiting autophagy [53-55]. There is 
an ongoing debate about whether autophagy activation or 
inhibition by synuclein expression causes Lewy body de-
mentia development and severity [56-58]. 

3.4. Dementia and Aging 

 The brain functions deteriorate progressively with age, 
which manifests in cognitive and motor decline. The hall-
marks of aging found in brain tissues include DNA oxidative 
damage and repair defect, epigenetic alterations, telomeric 
attrition, loss of proteostasis, mitochondrial dysfunction, 
neuronal senescence, stem cells exhaustion, altered cellular 
network, and inflammation (Fig. 6) [59, 60]. 
 The types of neuronal DNA damage in an aging brain are 
DNA single-strand breaks, double-strand breaks, abasic sites, 
bulky adducts, base mismatches, insertions, and deletions 
[60]. Increased Reactive Oxygen Species (ROS) generation 
and DNA repair failure can be regarded as both a cause 
and/or a consequence of oxidative-stress-related DNA dam-
age by endogenous ROS. More importantly, the DNA dou-
ble-strand breaks caused by oxidative stress have been 
shown to be the most destructive type of DNA damage [61]. 
This particular damage has been found to be the etiology of 
dementia and linked to methionine-35, an amino acid re-
sponsible for the production of amyloid β and the subsequent 
plaque formation in Alzheimer’s disease [61, 62].   
 The DNA repair systems, such as homologous combina-
tional repair, non-homologous end-joining repair, and base 
excess repair (BER), are reduced in dementia, resulting in a 
decreased ability of cells to remove DNA lesions [61, 63]. 
BER enzymes, such as APE1 and OGG1, are increased in 
normal brain tissues but reduced in the frontal cortex of brain 
tissues suffering from Alzheimer’s disease [64]. 
 The poly (ADP-ribose) polymerase-1 (PARP-1) is an 
essential enzyme in maintaining memory and synaptic plas-
ticity in the brain. The reduction of this enzyme activity and 
expression has been observed in the hippocampus and the 

 
Fig. (5). The autophagy impairment in dementia. In defective autophagy, activated mTOR inhibits the ULK1/2 protein kinase complex, re-
sulting in the disturbance in the formation of the phagophore. Other autophagic proteins, such as ATG5, ATG7, Beclin, and LC3, are depleted 
in dementia, which results in decreased autophagosome synthesis or accumulation of autophagosomes, decreased autolysosome formation, 
and reduction of protein degradation. Neurodegeneration and the build-up of damaged proteins can result from the autophagy dysfunction. (A 
higher resolution / colour version of this figure is available in the electronic copy of the article). 
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cerebral cortex of dementia patients, displaying DNA dam-
age, cellular senescence, and inflammation [65, 66]. 
 Some of the hallmarks of aging, such as epigenetic altera-
tions, telomeric attrition, and the loss of proteostasis, have 
been linked to dementia progression. Memory, learning, and 
behavior deficits in dementia are strongly associated with 
epigenetic alterations, such as DNA methylation and histone 
acetylation. Bradley-Whitman et al. (2013) and Coppieters et 
al. (2014) found active DNA methylation of 5-
methylcytosine and 5-hydroxymethylcytosine in aging brain 
tissues, implicating epigenetic changes in the early progres-
sion and clinical features of dementia [67, 68]. Furthermore, 
histone H3 Ser57 and Thr58 dephosphorylation and histone 
H4K16ac deacetylation have been shown to be associated 
with dementia neuropathology and progression. The 
dephosphorylation and deacetylation cause a reduction in 
neuronal gene transcription by stabilizing the nucleosomes 
and condensing the chromatin [69, 70]. 
 The severity of dementia-related neurodegenerative dis-
orders, such as vascular dementia, Lewy body dementia, and 
Alzheimer’s disease, has also been associated with telomeric 
attrition or shortening. Accelerated telomere shortening has 
been associated with the increased formation of ROS, cellu-
lar oxidative damage, and inflammation in patients with 
high-risk dementia [71-73].  Meanwhile, the loss of proteo-
stasis has been found in the hippocampal neurons of brains 
in aging mice. Proteostasis failure results in the accumulation 
of poly-ubiquitin and amyloid, exacerbating cellular senes-
cence and autophagic activity impairment [74-76]. 

 The configuration of mitochondria in the dendrites and 
axons of neurons is designed to produce ATP for neuro-
transmission, preservation, and cellular recovery. The prolif-
eration and differentiation of mitochondria in the form of 
mitochondrial biogenesis are modulated by mitophagy. Mi-
tophagy is crucial in maintaining cell functions and homeo-
stasis to prevent the accumulation of dysfunctional mito-
chondria [77]. The analyses of mitochondria from brain tis-
sues of patients with cognitive decline demonstrate abnormal 
fission and morphology, reduced mitochondrial function, 
diminished mitochondrial membrane potential, and mitopha-
gy dysfunction, which results in the disturbance of ATP pro-
duction as well as oxidative stress [78-81]. 

 In addition, the amyloid β peptides and tau-containing 
neurofibrillary tangles have been found to promote cellular 
senescence, aging, and neurodegeneration. The Aβ42 peptides 
increase intracellular ROS by activating FPR2 in the brain 
and the downstream ROS-p38 MAPK signaling pathway, 
inhibiting neurogenesis and triggering astrocyte senescence 
in vitro. These processes upregulate the expression of in-
flammatory cytokines, such as IL-6, RANTES, IL-8, and 
ICAM-1. The secretion of IL-6 is promoted by the activation 
of p38MAPK. IL-6 is considered the central chronic inflam-
mation mediator in aging and dementia. Moreover, the insol-
uble tau is considered to be causative factor for the senes-
cence of neurons and astrocytes, marked by the elevated lev-
els of p16INK4a, the astrocyte marker GFAP, and senescence-
associated secretory phenotype [15, 82-84]. 

 
Fig. (6). The hallmarks of brain aging include DNA oxidative damage and repair defect, epigenetic alterations, telomeric attrition, loss of 
proteostasis, mitochondrial dysfunction, neuronal senescence, stem cells exhaustion, altered cellular network, nutrient sensing problem, and 
inflammation [59, 60]. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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 Lifestyle changes, such as the control of calorie intake 
and physical activities, are associated with nutrient-sensing 
gene expression during aging. Caloric restriction is neuro-
protective by reducing the levels of amyloid β and the activa-
tion of microglia [85, 86]. Insulin, insulin-like growth factor 
1 (IGF-1), mammalian target of rapamycin (mTOR), AMP-
activated protein kinase (AMPK), and sirtuins are some of 
the significant nutrient-sensing pathways and molecules in-
volved in aging. Central insulin resistance, marked by the 
increased level of IRS-1 pSer616 and decreased level of IGF-
1, is found in dementia patients and is related to worsening 
cognitive function [87, 88]. mTOR and AMPK have been 
found to be involved in dementia pathophysiology. The stud-
ies by Caccamo et al. (2013) and Zimmerman et al. (2013) 
reveal that the elevation of mTOR and reduction of AMPK 
activity levels are both associated with learning and memory 
deficits in dementia [89, 90]. On the other hand, the neuro-
protective sirtuins (SIRT1) usually decrease during aging 
and are significantly reduced in dementia [91]. 
 Furthermore, there is evidence that aging causes altera-
tion in autophagy function and the Hippo pathway. Nutrient 
sensing and epigenetic alterations are some of the hallmarks 
of aging, which can affect autophagic flux [92, 93]. As men-
tioned, mTOR, AMPK, and SIRT1 levels have been associ-
ated with aging. SIRT1 can activate AMPK via deacetylation 
of LKB1 kinase, in which the activation of AMPK can phos-
phorylate forkhead transcription factors (FoxO) proteins. 
SIRT-1 can also deacetylate FoxO1 and FoxO3 to elevate 
levels of autophagy-related proteins, such as BNIP3, 
ULK1/2, ATG5, ATG7, ATG8, and LC3.  
 Additionally, AMPK can regulate the ULK/mTOR path-
way to control autophagy by inhibiting the expression of 
mTOR and enhancing the expression of the ULK complex. 
The increased mTOR and reduced AMPK and SIRT1 levels 
in aging may be related to the altered autophagy function 
[93, 94]. On the other hand, the nuclear protein YAP/TAZ in 
the Hippo signaling pathway deteriorates in aging, although 
the biochemical and molecular mechanisms are not yet pre-
cise. The decreased level of YAP can activate p53/p21 ex-
pression and lysosomal activity to develop cellular senes-
cence and senescence-associated secretory phenotypes [95]. 
In neurodegenerative diseases, such as Alzheimer’s disease, 
astrocyte senescence in the hippocampus can occur by YAP 
deficiency or the suppression of YAP activity due to the ac-
tivation of the Hippo pathway [13].  
 In this context, the pathophysiology of the progression of 
dementia has been linked to physiological changes in aging. 
The hallmarks of aging will affect several pathways that 
promote cellular senescence. We propose that the elucidation of 
the complex relationships between the Hippo signaling pathway 
and autophagy in dementia is one of the key factors to a better 
understanding of the progression of dementia in aging. 

3.5. Dementia, Hippo Signaling Pathway, and Autophagy 

 The interaction of the Hippo signaling pathway and au-
tophagy plays an essential role in neurodegeneration. The 
role of Hippo signaling is to maintain organ and cell homeo-
stasis. Hippo signaling co-activator YAP/TAZ controls au-
tophagy by promoting the formation of autophagosomes and 
autolysosomes and the degradation of the autophagosome. 

The knockdown of YAP/TAZ is shown to cause the disturb-
ance of the autophagic flux, with the accumulation of LC3-II 
in the cells and downregulation of Armus, a RAB7-GAP, 
which assists the autophagosome-lysosome fusion [96]. 
YAP/TAZ is also found to interact with the F-actin cytoskel-
eton and myosin-II complex in regulating the autophagy pro-
teins ATG16L1 and ATG9, signaling the formation of au-
tophagosomes. YAP/TAZ collaborates with autophagy to 
preserve homeostasis in cells by clearing unused or damag-
ing substances [97]. The other components of the Hippo sig-
naling pathway, STK4/MST1 and STK3/MST2, have been 
considered important in controlling autophagy. The MST1/2 
plays a role in phosphorylating LC3 Thr50 to induce autoph-
agosome and autolysosome formation and increase au-
tophagic flux [98].  
 It is still unclear whether the activation or the inhibition 
of autophagy by Hippo pathway inactivation is beneficial for 
maintaining cell survival or harmful (inducing cell death). 
The declining level of MST1 can significantly promote au-
tophagic flux. Western blot analysis of motor neuron sam-
ples from the MST1-/- group in the spinal cord experiment 
revealed an increase in LC3-II expression and a reduction in 
p62 expression, demonstrating autophagy to be triggered in 
response to spinal cord injury [99]. Another study showed 
that when titanium implants containing spherical silica nano-
particles were placed, the level of YAP rose, and mesenchy-
mal stem cells underwent osteogenic differentiation after 
autophagy activation, as evidenced by an increase in LC3-II 
following the suppression of Akt/mTOR signaling [100]. 
Conversely, YAP expression suppresses autophagy to accel-
erate tumor progression in cancer cells. In the study by Jin et 
al. (2021) on colorectal cancer cells, YAP interacted with 
TEAD in the nucleus of SW620 cells to generate and bind to 
the target gene Bcl-2. YAP/Bcl-2 expression inhibited au-
tophagy, which was shown by the decrease in LC3-II level in 
the western blot analysis. Further, the SW620 cell growth 
was also found to be enhanced as a result [101]. Another 
study claimed that the downregulation of LATS, an upstream 
kinase in the Hippo pathway, led to a 2-fold increase in YAP 
expression. YAP could assist the proliferation of lung cancer 
cells in lung adenocarcinoma by stimulating Akt/mTOR sig-
naling pathway to inhibit autophagy [102]. Numerous re-
search studies have focused on the relationship between the 
Hippo pathway and autophagy in several human body sys-
tems and cancer cells. Still, relatively few researchers have 
addressed these topics in the neurological system. 
 Hypothetically, when the Hippo signaling pathway is 
activated in the neurons of the brain suffering from neuro-
degenerative diseases, it causes YAP reduction in the nucle-
us. Degradation of YAP occurs when it enters the cytoplasm. 
The reduction of YAP then lowers the autophagic flux, caus-
ing the cell’s inability to mark misfolded and damaged pro-
tein to be degraded in autophagy, leading to protein accumu-
lation and aggregation in neurons (Fig. 7). The accumulation 
and aggregation of proteins directly induce BCD and TRIAD 
to initiate the necrosis and apoptosis of neurons [11, 25]. The 
accumulation of misfolded proteins in neurons can activate 
Hippo signaling and the JNK signaling pathways. The inter-
action between the activated Hippo signaling and JNK sig-
naling pathways indirectly induces neurodegeneration 
through the promotion of apoptotic neuronal death [14, 103]. 
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CONCLUSION 

 This review provides information on the roles of the Hippo 
signaling pathway and autophagy in the development of de-
mentia in aging. The Hippo signaling pathway and autophagy 
alterations play a major role in the progression of dementia as 
demonstrated in animal, in vitro, in vivo, and microarray stud-
ies. The Hippo signaling pathway is dependent on the tran-
scriptional co-activator YAP/TAZ, which connects with 
TEAD in the nucleus to maintain cell homeostasis. When 
YAP/TAZ is reduced, TRIAD, BCD, and necrosis will occur 
in the neurons. Moreover, the autophagic proteins, such as 
LC3, ATG proteins, and Beclin, are reduced in dementia, re-
sulting in the disruption of autophagosome formation and ac-
cumulation and spread of misfolded proteins in the brain.  
 Although the relationship between the Hippo signaling 
pathway and autophagy in dementia is not clear, it has been 
shown that when Hippo signaling co-activator YAP/TAZ is 
reduced in neurons, the autophagic flux is decreased, causing 
misfolded proteins to accumulate in the brain leading to neu-
rodegeneration. Further research should be carried out to 
determine the specific relationships between the Hippo sig-
naling pathway and autophagy in dementia, as they are clear-
ly essential in the progression of dementia.  
 The studies that describe the contribution of the Hippo 
signaling pathway and autophagy to dementia in aging are 
limited. To date, there is no available article on the relation-
ship between the Hippo signaling pathway and autophagy in 
dementia involved in aging. Although articles that discuss 
the relationship between the Hippo signaling pathway and 
autophagy are available, no specific theory or evidence has 

been found to describe this relationship in the aging brain. 
From the results, we found that the disturbance of the Hippo 
signaling pathway and autophagy could affect the progres-
sion of dementia. We believe this systematic review can 
pave the way for new research on the relationship between 
Hippo signaling pathway and autophagy in the brain, espe-
cially with respect to dementia in aging. By understanding 
these relationships, new treatment and/or prevention strate-
gies could be developed by targeting the Hippo pathway and 
autophagy in aging-related dementia. 

LIST OF ABBREVIATIONS 

YAP = Yes-Association Protein  
TAZ = Transcriptional Co-activator with PDZ-

Binding Motif   
APP = Amyloid Precursor Protein  
Aβ = Amyloid β  
TRIAD = Transcriptional Repression-Induced Atypical 

Cell Death  
BCD = Ballooning Cell Death  

CONSENT FOR PUBLICATION 
 Not applicable.  

STANDARDS OF REPORTING 
 PRISMA guidelines and methodology were followed. 

 
Fig. (7). The YAP/TAZ knockdown affects autophagy, causing neuron necrosis and apoptosis. A reduction in the autophagy protein and 
activation of the Hippo signaling pathway can inhibit the development of autophagosomes and autolysosomes in the neuron, leading to the 
sequestration of YAP/TAZ and 14-3-3 protein as well as the downregulation of Armus synthesis from the nucleus. These are two ways in 
which the inactivated version of YAP/TAZ can change the autophagy flux. Due to the buildup of misfolded protein brought on by the disrup-
tion of the autophagic flux, BCD and TRIAD-induced neuron necrosis and apoptosis can subsequently develop. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 
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