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Abstract
Skeletal muscle atrophy commonly occurs during ageing, thus pathways that regulate muscle mass may represent a potential
therapeutic avenue for interventions. In this review, we explored the Hippo signalling pathway which plays an essential role in
human oncogenesis and the pathway’s influence on myogenesis and satellite cell functions, on supporting cells such as fibro-
blasts, and autophagy. YAP/TAZ was found to regulate both myoblast proliferation and differentiation, albeit with unique roles.
Additionally, YAP/TAZ has different functions depending on the expressing cell type, making simple inference of their effects
difficult. Studies in cancers have shown that the Hippo pathway influenced the autophagy pathway, although with mixed results.
Most of the present researches on YAP/TAZ are focused on its oncogenicity and further studies are needed to translate these
findings to physiological ageing. Taken together, the modulation of YAP/TAZ or the Hippo pathway in general may offer
potential new strategies for the prevention or treatment of ageing.
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Key points
•Skeletal muscle mass is regulated through YAP/TAZ effect on myoblast
proliferation and differentiation which is altered in aging.
•Ageing is associated with low physical activity which may alter YAP/
TAZ levels in myoblasts.
•Ageing causes stiff extracellular matrix and induces further fibrosis
through YAP/TAZ.
•YAP has been shown to promote stemness of satellite cells and may be
beneficial in ageing.
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Introduction

The Hippo pathway is best known for its regulation and con-
trol of cell proliferation and organ size. Although the Hippo
pathway consists of many proteins, the core components of
this pathway consist of two kinases and two adaptor proteins.
The kinases are large tumour suppressor 1 and 2 (LATS1/2),
and mammalian sterile-20 like kinase 1 and 2 (MST1/2) and
the adaptor proteins are Salvador (SAV) and Mps one binder
(MOB1) [1]. Their functions have been elucidated, and their
roles in Hippo signalling have been confirmed using knock-
outs or overexpression in mice. The final effectors of the path-
way are the transcription factors, Yes-associated protein
(YAP) and its homologue, transcriptional co-activator with
PDZ-binding motif (TAZ or WWTR1).

Sarcopenia is a term originating from the Greek word,
which roughly translates to the deficiency or loss of flesh. At
first, the term sarcopenia is reserved for age-related changes in
muscle mass [2]. However, this definition has evolved multi-
ple times to accommodate the incorporation of new knowl-
edge and findings in this area [3–5]. The latest recommenda-
tion updated by the European Working Group on Sarcopenia
in Older People 2 (EWGSOP2) defined probable sarcopenia
as the presence of low muscle strength [6]. The diagnosis is
confirmed if low muscle quantity or quality is also found.
However, these diagnostic criteria reflect the fact that the iden-
tification of muscle weakness is more practical in clinical set-
tings than assessment of muscle quantity or quality. Two types
of sarcopenia are classified according to their cause [7].
Primary sarcopenia is sarcopenia caused by the ageing process
(sarcopenia of ageing). In contrast, secondary sarcopenia is
due to an underlying disease(s) that causes the loss of muscle
mass. Multiple factors have been identified that are associated
with the development of sarcopenia of ageing. Notable exam-
ples are decreasing physical activity and neuronal motor units,
satellite cell failure, and dysfunctional protein synthesis [7–9].
The factors mentioned above are of interest since they may be
affected by YAP/TAZ. Therefore, elucidating the relationship
between the Hippo pathway effectors, YAP/TAZ, and skeletal
muscle during ageing may provide new insights into how this
pathway may be involved in sarcopenia.

The ability of YAP/TAZ to pervasively control multiple
aspects of cell growth has made them the subject of many
cancer studies. Their effects range from control of tissue
growth, cell fate, regeneration, metastasis, and also cell com-
petition [10]. Several recent reviews of this pathway have
explored the relationship of YAP/TAZ and specific types of
cancers and as potential targets for drug developments
[10–14]. Researchers have identified that YAP/TAZ muta-
tions confer different effects depending on the specific types
of cancers [10, 12]. For example, cancers of neuroectodermal
origin harbour a greater incidence of mutations in the Hippo
pathway [10]. Due to its importance, the Hippo pathway is

beginning to become the focus of drug development strategies
in oncology [11, 12]. Although this pathway’s role in cancer is
well-reviewed, YAP/TAZ is also closely linked with tissue
regeneration [12]. Therefore, targeting the Hippo pathway
without understanding its regulation may produce deleterious
effects. Several recent reviews have explored the Hippo path-
way as regulators of muscle size and growth [15–17].
Therefore, as regulators of cell growth and tissue regeneration,
it certainly is possible that YAP/TAZ contributes to the ageing
phenotype of muscle, most notably the atrophy of skeletal
muscles. In this review, the authors use YAP/TAZ to refer to
both proteins and only YAP or TAZ if the effects belong to an
individual protein.

Overview of the Hippo pathway

The large tumour suppressor (LATS) in human or called warts
(Wts) in Drosophila was the first protein of the core Hippo path-
way to be identified [18–20]. This enzyme is a serine/threonine
kinase and initially was identified as a tumour suppressor during
screening for regulators of cell proliferation. Further research
found that the loss of function in this protein caused uncontrolled
cellular proliferation [18–20], and generated a distinct overgrowth
phenotype in Drosophila with a highly folded eye structure that is
in commonwith other loss-of-functionmutations of proteins in the
Hippo pathway. Another protein,Mps one binder (Mob), was first
identified byLai et al. [21] as a tumour inhibitor.Mob acts together
with LATS to stimulate its kinase activity, and both proteins form
a complex that phosphorylates YAP/TAZ, leading to their inacti-
vation. Additionally, both proteins are highly conserved across
species, and the co-expression of human LATS and MOB can
rescue defects in mutant Drosophila [18, 21]. LATS and MOB
form a conserved tumour suppressor protein complex in humans.
Decreased expression or mutation of either protein is associated
with aggressive cancer phenotypes in humans [22].

Hippo (Hpo), the eponymous protein for which the Hippo
pathway is named after, was first identified as a gene that regu-
lates proliferation and apoptosis [23–25]. Inmammals, the Hippo
homologue is called themammalian sterile-20 like kinase 1 and 2
(MST1/2) [23], and expression of the human MST1/2 kinase in
Drosophila rescues the overgrowth phenotype [26], demonstrat-
ing that this growth pathway is highly conserved. Harvey et al.
[23] first identified the possible interactions between Hpo,
LATS, and Sav. Indeed,Mst1/2, LATS,Mob, and Savwere later
proven to form a multimeric complex that modulates YAP/TAZ
in the Hippo pathway [24, 26].

SAV was identified during a screen for tumour-
suppressing genes in Drosophila and is mutated in several
human cancer cell lines [27]. Although Sav was first reported
to interact with LATS [27], later research suggests that Sav
also interacts with Hpo [23]. The interaction of SAV and
MST1/2 forms a complex which phosphorylates LATS1/2
and MOB. The phosphorylation results in the activation of
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their kinase activity. Similar to other proteins in the Hippo
pathway, its loss of function also leads to the same typical
overgrowth phenotype in Drosophila.

The last proteins in the core kinase pathway of Hippo are
YAP and TAZ. These two proteins are homologous to each
other, although they may have distinct but overlapping func-
tions [28]. YAP was initially identified as a transcription fac-
tor for Yes-associated Proto-oncogenes [29]. However, it was
later shown to be a transcriptional co-activator [30], particu-
larly for the TEA domain (TEAD) family of transcription
factors (TEAD1-4) [31]. TEAD transcription factors are one
of the best-studied partners of YAP and TAZ and mediate
most of their biological effects [32]. Without a co-activator,
such as YAP or TAZ, TEAD hardly showed any transcrip-
tional activity [33]. The TEAD transcription factors share a
highly conserved TEA/ATTS binding domain, which binds
the MCAT element found in the promoter of cardiac, smooth,
and skeletal muscle-specific genes [34]. TEAD also regulates
genes associated with cell growth, proliferation, and homeo-
stasis [32, 35] such as CTGF and CYR61 [36], MYC [37],
SLC7A5 [38], and GLUT3 [39, 40].

YAP contains a small modular protein domain, WW do-
main, named after two conserved tryptophan residues spaced
20 to 22 residues apart that enables interaction with LATS.
YAP is phosphorylated at serine 127 by LATS in theMST1/2,
LATS, MOB, and SAV complex, which then enables YAP
binding to 14-3-3 protein to sequester YAP in the cytoplasm.
YAP then undergoes proteasomal degradation leading to a
reduction in YAP activity [41–43]. TAZ, on the other hand,
was identified by Kanai et al. [28] during a screening for
proteins that were bound to the 14-3-3 protein. Similar to
YAP, the cytoplasmic sequestration and degradation of TAZ
are regulated by binding to the 14-3-3 protein [28, 41]. TAZ
protein also contains a WW binding domain that enables in-
teraction with the core kinase protein of the hippo pathway,
LATS. Indeed, LATS directly phosphorylates both YAP and
TAZ [43–45], to inhibit their function as transcriptional acti-
vators (Fig. 1). Therefore, LATS phosphorylation and the
Hippo pathway in general negatively regulate YAP/TAZ ac-
tivity by preventing their translocation to the nuclear compart-
ment where they exert their biological activity. It is notewor-
thy that YAP protein also contains an SH-3 binding region,
which allows interactions with specific proteins containing
SH-3 regions such as Src [29].

YAP/TAZ is a potent regulator of myogenesis

Although the Hippo pathway is known to regulate growth in
other tissues, its function in skeletal muscle tissue is complex
and not well understood, as YAP/TAZ have been implicated in
proliferation and differentiation [43, 46–49]. However, YAP in
particular is well known to induce cellular proliferation as
reflected by the many cancer transformation associated with

YAP overexpression [43, 45, 47, 50, 51]. YAP is highly
expressed during the proliferation of active satellite cells in both
in vitro in human satellite cell culture and ex vivo satellite cells
frommice muscle tissues [46, 48]. YAP is essential for myoblast
proliferation. However, overexpression of YAP inhibits the dif-
ferentiation of myoblasts and may paradoxically cause atrophy
and myopathy in vivo [46, 48]. This inhibition of differentiation
can be extreme since YAP can potentially act as an oncogene
when overexpressed in muscle satellite cells [51]; thus, YAP
expression level and activation needs to be carefully controlled
in muscle cells to prevent oncogenesis.

YAP/TAZ induces cellular proliferation and has overlap-
ping actions; however, each protein also has distinct functions.
TAZ acts as an inducer of myoblast differentiation, whereas
YAP hinders this process [46, 47, 51]. During myoblast pro-
liferation, YAP/TAZ has been shown consistently to be active
during myogenesis in C2C12 cells [47, 48]. Transgenic stud-
ies using YAP/TAZ overexpression found that both proteins
promoted myoblast proliferation. Consistent with this,
YAP was found to upregulate Myf5 expression, which
is known to promote myoblast proliferation [48].
Additionally, inhibition of YAP, TAZ, or both proteins
decreased Myf5 expression [47], confirming YAP/TAZ
regulatory properties on myoblast proliferation.

However, during differentiation YAP/TAZ shows different
functions. Overexpression of YAP has been shown to inhibit
the differentiation ofmyoblasts in vitro andmay paradoxically
cause atrophy and myopathy in vivo [46, 48]. This inhibition
of differentiation can be extreme since YAP can potentially
act as an oncogene when overexpressed in muscle satellite
cells [51]. This effect is in contrast to TAZ, which were found
to promote myogenic differentiation [22, 52–54]. TAZ over-
expression in myoblasts was shown to increase the expression
of myogenin, which marks myoblasts differentiation [22].
These effects were mediated by TAZ interaction with
MyoD. The combination of both TAZ and MyoD coop-
eratively increases myogenic differentiation, shown by
the increased expression of myogenin and MHC, as
compared to MyoD alone [52].

After skeletal muscle injury, both genes were found to be
highly expressed. However, TAZ expression significantly in-
creased more than YAP during muscle differentiation [47].
TAZ functions mainly as a transcriptional co-activator of
MyoD [52] and TEAD4 [47] that played an essential role in
inducing differentiation. The MCAT element that the TEAD
family of transcription factors bind to were located in the
promoter regions of genes associated with muscle develop-
ment such as α-actin and β-MHC (myosin heavy chain)
[34]. Confirming this notion, simultaneous silencing of
Tead1, Tead2, and Tead4 strongly inhibits the differentiation
of C2C12 myoblasts in vitro [55]. Thus, the specific expres-
sion pattern of YAP/TAZ is carefully controlled during myo-
blast proliferation and differentiation.
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The role of YAP/TAZ in skeletal muscle ageing

During ageing, skeletal muscle can undergo atrophy [56].
Since the hippo effectors, YAP/TAZ, regulate myogenesis, it
is appealing to hypothesise that lack of them may lead to the
development of muscle atrophy. However, it is currently un-
knownwhether YAP/TAZ levels are decreased during ageing.

Other studies suggested that YAP may have a more com-
plicated role in skeletal muscle ageing and atrophy [54,
57–59]. These studies show that although YAP is involved
in muscle regeneration and control of muscle mass [43,
46–49], its overactivity can contribute to the ageing phenotype
and muscle atrophy [57, 58]. Additionally, YAP/TAZ can act
as inducers or inhibitors of ageing in other tissues, including
bone and cardiac muscles [54, 60]. However, the functions of
YAP/TAZ in ageing may be tissue-dependent, and findings in

other tissues may not apply to skeletal muscle. Another com-
plicating issue is the fact that almost every cell type expresses
YAP/TAZ. Studies examining YAP/TAZ as regulators of
muscle size [43, 46–49] did not take into account the extra-
cellular milieu secreted by fibroblasts, since they also express
YAP/TAZ. Transgenic studies in mice and cell culture sys-
tems have found that YAP/TAZ expression in fibroblasts pro-
motes fibrosis in the lung, kidney, liver, and skeletal muscle
tissues [12, 59, 61–63]. Therefore, their overexpression in
fibroblasts may be deleterious to organ health and contribute
to ageing. However, YAP/TAZ that was expressed in different
cells, such as muscle satellite cells, cardiomyocytes, was also
implicated in tissue regeneration, proliferation, and differenti-
ation [17, 46, 47, 49, 54, 60, 64]. These findings reflect the
complexities of YAP/TAZ in regulating cellular growth and
ageing and are illustrated in Fig. 2. Thus, reducing muscle

Fig. 1 Central hippo pathway controlling the phosphorylation of YAP/
TAZ. Shown below is the protein cascade. Phosphorylation of the
proteins involved is directly linked to its activation state. MST1/2,
SAV1, LATS1/2, and MOB1 are activated by phosphorylation.
Phosphorylated YAP/TAZ is bound by the 14-3-3 protein and cannot
translocate to the nucleus. Unphosphorylated YAP/TAZ is translocated
into the nucleus where they bind with TEAD and induce gene transcrip-
tion to regulate organ size. YAP/TAZ had also been found to bind with

many different transcription factors besides TEAD (not shown). Black
box delineating MST1/2 with SAV1 and LATS1/2 with MOB1 denotes
the complex formation of the proteins. MST1/2, mammalian sterile-20
like kinase 1 and 2; SAV1: Salvador 1; LATS1/2: large tumour suppres-
sor 1 and 2; MOB1: Mps one binder 1; YAP: Yes-associated protein;
TAZ: transcriptional co-activator with PDZ-binding motif; TEAD: TEA
domain transcription factors
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atrophy may not be as simple as stimulating the activity of
YAP/TAZ pharmacologically since there may be different
tissue-dependent effects. Further research on the levels and
effects of YAP/TAZ inmuscle satellite cells, supporting fibro-
blasts, and differentiated muscle fibre cells will help elucidate
their role(s) in ageing.

Another factor influencing ageing and atrophy is the au-
tophagy mechanism. Autophagy is defined as the cellular
recycling mechanism which provides additional energy and
building blocks for homeostasis [65]. Autophagy has been
found to regulate skeletal muscle ageing, either by main-
taining muscle mass or promoting regeneration through its
effects on satellite cells [66, 67]. Therefore, it is interest-
ing to explore whether YAP/TAZ have a role(s) in
influencing this biological process.

Although at first glance, inducing autophagy seemed dele-
terious to the tissue, this recycling process helps eliminate
misfolded proteins, damaged mitochondria, and other cellular
waste, which improves the tissue as a whole. Studies explor-
ing the role of autophagy have yielded promising results. The
induction of FOXO/4E-BP1 protein expression, a signalling
pathway in autophagy, has been shown to improve lifespan
and measures of skeletal muscle ageing in flies [68] and
mouse models [69]. Additionally, autophagy has been shown
to improve satellite cell function. Restoration of autophagy
using rapamycin treatment to block mammalian Target of
Rapamycin (mTOR) signalling allowed aged satellite cells
proliferation to match those of young control cells [70] as well
as showed a significant restoration of function. Autophagy
was also shown to be essential in satellite cell differentiation.
A study using C2C12 cells in vitro showed that inhibition of
autophagy using 3-methyladenine or Atg7 disruption causes

impaired myoblast fusion [71]. Hence, ample evidence sup-
ports the beneficial effect of autophagy in the prevention of
ageing and the promotion of regeneration in skeletal muscle.

Although YAP/TAZ also support muscle mass gain and
stem cell function, their relationship with autophagy is not
as straightforward as it seems. Studies exploring the role of
autophagy and YAP have been focused on cancer cells in
various tissues. The effects of autophagy in cancer cells are
much more complex, with both beneficial effects in reducing
tumour mass and deleterious effects due to tumour growth
enhancement [65, 72]. Therefore, the relationship between
autophagy and YAP/TAZ in these contexts may not translate
well to ageing conditions. However, these studies showed that
autophagy and YAP operate as inhibitors of each other’s func-
tion. Activation of autophagy through the administration of
rapamycin has been shown to consistently reduce the levels
of YAP protein and also inhibits cancer growth [53, 73, 74].
Transgenic studies using mice models showed that YAP was
degraded by autophagy [73]. However, several proteins of the
Hippo pathway also showed inhibitory activity towards many
autophagy proteins. LATS1, one of the core kinase of the
Hippo pathway, was shown to ubiquitinate Beclin-1, which
inactivates the protein and therefore, negatively regulates au-
tophagy. YAP was shown to affect autophagy through several
mechanisms [75]. YAP overexpression in hepatocellular car-
cinoma cell lines has been shown to inhibit reactive oxygen
species production, which in turn inhibits RAC-1 mediated
autophagy on the mTOR pathway [76]. YAP also regulates
the expression of SLC7A5, which stimulates mTOR activity
and thus negatively regulates autophagy [38]. These studies
have shown that the Hippo pathway and autophagy negatively
regulate each other, and their main outcome depends on the

Fig. 2 Overview of the relationship of YAP with features of ageing in
skeletal muscle. Ageing has been known to be associated with low levels
of physical activity, dysfunctional stem cells and growth factor signalling,
and tissue stiffness. Physical inactivity may reduce YAP/TAZ levels in
muscles and, therefore, may account for slow muscle growth. Ageing
muscles also exhibit dysfunctional stem cells with loss of quiescence
and a lower number of satellite cells. It is unknown if YAP/TAZ exerts

any influence on this phenomenon. However, high levels of YAP protein
levels were found in supporting fibroblasts. Increased YAP in fibroblasts
has been shown to induce fibrosis and fibrogenic conversion of muscle
cells. Grey box with a dashed black outline represents hypothetical or
unknown YAP influence. Grey box with solid black outline represents
proven influence of YAP

Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing



balance of these two pathways. However, it remains to be seen
whether this relationship also exists in physiological condi-
tions; and if so, which path is more beneficial in the prevention
of ageing in skeletal muscle.

Murgia et al. [77] used a proteomic approach to find protein
expression differences between young and aged people.
Although their research did not specifically explore the effects
of YAP protein expression, they identified a change in glyco-
lytic enzymes protein expression between aged and young
muscle fibres. Previous research using cancer cells in vitro
have shown that YAP regulates the protein and mRNA ex-
pression of several critical glycolytic enzymes such as HK1
(hexokinase 1), GPI (glucose-6-phosphate isomerase),
ALDOA (aldolase A), PGK1 (phosphoglycerate kinase 1),
and LDHA1 (lactate dehydrogenase A) [78, 79].
Therefore, further analysis may be able to explore
whether YAP/TAZ has any role in the changes in met-
abolic enzyme expressions in ageing.

The role of YAP and TAZ in the cellular
microenvironment of skeletal muscle during ageing

A critical aspect of ageing that is likely mediated by YAP/
TAZ is the role of muscle stem cell microenvironment or
niche of aged muscle. Mashinchian et al. [80] classified the
regulation of muscle stem cell growth into two main types,
intrinsic and extrinsic regulation. Intrinsic regulation origi-
nates from the mechanisms preprogrammed into muscle stem
cells such as epigenetic adaptations, telomerase activity, and
activated or repressed signalling loops. Extrinsic regulation of
the skeletal muscle stem cells is due to the stem cell niche,
which consists of the extracellular matrix, growth factors and
cytokines, and cell to cell interactions. In this segment,
we are going to focus on extrinsic regulations of stem
cells in ageing conditions. For a comprehensive review
of the effects of the stem cell niche on muscle ageing,
the reader is referred to reviews by Mashinchian et al.
[80] and Hwang and Brack [81].

The earliest evidence for the role of the stem cell niche in
muscle ageing was shown by Carlson and Faulkner [82], who
cross-transplanted muscles between aged and young mice.
They showed that in aged mice, muscle regenerates slowly
regardless of the age of the transplanted muscle [82]. These
findings paved the way for subsequent experiments validating
the role of the extracellular niche, specifically the surrounding
growth factors and cytokines, in influencing muscle stem cell
activity [83–85]. Growth factors and cytokines are critical
during satellite cell proliferation and differentiation. During
muscle healing due to injury, inflammatory mediators released
by the surrounding tissue are able to induce the muscle stem
cells to proliferate [80]. However, in ageing, cytokines and
growth factors may instead induce loss of quiescence and
regenerative capability of muscle stem cells. Several

investigators have found that defective signalling of the fibro-
blast growth factors (FGF) ligands cause impaired prolifera-
tion of muscle stem cells in ageing conditions [83, 84].
However, it is not known whether YAP/TAZ plays any role
in the regulation of these cytokines.

The extracellular matrix of skeletal muscle has been shown to
influence muscle stem cell proliferation. Muscle stem cells
grown in vitro on stiff medium lose proliferative capability com-
pared to the elastic medium [86, 87]. With ageing, the muscle’s
extracellular matrix becomes stiffer due to extensive collagen
crosslinking compared to young muscles [88]. Since YAP/
TAZ acts as mechanoreceptors [89], increased stiffness of the
extracellular matrix due to ageing may influence their expression
and ability to support fibroblasts and muscle stem cells. In this
connection, the stiff extracellular matrix increased the expression
of YAP in the nuclear compartment of the fibroblasts [59]. The
expression of YAP in fibroblasts, in turn, promoted the
fibrogenic conversion of the skeletal muscle and thus created a
feedback loop in which fibrogenic conversion causes further
stiffening of the extracellular matrix. Additionally, when
LATS1/2 was deleted in fibroblasts, the increased expression of
YAP increased fibrogenesis and slowed the healing process in
cardiac and skeletal muscle tissue [59, 64]. Satellite cells have
been shown to regulate extracellular matrix production by fibro-
blasts [90]. Although there may be reduced amounts of satellite
cells in skeletal muscle during ageing, they still may be sufficient
to increase extracellular matrix production and stiffness [81].
However, it is currently not known whether substrate stiffness
affects YAP levels in muscle stem cells. However, aged muscle
stem cells undergo a loss of focal adhesion formation that altered
cytoskeletal properties of muscle in conjunction with increased
YAP nuclearization [57]. These findings demonstrate a compli-
cated relationship among YAP, satellite cells, and fibroblasts in
the extracellular matrix. Current data suggest that they can inter-
act with each other and regulate each other’s functions. Although
YAP expression enables muscle stem cells to proliferate, it also
promotes fibrogenesis in fibroblasts, so the net benefit of increas-
ing YAP expression may depend upon the cell type.

YAP/TAZ act as mechanoreceptors to mediate the
effects of ageing and exercise

Distefano and Goodpaster [91] characterize the age-related
changes during muscle ageing as not only due to the ageing
process per se but also due to the decline in physical activity.
They conclude that physical inactivity is especially deleterious
in the ageing population and can cause long-lasting impair-
ment. Furthermore, resistance exercise can improve
muscle strength and performance [91]. Gabriel et al.
[92] have described the links between the Hippo path-
way and exercise. However, in this review, we will
focus on several mechanisms related to the relationship
between YAP/TAZ and physical activity/exercise.
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YAP/TAZ in skeletal muscle can be regulated by cell geom-
etry, extracellular matrix stiffness, cytoskeletal tension,
stretching, and cell density [89, 93, 94]. Thus, YAP/TAZ may
modulate the effects of exercise and physical activity on muscle
growth through mechanical signalling. Interestingly, mechanical
overload on mouse muscle tissue increases skeletal muscle mass
as well as total YAP protein levels (both phosphorylated and
unphosphorylated) [95]. In fact, the increased YAP expression
is enough to induce hypertrophy of the muscles [95]. However,
other research has shown that exercise did not increase YAP
expression in skeletal muscles [96]. Further studies are needed
to determine whether exercise produces similar effects with me-
chanical stretching and whether ageing influences the response
of YAP/TAZ as mechanoreceptors.

YAP also is induced during satellite cell activation [97], and
its overexpression is associated with an increase in satellite cell
proliferation [46]. Increased YAP expression in satellite cells
occurs during mechanical stretching and may induce hypertro-
phy of muscles. Thus, it possible that changes in YAP/TAZ
expression may mediate some of the effects on exercise-
induced hypertrophy and muscle atrophy. Since ageing is asso-
ciated with the loss of muscle mass, we postulate that this loss
may be mediated by the loss of YAP/TAZ signalling in muscle
cells and satellite cells. YAP has been shown to regulate satellite
and muscle cells and were able to induce muscular hypertrophy.
However, further research is needed to determine if YAP/TAZ
levels are altered in ageing and if exercise can modulate YAP/
TAZ expression. Additionally, further exploration of whether
YAP/TAZ modulation plays a significant role(s) in the preven-
tion of muscle atrophy in ageing is needed.

Another aspect of ageing that influences YAP/TAZ regulation
is the loss of motor neurons. Although the loss of motor neurons is
a well-documented phenomenon in ageing muscle, there remains
debate on whether pathologies in the neuromuscular junction pre-
cede or are caused bymuscle dysfunction [98]. YAP expression in
muscle is elevated following denervation and may be a mecha-
nism to counteract neurogenic atrophy [49]. However, YAP also
influences the development of the neuromuscular junction in skel-
etal muscle [99]. Therefore, the upregulation of YAP due to de-
nervation may serve a dual function: to preserve muscle mass and
to regulate neuromuscular junction regeneration.

YAP and TAZ possible roles in reversing senescence in
satellite cells

In aged muscle, satellite cells either lose their stem cell properties
or decrease in number [81], which then leads to impaired muscle
regeneration. During ageing,muscle satellite cells slowly lose their
differentiation capabilities and become senescent [100]. In this
state, they are no longer able to proliferate, even after an injury.
Decreased p18INK4α expression and its dysregulation accelerate
ageing in satellite cells by decreasing the number of active self-
renewing satellite cells that express Pax7+Ki67− [101].

An exciting recent development regarding YAP/TAZ is their
capability to induce mature cells back into a stem cell state. Zhao
et al. [102] reported a new method to generate induced
Pluripotent Stem Cells (iPS Cells) when they found that activat-
ingOct4, Sox2, and Yap allows amniotic epithelial cells to regain
stem cell properties. They speculated that harnessing this ability
of YAP to induce senescent satellite cells back into functioning
satellite cells could be a viable approach to chronic diseases
associated with ageing [102]. Another group found that YAP
overexpression allows iPS cells to regain back their potency
potentials to a level similar to embryonic stem cells [103].
Thus, YAP helps maintain the characteristics of stem cells
[104] and are expressed in almost all progenitor cells, including
those within the inner cell mass of embryos. Thus, YAP not only
plays important roles in embryonic development but also is need-
ed to maintain stem cell potency [104].

Interestingly, overexpressing YAP increases the number of
Pax7+ cells and contributes to muscle proliferation [46], po-
tentially opens a therapeutic avenue for increasing satellite
cells by inducing YAP expression. However, although YAP
activation promotes proliferation, its overexpression alone is
not sufficient to activate quiescent satellite cells [51]. Taken
together, YAP can convert mature cells back into their plurip-
otent state in several tissues, including muscle. However, fur-
ther research needs to be performed to determine the effects of
YAP activation in aged skeletal muscle since their activation
may help delay progressive muscle atrophy due to ageing.

Conclusions

YAP/TAZ regulates several ageing pathways. Since the
Hippo pathway is typically associated with organ size regula-
tion, YAP/TAZ upregulationmay decreasemuscle atrophy. In
addition, their function as mechanoreceptors may provide a
unique signalling pathway to influence their expression, espe-
cially during exercise, muscle regeneration, and ageing.
Autophagy is also a significant pathway implicated in skeletal
muscle ageing. However, the influence of YAP/TAZ on this
pathway has yet to be fully explored. YAP also plays a sig-
nificant role in maintaining pluripotency and represents
a novel target for improving stem cell therapy. YAP/
TAZ also has the potential to prevent atrophy and reju-
venate aged cells; however, inducing YAP needs to be
considered with caution since there may be an increased
risk for oncogenesis. There is an urgent need for further
research in understanding these areas, particularly since
the elderly population is increasing rapidly in many
countries. Modulating YAP/TAZ function in mature
muscle cells, satellite cells, fibroblasts, and surrounding
motor neurons offer potential new strategies to prevent
or treat skeletal muscle atrophy in those patients.

Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing
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