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Abstract

Our study uses the grey relational analysis (GRA) and artificial neural network
(ANN) models for the prediction of consumer exchange-traded funds (ETFs). We
apply eight variables, including the put/call ratio, the EUR/USD exchange rate, the
volatility index, the Commodity Research Bureau Index (CRB), the short-term trad-
ing index, the New York Stock Exchange Composite Index, inflation, and the inter-
est rate. The GRA model results showed that the NYSE, CRB, EUR/USD, and PCR
were the four main variables influencing consumer ETFs. The GRA test results of
all the ANN models’ data showed that the back propagation neural network (BPN)
was the best predictive model. Based on the classification of different percentages
of training data, the results of GRA revealed that the radial basis function neural
network and the time-delay recurrent neural network exhibited consistent results,
compared to BPN and the recurrent neural network. The results also pointed out that
different percentages of training data were suitable for predicting consumer ETFs
performance based on high and low grey relationship grade variables. Evidence has
shown that the ETFs 1n Brazil and China are more predictable than those in other
countries. All ANN models’ results indicated that the use of 10% testing data could
predict consumer ETFs better, particularly the ETFs of the United States (US) and
those excluding the United States (EX-US). The Diebold-Mariano (DM) test results
suggest that the best predictability model for consumer ETFs 1s BPN, which 1s sig-
nificantly superior to other models.
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1 Introduction

The exchange-traded funds (ETFs) database (ETFdb) indicates that, since its intro-
duction in 1993, ETFs have become very popular with mvestors who are seeking
alternatives to mutual funds. Investors may see an advantage in such instruments.
ETFs are a set of assets designed to track an index, which offer lower management
fees and greater visibility of intraday prices. However, no investment is perfect, and
ETFs also have their drawbacks (small dividends, the large spread between the bid,
and the ask prices). Identifying the pros and cons of ETFs can help investors to man-
age the risks and rewards and to decide whether these securities make sense for their
portfolios (Palmer 2019).

We consider consumer discretionary and consumer staples ETFs. Discretionary
consumption is a sectoral classification of non-essential consumer goods and ser-
vices monitored by analysts and investors. Consumers tend to spend more on discre-
tionary consumer products during the economic growth stages, usually character-
ized by higher disposable mcomes. Discretionary consumption may be compared
to consumer staples, which 1s a classification of enterprises considered to produce
necessities (Scott 2020).

The New York Stock Exchange (NYSE) has started to launch the consumer ETF
on December 23, 1998. The first Consumer ETFs are Sector SPDR (XLY) and Sec-
tor SPDR Fund (XLP), classified as new ETFs, which have been growing. Since the
Consumer ETFs launch, the return rate of the top-ten consumer discretionary ETFs
and consumer staple ETFs has increased by approximately 261% and 132%, respec-
tively. Consumer ETFs have become popular to attract investors. By applying the
grey relational analysis (GRA) and the artificial neural network (ANN) models, we
predict the return volatility of consumer ETFs. Furthermore, we apply four different
ANN approaches, namely the back propagation neural network (BPN), the recurrent
neural network (RNN), the ime-delay recurrent neural network (TDRNN), and the
radial basis function neural network (RBFNN). We aim to measure the nonlinear
relationship between the discrete time series in a grey system and to examine the
possibility of this connection. The ETFs are mainly consumer ETFs from several
countries. We also seek to derive the nonlinear trends in order to better forecast con-
sumer ETFs.

We propose a novel methodology for forecasting ETFs, particularly consumer
ETFs. The test results of GRAs, which were sorted into different training data,
such as 10%, 20%. 33%. and 50%. revealed that RBFNN and TDRNN exhibited
more consistent results than BPN and RNN. We apply the root-mean-square error
(RMSE), the coefficient of efficiency (CE), and the mean average error (MAE) to
compare the forecast ability. The results revealed that the BPN and RNN models
consistently have the lowest values for consumer ETFs.

Using the GRA model, we identified the NYSE Composite Index, the Commod-
ity Research Bureau Index (CRB), the EUR/USD Exchange Rate, and the put/call
ratio (PCR) as the four key variables influencing the consumer ETFs. Based on the
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MSE., RMSE, correlation (r) measurements, and MAE results, we revealed that
BPN was the best forecasting model. By applying the ANN models to the consumer
ETFs, this work determined that the Global X Brazil Consumer ETF (BRA(Q)) and
Global X China Consumer ETF (CHIQ) were accessible, predicting the consumer
ETFs of other countries.

The results revealed that the ANN models using 10% data for test could better
predict consumer ETFs, particularly the United States (US) and those excluding the
United States (EX-US). However, the findings indicated that using 20% or 33% data
for test could better predict the BRAQ and Dow Jones Emerging Markets Consumer
Titans Index Fund (ECON). Using 50% data for test can better predict the CHIQ.
The Diebold-Mariano test’s results revealed that BPN performed the best forecast-
ing accuracy for consumer ETFs and determined that the forecasts are significantly
different from other models.

We provide an innovative methodology for determining the best forecasting
model to help investors choose the best investments. By reviewing previous research
in consumer ETFs, we contribute the analysis to apply the GRA and ANN models to
evaluate consumer ETFs and help investors make better decisions when investing in
consumer ETFs to enhance investment returns.

We introduce consumer ETFs classified by country, such as the US, excluding
the US. emerging markets, Brazil, China, and India. The relevant literature review
describes previous studies on forecasting consumer ETFs and appropriate finan-
cial instruments. Next, the GRA and four ANN model types, namely BPN, RNN,
TDRNN, and RBFNN, are explained. Finally, the empirical findings, as well as the
conclusions reached, are discussed.

2 Related literature

Consumer ETFs quickly became famous worldwide and were divided into con-
sumer discretionary ETFs and consumer staple ETFs. Bollapragada et al. (2013)
used different techniques, including single exponential smoothing, Holt's exponen-
tial smoothing, and various versions of the Box—Jenkins [autoregressive integrated
moving average (ARIMA)] models, to forecast ETFs. They found that multiple
regression was the most appropriate method. Yang et al. (2010) reported unconvine-
ing predictions using the generalized autoregressive conditional heteroskedasticity
(GARCH) models.

The grey relational analysis (GRA) model 1s formed by estimating the relation-
ship between two discrete time series in a grey system theory (GST). The grey
theory stands for insufficient and unclear information compared to white (knowing
everything) and black (knowing nothing) dealing with system problems. Also, the
incomplete information of grey theory retains considerable room for flexible adjust-
ment. The likelihood of such a relationship may change after a while (Deng 1989).
Likewise, Kung and Wen (2007) decided that significant financial variables, such as
the ratio of operating revenues to long-term investments and the ratio of operating
revenues to total assets, have dealt with venture capitalists’ financial transactions.
Lin and Wu (2011) reported that the GRA model might analyze the financial data
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used to construct banks™ first financial crisis warning models. Hamzacebi and Pek-
kaya (2011) used the GRA. They revealed that financial ratios, such as the price/
earnings ratio, the profit margin on sales, and the market/book value, are usually
used for stock selection in the production sector. Jiang and He (2012) showed that
the GRA model could accurately assess and predict China’s financial instruments.
The purpose is to examine the power of the GRA model for evaluating the perfor-
mance and attributes of consumer ETFs. To our best knowledge, there has not been
any study on consumer ETFs. We will, therefore, serve as the first consumer ETFs
study.

In previous studies, predictions in finance have been focused on artificial neu-
ral networks (ANN) models. Bekiros and Georgoutsos (2008) have used recurrent
neural networks (RNN) to predict the direction of market changes in the NASDAQ
composite index. Sookhanaphibarn et al. (2007) used three neural networks: learn-
ing vector quantization, the probabilistic neural network, and the feedforward net-
work with backpropagation learning, for bankruptcy forecasting in Thailand, while
Armano et al. (2005) used the feedforward artificial neural network (FANN) to per-
form local-scale market index predictions. Previous research by Poddig and Rehku-
gler (1996) provided accurate forecasts for the stock, bond, and currency markets
of the United States, Japan, and Germany. Hamzacebi (2008) suggested an artificial
neural network (ANN) structure in the seasonal prediction of time series. The results
of previous studies have shown that ANN models could provide accurate forecasts
for the financial field. Ho et al. (2002) found that RNN at the optimal weighting fac-
tor performs well against the ARIMA model in forecasting time series.

Experimental results suggest that the combined ARIMA and ANN models can
improve the predictive accuracy achieved by either of the models used separately.
Zhang (2003) and Zou et al. (2007) concluded that the ANN model 1s the best
model, relative to ARIMA, and can be used as an alternative method to model the
future price of food grains in China. Singhal and Swarup (2011) revealed that an
ANN method 1s being developed for predicting market clearing prices (MCPs) for
one-day energy markets. The neural network structure is a three-layer BPN model
and shows that the market’'s deregulated electricity price depends strongly on the
trend in load demand and the clearing price. Their findings showed that the neural
network model was reasonably reliable for trend analysis.

ETFs have developed a well-known research topic for finance (Boehmer and
Boehmer 2003: Peterson 2003:; Alexander and Barbosa 2008: Jarrow 2010;
Charupat and Miu 2011; DeFusco et al. 2011). Previous research has shown
that ETFs are potential portfolios and one of the investment products that can
successfully be scaled up on the capital market. Krause and Tse (2013) defined
Granger’s daily causal relationship between Canadian and US ETFs using an
autoregressive vector model. They noted that US industry ETF returns are higher
than those in Canada in a broader marketplace. Chen (2011) found no dissimilar-
ity regarding the impact of volatility and leveraging on ethical and non-ethical
ETFs. In contrast, Chen and Diaz (2012) used the exponential generalized autore-
gressive conditional heteroscedasticity (EGARCH)-in-mean model and revealed
the spillover and asymmetric volatility effects of leveraged and inverse lever-
aged ETFs. Based on the autoregressive fractionally integrated moving average
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(ARFIMA)—{ractionally integrated generalized autoregressive conditional heter-
oskedasticity (FIGARCH) model, Chen and Diaz (2013) revealed the existence of
long-term memory attributes in the volatilities of non-green ETFs.

Estimating with ANN models has been controversial over the past decade
(Zhang et al. 1998; Hamzacebi et al. 2009). Motivated by examining the human
brain, ANN models can simplify practices. ANN models are currently used for
various business, industry, and science domains (Widrow et al. 1994). ANN mod-
els have been successfully used in training networks to measure the cost curve in
the accurate prediction of flour prices (Chakraborty et al. 1992). ANN 1s much
more predictable than linear regression by utilizing 384 subsets of economic
and demographic time series from chemical engineering applications (Foster
et al. 1992). Enke and Thawornwong (2005) predicted stock market returns and
observed that an organizational model’s trading approach generated higher risk-
adjusted earnings than the buying-and-holding strategy. Chen and Fang (2008)
used ANN, GARCH, and random market models for predicting the Asian cur-
rency unit. The ANN models performed better than both the GARCH and random
models. The research has identified ETFs as being supportive and engaging port-
folios for consideration.

Deng (1989), Liu and Lin (2005), and Kayacan et al. (2010) pointed out that
the GRA has been one of the best analytical tools. Moreover, this model pro-
vides the appropriate tools for observing the ranking of multiple variables and
examines the order of particular aspects (Kuo et al. 2008). The GRA model has
recently been applied to many applications, including economic decision-making
and marketing research (Yamaguchi et al. 2004; Cenglin 2012) and financial per-
formance (Kung and Wen 2007). Furthermore, Hu (2007), Zhao et al. (2012),
Cenglin (2012), and Chang et al. (2013) used the GRA to predict and explain the
relationship among variables.

Hu (2007) applied efficient methods such as the GRA and RBFNN to measure
learning costs across all dual competencies. Li et al. (2012a, b) indicated that the
GR A model predicts electricity use more accurately than the limited sample size.
Similarly, Chang et al. (2013) examined the relationship between online gaming
revenues and Internet users in Taiwan, R.0.C., for predicting the trend in revenue
growth. Wang et al. (2012) used a hybrid method by combining the exponential
smoothing model, the ARIMA model, and the back propagation network model
(BPNN). Their results displayed that the hybrid model could predict and explain
the relationship between real stock prices in China and the United States.

Donaldson and Kamstra (1997) utilized the GARCH, EGARCH, and GIR
models connected with the ANN and estimated the predictability of return vola-
tility in London, New York, Tokyo, and Toronto. Using ANN models to deter-
mine the stock index option price, Tseng et al. (2008) revealed that the Grey-
EGARCH volatility was more predictable than other volatility methodologies.
Hadavandi et al. (2010) confirmed that fuzzy genetic systems and ANN are the
best predictive models to estimate stock prices in the information technology and
airline sectors. Ticknor (2013) reported that the ANN standard Bayesian model is
robust for forecasting financial market behavior.
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3 Dataand methodology

This work collected data sources from the ETFdb and Yahoo! Finance website as
of May 2014. Consumer ETFs can be sorted by countries like the United States
(US), excluding the United States (EX-US), emerging markets, Brazil, China, and
India, as shown in Table 1. We will use information from the different incep-
tion periods to the most recent data. In this study, several countries compare their
highest forecasting levels. The Diebold-Mariano (DM) test 1s being studied to
provide an assessment framework for various consumer ETFs forecast models.

We extracted the macroeconomic and financial variables with the view to influ-
encing consumer ETFs. Table 2 shows the sources of information for the mput
variables, namely the PCR, the USD/EUR exchange rate, the volatility index
(VIX), the CRB index, the short-term TRIN, and the NYSE composite index used
in the present study.

This study includes PCR, measured by the market sentiment, and examines the
influence for consumer ETFs. The measurement of PCR 1s a ratio of the number
of traded put options to the number of traded call options. Investors may use their
money more on put options than on call options with an increase in the PCR. This
condition instructs investors to speculate on the market’'s worsening or the start
of hedging their portfolios. Investors need to focus on PCR, as the growth in this
ratio reflects a partly bearish market. Simon and Wiggins (2001) indicated the
negative relationships between PCR and the Standard and Poor (S&P) Futures
Index. The significant results showed that the PCR reflected a bearish market and
1s a signal for trading, including ETFs (Houlihan and Creamer 2019). Bandopad-
hyaya and Jones (2011) found that PCR is a better explanatory variable than the
VIX for changes in the Standard & Poor’s 500 index.

The next variable related to consumer ETFs 1s the USD/EUR exchange rate.
Maya and Chen (2018) revealed that the Euro could strongly affect agricultural
ETNs by using ANN. The purpose 1s to analyze the high correlation between con-
sumer ETFs and exchange rates. Historically, financial analysts have seen a strong
linkage between ETFs and the S&P Futures Index. Since the start of 2009, the
strong relationship between SPDR S&P 500 (SPY) and the Barclays Aggregate
Bond Fund has been significant, reaching .94, However, there has been a reverse
correlation between the SPDR Gold Trust and SPY.

Another interesting financial variable that 1s used to determine consumer ETFs
1s the VIX. Previous research has shown an opposing variable to the S&P futures
index (Simon and Wiggins, 2001). The VIX 1s a widely assessed measure of fear.
However, higher volatility is not a new phenomenon. Essentially, the volatlity of
the S&P 500 index, as measured by 2% index movements on a given trading day,
has risen sharply over the past decade, compared to the historical averages. From
1973 to 1982, the S&P 500 index had less than 100 trading days, a 2% movement
in both directions.

The CRB index 1s an index that measures the general track of the commod-
ity sectors, and it distinguishes and determines the directional price movements
in the general commodity trade. Acharya et al. (2009) used the CRB index to
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represent an Index of Inflation (INF) and examined how it affects investment. Pre-
vious research has shown a mutual connection between the CRB index and the
Shanghai Index (Géleg et al., 2012). Ho et al. (2010) found a bi-directional rela-
tionship between the CRB Index and the Gold Futures Index. We use the CRB
index as a financial variable because of the consumer ETFs traded in the com-
modities sector.

The Arms Index is applied for short-term trading to calculate the mtra-day market
supply and demand. If the Trading Index (TRIN) value 1s 1.0, then the ratio from the
high volume to the low volume 1s related to the advancing 1ssues’ rate to the declining
1ssues. The market represents a neutral status, where the index equals 1.0. This neutral
state 1ndicates that the lhigh volumes are evenly distributed over the ongoing issues,
while the low volumes are evenly distributed over the declining issues. Also, the TRIN
provides a bullish signal when the index is below 1.0. In the meantime, the average
stock has a higher volume than the average downgrade of the stock. Several analysts
have determined that the index’s long-term balance 1s below 1.0, which could confirm
a bullish bias in the stock market. On the other hand, if the TRIN 15 above 1.0, seen as
a bearish signal, then the average declining stock has a higher volume than the average
increasing stock. Simon and Wiggins (2001) found that the TRIN 1s negatively related
to the S&P Futures Index.

We used the NYSE Composite Index to evaluate all listed firms’ performance on
the NYSE, including real estate investment trusts, American depositary receipts, and
tracking stocks. In January 2003, the NYA re-established the NYSE Composite Index
by using a new approach that 1s entirely transparent and rule-based. This approach
excludes all fixed funds, ETFs, partial partnerships, and index derivatives. Maya and
Chen (2018) found that the NYSE Composite Index strongly influenced agricultural
ETFs and ETNs using the GRA model.

The current study uses INF, one of the key financial variables, to examine the rela-
tionship of consumer ETFs. An increase in INF will usually affect the consumer’s
decision to buy goods and services. Many previous studies have pointed out that the
INF has an impact on consumer behavior. Arora et al. (2013) and Hajzler and Fielding
(2014) observed a negative correlation between INF and consumer behavior, reflecting
energy and food prices. Georganas et al. (2014) found that INF influenced consumer
perceptions, which caused various goods’ prices to increase.

Another variable that influences the purchasing power of the consumer is the interest
rate (INT). Juselius (1995) found a link between the purchasing power parity and long-
term interest parity. The INT has a significantly strong correlation with the consumers’
decisions about household behavior (Edelberg 2006). Chisasa and Dlaminier (2013)
reported that higher INTs negatively affect consumer expenses, particularly for durable
goods such as automobiles 1n South Africa. Wang and Hu (2015) also observed a cross-
correlation between the INT and commodity markets, such as the rice, corn, soybean,
and wheat markets.
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3.1 Grey relational analysis

Deng (1989) proposed the GRA and applied it extensively to evaluate financial
variables. The GRA theory is created by measuring the relationship between
two discrete time series i a grey system. The likelihood of this connection may
change over time. The GRA procedure calculates various auxiliary components
applied to examine the sets of random factors with missing messages. There-
fore, only a small amount of data 1s needed to control the correlation between the
determinants.

Many previous studies have used GRA in their financial application. Kung and
Wen (2007) identified the key financial variables affecting the financial success
of venture capital companies. Lin and Wu (2011) indicated that financial factors
could help develop early financial crisis alert models for banks. Hamzacebi and
Pekkaya (2011) used financial ratios when selecting stocks in the production sec-
tor. Jiang and He (2012) accurately predicted China’s real-time financial series.

The GRA model provides investors with assistance to assess and recognize
venture capital firms returns and attributes to reduce investment risk. Chang
et al. (2013) and Hamzacebi and Pekkaya (2011) proposed the following formula
based on the original study of Deng (1989):

1. Describe the original series:
% = (41,542,503, ... . (k) € X, (1)

where criteria: k=1,2.3,....n €EN, and alternative: i =1,2,3,...,mE X.

Define the reference series: The reference series can exist as maximums or

minimums. When the measure desires maximization (minimization), the linked

measure’s reference series value becomes the maximum (minimum) value of the
alternative series.
Xy = (X(1), %5(2). %5 (3)s .. Xy (V).

3. Normalization data:We conducted the pre-processing stage of the data before calcu-
lating the grey relationship grade (GRG), known as the grey relationship generation
(Hsia et al. 2004; Kung and Wen 2007). Then the data in the series can be processed
for the following three situations (Wu and Chen 1999; Kung and Wen 2007):

[

1. A high level of expectancy 1s favorable. If the situation 1s “the larger, the
better expectation example of the profit,” then we can use the following
equation:

xim (k) — min -x?"(ﬁ:}

Xi (k) = . () s D)y
max -x; (k) —min -x; (k)

11. A low level of expectancy 1s favorable. If the situation i1s “the smaller,
the better expectation example of the cost or loss,” then we can use the
following equation:
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max ~x:m(k) - xim (k)

max +x£m(k) — min ut?”(k)

x; (k) = (3)

ii. A nominal status for the best expectation is favorable. If the expected
specific value 1s between the maximum and the minimum objectives,
then we can use the following equation:

|x§”‘(k) - DB|

xik)=1- ’
max { max [x?”(k)] —0B-0B [min +I£m (k)] }

(4)
where x'(k) 1s the wvalue of the grey relation after
the normalization, min +x£m(k)‘. xEm stands for
the minimum value of (k) before normalization,

{0 ) . L.
max -x; ](A’} . " denotes the maximum value of (k) before normalization .

I

and OB : x?n(k) 1s the object value.
4. Calculate the grey relational coeflicient: The localization of the GRA reflects the
.. e () . -
association between the reference sequence X; (k) and the relative sequence X (k).
Thus, the grey relational coefficient & (xy(k), x;(k)) 1s expressed as follows (Lin
and Hsu 2001; You et al. 2006; Kung and Wen 2007):

'&mln + C"5“111.':.1L (S}
ﬁl]f(k} + gﬁmm‘. .

E(I“I:k:lw‘ff (k)} =

where { € (0, 1)is the notable coefficient, A (k) = |x,(k) — x,(k)],
Apin = min min Ayitk) = min min |Jcu (k) — x; (k)|, and

A= max max Ay (k) = max max by (k) — x; (k)|

5. Calculate the GRG:

The GRG process measures the association between the sequences measured
and sorted as a function of localization and GRG globalization (Lin and Hsu
2001; You et al. 2006; Kung and Wen 2007).

When all criteria have the same degree of importance, the GRG can be meas-
ured by (6).

For the different degrees of importance of the criteria, the GRG can be calcu-
lated by (7).

Y(Xp X)) = Z ﬂkf{*'fu(k:'exr'(k)}e (6)
k=1

Yx) = Y e (x,00),x,(0)), (7)
k=1
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where f, denotes weight value and EL] p,= 1. Depending on the importance of
each determinant in the sample, different weights can be ranked. By using equal
weights, GRG derived from the average value of the grey relational coefhicient,
that is f, ==, k=1,2.....n.

At the last stage, the order of the GRG is sorted in descending order. The grey
relational order may be described as the primary factors in the series connected
to the reference series. The highest value in the series shows the variable with the
most nfluence; however, the series’ lower value shows that the variable has the least
effect.

3.2 Artificial neural network for consumer ETFs

The application of ANN in the financial area has increased year by year. Wong et al.
(1997) and Wong and Selvi (1998) mvestigated journal articles published between
1988 and 1996 on how neural networks work across various commercial activities.
Kaastra and Boyd (1996) found that neural networks can make predictions with data
from economic time series, and Kim and Han (2000) used ANN models to fore-
cast the Korean Stock Price Index. The structure of ANN models has three levels,
namely:

(1) the “processing element” (or artificial neurons) defines the basic unit,
(2) the “layers™ is formed by the processing elements, and
(3) the “network™ 1s composed of several layers.

The version of Braspenning et al. (1995) discussed as follows:

3.2.1 Back propagation neural network

The BPN has an architecture called multilayer perception (MLP) and uses the EBP
as 1ts learning algorithm (Azadeh et al. 2008; Zhang and Wu 2009; Huang and
Wang 2008; Wang et al. 2011).

Numerous studies have used the BPN to address the actual issues. Chang and
Wang (2006) used it to estimate sales in the printed circuit board industry, while Li
et al. (2012a, b) indicated that the BPN could detect fiber optics. Wang et al. (2011)
identified the BPN as an efficient algorithm that can be used to predict the Shang-
hai Composite Index. Guresen et al. (2011) used GARCH., MLP, dynamic ANN,
and hybrid neural networks to extract different input variables. They applied the real
daily exchange rate values of the NASDAQ Stock Exchange Index.

The BPN involves transmitting directly from the input to the input layer’s hidden
layer and calculating the weighted accumulation. The BPN generates an output with
a transfer function that 1s fed into the output layer. Note that the transfer function,
called the sigmoid function, is typically used as follows:
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. 1

flx)= Ter (8)
where x 1s called the input layer. Moreover, the network augments related to a hud-
den layer in the system, revealing the relationship between input processing ele-
ments. The reduction of the error function requires the smooth transition function
and the gradient steepest descent method. The method used to derive the formula of
modified network weights 1s obtained when the output of processing element j in the
layer n becomes the nonlinear function of the output of processing elements in the
layer n — 1, which 1s expressed as follows:

Al = f(uet;_') = Y wArt -0, ). )
i

where f represents the transfer function; W, indicates the weight of nel;_’:ac:tivity
function processing element i in the layer n — 1, in addition to processing element j
in layer n; and @, denotes the bias of processing element j in the layer n for the
threshold value.

The BPN decreases the differences between the output of the network and the
target output. The learning quality of this supervised learning 1s stated by the
error function E as follows:

1 ,
E=3 Z (T; = 4;)° (10)

!

where T, represents the goal output of the processing element j, and A; represents
the network output of the processing element ;.

The procedure modifies the weight in the array, while processing the training
example. The sensitivity and error functions of the partial weight-for-adjustment
differential and the error function are correlated proportionally, and are extracted
as follows:

oE

AW, = —n - 2E
T ow, (D

I

where 5 denotes the learning rate, which recognizes the amplitude for the gradient
steepest descent method to alter the error function. W; represents the output and hid-
den layers and can be calculated as follows:

oE I =1

ow, ~ oA (12)

where A’r.’_] is the output of the processing element in the lower layer, which is

related by W, 6;.' denotes the gap of the processing elemcu.t in the upper layer, which

1s accompanying by W,.. By substituting AW, = —n - %, it derives the following
d W

equation:
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_ 1 =1
ﬂij_nrﬁf'-Ar.' . (13)

This equation expresses that the input 1s adjusted and serves as a training sample of
weight formation. This equation is critical for the backpropagation algorithm.

3.2.2 Recurrent neural network

The RNN 1s a dynamic neural network, with links between the units in a directed
cycle. The network incorporates the time factors for completing the formation. The
procedure feeds the neuron’s output value into the hidden layer or output layer to
develop the neuron’s output in the next step (Elman 1990). The learning process is
accelerated due to inter-neuronal feedback mechanisms (Ge et al. 2007; Wang et al.
2013).

The forward propagation of the network multiplies the output x;(f) by an equiva-
lent weight wﬁ(r); netf(r) 1s the product of that process. The network converts l]ElJ,—(I:I
through a nonlinear function f to obtain output y(1) in the feedback processing layer.
This process of multiplying y,(7) by a corresponding weight v;,(z) again produces a
product net,(7). Notably, net,(r) defines transformed through a nonlinear function f
and obtains the product z,(7) in the output layer. This relationship can be expressed
as follows:

v;(£) = f(netyr)),

net,(r) = Z v (0¥;(0). (14)

The real-time recurrent learming (RTLR) algorithm consists of the most com-
monly used type of RNN (Elman 1990; Ge et al. 2007; Wang et al. 2013). RTLR
adjusts the weight vector of the network connection in real time. Assuming that d, (1)
represents the output value of neuron k in the output layer at time ¢, and e(r) repre-
sents the error vector at time , the unit k£ can be expressed as follows:

e (1) = di(t) — 7,(1).

The instantaneous error function E(t) at time f can be expressed as follows:

K

En=3Y &), (15)

= k=1

(a) The gradient steepest descent method serves as the basis of the correction of spe-
cific weight v;(¢) and 1s expressed as follows:

dE(t)
&vw.(r}*

Avy(t) = —m (16)

where #, represents a positive constant and 1s called the learning rate. The partial
differential of the error function E(#) with respect to the weight "A-;(r] can be calcu-
lated by utilizing the chain rule as follows:
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oE ,
&ka((?) = —eg (1)f (llel;\-(r]]}’;(r}. a7

(b) The gradient steepest descent method serves as the basis for the correction of
specific weight w,, () and is expressed as follows:

dE(t
Aw, (t=1)=—n @)

29w = 1)’ (18)

where 1, denotes a positive constant called the learning rate. In general, the partial
differential of the error function E(z) related to the weight w_ () can be measured by
utilizing the chain rule as follows:

K
OF ) ay,(1)
ﬂw,mrtiril): 2, e et vy | 5o

k=1 lwm:r(r - ]) (]9}

3.2.3 Radial basis function neural network

The RBFNN is a mix of learning processes, combining mutually unsupervised and
supervised learning rules. Unsupervised learning is used to identify the cluster
center and to determine the initial value. The RBFNN was recommended by Broom-
head and Lowe (1988), in which linear optimization techniques guarantee the learn-
ing process for analyzing the adjustable weight layer’s special assessment. Shen
et al. (2011) used the RBFNN to form data to rapidly and accurately predict Shang-
hai stock market indexes. Wu and Liu (2012) reported that the RBFNN model was
efficient and performed satisfactorily in predicting car fuel consumption. However,
the RBFNN may model an arbitrary nonlinear transformation, which 1s a new linear
perception.

The RBFNN model 15 similar to the architecture of BPN, which consists of three
layers. The input layer contains the import information for each input node attached
to all hidden nodes in the single hidden layer. The hidden layer consists of an array
of nodes, one for each radial base function center (Broomhead and Lowe 1988). The
Euchidean standard 1s generally used for estimating the distance from the middle
of the input value. In turn, this process takes into account the optimum number of
cluster centers in the second layer. Establishing many radial base functions through
curve adjustment 1s one of the main features of RBFNN, which leads to learning the
mapping relationship between the input and output values. As indicated by Bors and
Gabbouj (1994) and Bors and Pitas (1996), the Gaussian function is the most widely
used in the RBFNN and 1s expressed as:

90 =exp |-X =)’ YT X =g, forj=1. L Q0)

where X denotes the input feature vector, L is the number of hidden units, and g;
and )’ ; stand for the mean and the covariance matrix of the jth Gaussian function,
respectively.
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The graphical demonstration of the RBFNN model 1s expressed in the following
equation:

k
Y -, 1)
=1

where ¢ denotes the cluster center for each node of the hidden layer, x 1s the input
vector, and v represents the vector that shows the range of length between input
nodes and cluster center of each hidden layer.

)
[l — ell”

R(|lx = cl}) = exp (_T) ; (22)

i

where ”r — c‘f” denotes the Euclhidean distance between x and C;.

3.2.4 Time-delay recurrent neural network (TDRNN)

Based on an extensive neuronal model, the TDRNN model achieves the benefits
of adaptive delay and recurrence. It manipulates time information from the input
sequences using adaptive delay and recurrent connections n’aibel 1989; Kim 1998;
Lin et al. 1992). The internal state us can be assessed as additional mputs at time t
under the duplication procedures of hidden units at time  — 1. The TDRNN uses and
adjusts adaptable synaptic weights and flexible time lags for evaluating the intercon-
nection between the input and the hidden units. The delay box comprises intercon-
nections from the input layer to the first hidden layer and the intenll state layer
to the first hidden layer (Waibel 1989; Kim 1998; Lin et al. 1992).The net inputs
ne derived from the activation values for the last neuron. They can be summed up
through the equivalent time delays, based on each connecting line at the time of unit
J on layer h that takes a weighted sum, as follows (Waibel, 1989; Kim, 1998; Lin
et al., 1992):

K:_l_'.ll—|
net;, (1,) = Z Z Ojith—1 * X1 Ty = Tigh-1 s (23)
iEeN,_, k=1

where netﬂr(r”] denotes the product of the TDRNN process; a, , (7, — rﬁj_,_h_,) is the
activation level of unit i on layer & —1 at time 7, — 7;; ;. N, represents the set of
nodes of layer i—1; and .’i’ﬂ_. 4 denotes the total number of connections to node j of
layer h from node i of layer h —1.

Through the selection of a sigmoid function, the output of node j 1s determined
by using a nondiminishing function f of the net input (Kim 1998).

a,(t,) = {f}-fr(“e‘;.h(fﬂ)) ifh>2
J'-.Jll ne

a;(t,) ifh=1" (24)

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.




The forecasting of consumer exchange-traded funds (ETFs). .. 795

i Bin
0 [ p(net) = Tremm Yide (25)
1
where r:rj-_[,(rn) denotes the jth channel of the in.ll signal at time 7,; @; s ﬁf.h. and Yih
represent real numbers: and —y; ;, and fi; ;, — ; ; are the upper and lower limts of the
sigmoid function, respectively. The steepness of f,(net), for example, j;h({}), is
(ar- ﬁjﬁ)ﬁl (Kim 1998; Lin et al. 1992),

The mternal state vector at a ime £, 5,,_,(%,). 15 expressed as follows:

where A, (f,_,) denotes the activation vector of the second hidden unit at a time

I i
=1
An instantaneous error measure stands for the mean square error (MSE) as fol-

lows (Kim 1998; Lin et al. 1992):

Sp1(ty) = Ay (iy)s (26)

?(In) - %EEE (d;(t,) — ﬂj}r+2(zn:')2* (27)
Ny+z

where Ny, represents the set of nodes of the output layer, and d,(z,) 1s the preferred
target number of output node j at a time ¢,

The weights (w) and time delays (7) are rearranged by applying an amount that 1s
equivalent to the opposite direction of the error gradient, as follows (Kim 1998; Lin
et al. 1992):

A 0E(t,)
Wiikh = —M , 28
! MWk (%)
A 0E(t,)
T p = — .
jikh = M Tn (29)
where 1, and #n, stand for the learning rates.
The summary of the learning rules can be expressed as follows:
AW -1 = M0 (1) (8 = Ty 1) (30)
Aot = M)W g1 @0y By = Ty )s (31)
where
(di(t,) — aﬂ,(r,,)l,f’(nelf_h(r,,)). if j is an output unit
E_ (I ): K,'.le 1
JH 2 2 Spnet ()W n(t,) |f' (net; (t,)), if j is an output unit
PEN; . g=I1
(32)
@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.




796 M. Malinda, J.-H. Chen

(dilt,) — aj-_h(rn)lf"(netf_h(rn)}, if j 1s an output unit
— K,'.l,l.h 1
Prt) = oy Pp et EdWhia 1(2,) "(net; ,(2,)), if j is an output unit -
PEN g=1
(33)

3.3 Diebold-Mariano (DM) test for ANN models

We use the Diebold-Mariano (DM) test proposed by Diebold and Mariano (1995) to
test ANN models for improving predictive accuracy. This comparison includes BPN
versus RNN, BPN versus TDRNN, BPN versus RBFNN, RNN versus TDRNN, and
RBFNN versus RBFNN for each ETE. The DM test uses 1t possible to distinguish
the significant differences in predictive accuracy between the various models, based
on the quantitative analysis diagram (Chen et al, 2014).

Suppose that two predictions f,, ..., f, and g, ..., g, for a time series are linked
with vy, ..., v,. Let g; and r; be the residuals for the two forecasts, 1.e.

The forecast residuals are defined as follows:

ﬁJf = }.-

i—f =Yg (34)
Forecast residuals are defined as follows:
d, = fr.l - Jr'r2 or d; = |€,-| - |r,-|, (35)

and let d; be defined as one of the following.

The time series 1s called the loss-differential. The key assumption for using the
Diebold—Mariano test 1s that the loss differential ime series d; 1s stationary (Zaiontz
2020). The first of these formulas 1s related to the MSE error statistic, and the sec-
ond 1s related to the MAE error statistic. Now define Loss-differential mean as:

_ ] I
d:;ZdEM:E[dE], (36)
i=1

For n>= k=1, define:

n

=y Y (4-d)(due-d), (37)

i=k+1

where autocovariance is at lag k.
As described in autocorrelation Function r, 1s the autocovariance at lag k.

M= d .
_ 38
‘\/["u +2 ZL; r|/n (33)

For hz1, we define the Diebold-Mariano (DM) statistic, where the value
13
+1.

D

h=n
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The DM test 1s based on a standard normal distribution. The null hypothesis
indicates that an equal predictive capacity exists between the models. The alter-
native hypothesis regarding the higher predictability of the model has the lowest
value of the loss function.

3.4 Empirical results

Table 3 reveals the results of the GRG for consumer ETFs. These studies determined
that the NYSE Composite Index, the CRB Index. the EUR/USD Exchange Rate,
and the PCR are the four main variables influencing consumer ETFs. However, the
short-term TRIN variable has the lowest influence on the classification, followed by
INT, INF, and VIX. This study 1s in line with previous research conducted by Kung
and Wen (2007), which used GRA globalization and found a significant relationship
between venture capitalists’ characteristics and financial performance.

The NYSE Composite Index has a strong impact on the Consumer Discretion-
ary Select Sector SPDR Fund (XLY), the Consumer Staples Select Sector SPDR
Fund (XLP), the SPDR S&P International Consumer Discretionary Sector ETF
(IPD), the SPDR S&P International Consumer Staples Sector ETF (IPS), and the
EGShares India Consumer Exchange-Traded Fund (INCO). The results show that
the NYSE Composite Index can measure the performance of equities, tracking
equities, and ETFs. A bilateral link between the ETFs and market indices have
been observed (Chen 2011; Chen and Diaz 2012; Chen and Malinda 2014).

Table 3 Consumer ETFs and GRGs of eight determinants

Category ETFs Xl X2 X3 X4 X5 X6 X7 X8
USEUR CRB NYA VIX PCR TRIN  INF ITR

Us XLY 230520 230664 2300676 229.889 230464 195513 227862 195.743
Ranking 3 2 1 5 4 8 [ 7
XLP 230,630 230737 230,771 229777 230393 195438 2274976 195.656
Ranking 3 2 1 5 4 3 [ 7
EX-US IPD 176,027 176237 176531 174183 175362 150.518 171057 156.864
Ranking 3 2 1 5 4 8 6 7
IPS 176.156 176349 176521 1740356 175453 150432 171.186 156.762
Ranking 3 2 1 5 4 3 [ 7
Emerging ECON 114188 114.145 114158 112886 113.029 922163 111.147 101.37
Market Ranking | 3 2 5 4 8 6 7
Brazil BRAQ 1199997 120,079 119892 118666 118914 969119 116.639 106338
Ranking 2 1 3 5 4 3 6 7
China CHIQ 137.790 137.889 137.832 136.845 137.232 117793 134.621 125840
Ranking 3 1 2 5 4 b (] 7
India INCO  86.6333 86.6424 868351 B6.1795 86,4375 704185 84.7315 77.812
Ranking 3 2 1 5 4 b 6 7
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Further results have shown that the CRB index variable has the most significant
influence on BRAQ and CHI(Q). The CRB index could be used as an indicator of the
INF, taking into account its impact on investments (Acharya et al. 2009). India and
China were the two largest countries that have experienced rapid economic growth
over the past three decades (Holscher et al. 2010). Besides, Brazil, India, and China,
which are part of the BRIC countries, have reported remarkable economic growth.
These findings show that BRAQ, CHIQ, and INCO have good growth opportuni-
ties and investment potential. Therefore, investors should pay more attention to the
CRB Index when investing in consumer ETFs in Brazil and China. Besides this, the
exchange rate variable has a considerable influence on emerging markets, such as
ECON. This ETF contains vital consumer goods and services company regulations
in developing markets. These corporations obtain most of their income from emerg-
ing market sales. Business people from emerging markets mostly use major curren-
cies, such as the EUR, to alleviate currency fluctuation. As such, the exchange rate
variable has strongly influenced the emerging market ETFs.

Table 4 reveals the effects of consumer ETFs, using ANN models categorized by
all variables, high GRG variables, and low GRG variables. We use MSE, RMSE,
MAE, and correlation (r) measurements to measure the ANN model’s perfor-
mance. The results of measuring the MSE of all variables showed that BPN 1s the
best predictive model. Consistent with other MAE measurements, the findings also
revealed that BPN performed well. The RMSE measurement shows that BPN 15 the
best prediction model, except for INCO (0.119). As previously reported by Oh and
Han (2000), Versace et al. (2004), Chen and Fang (2011), and Trang (2014), the
BPN model shows that it has a predictability of financial instruments vis-a-vis RBF,
RNN, and TRDNN. The correlation measure (r) indicates that BPN has a high cor-
relation between the variables, except for BRAQ (0.684) with the RNN measure.
Zhang and Xiao (2000) and Diaz (2012) also found RNN effectively forecasts for a
small sample.

The findings of MSE, RMSE, and MAE measurements revealed that BPN 1s the
best prediction model for high GRG variables. The correlation (r) measurement
also shows that BPN 1s superior to other models that show the connection between
variables, except for CHIQ (r=0.671) using TDRNN and ECON (r=0.850) using
RNN. The results of the MSE and RMSE measurements showed that BPN performs
well for the low GRG variables. The MAE measurement findings also revealed
that BPN 1s the best forecasting model, except for CHIQ (MAE =0.127) using the
RNN model. The correlation measure (r) also shows that BPN is the best predictive
model, except for BRAQ (0.366), when using the RNN model. Besides, Zhang and
Xiao (2000) and Diaz (2012) found the RNN and RBFNN are relatively significant
predictive models when using multiple variables. Tables 4, 5, 6 and 7 present the
GRG testing results for consumer ETFs based on the ANN model. The results of the
three statistical values (RMSE, CE, and MAE) and the four types of training data for
the test (10%, 20%, 33%, and 50%) were consistent with earlier studies conducted by
Andreou et al. (2002), Chen and Fang (2011), and Diaz (2012).

The test results of the GRG using the BPN model are presented in Table 5. The
RMSE test shows that XLY, XLP, IPS, and BRAQ for all variables performed better,
using 10% data for predicting ETFs; for example, XLY (RMSE =0.342). The use of
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50% data can better predict IPD (RMSE =0.231), CHIQ (RMSE=0.111), and INCO
(RMSE =0.304). For emerging markets, the findings for ECON (RMSE=0.269)
show that the use of 33% data leads to the best samples for prediction. The CE test
exhibits the best performance for 50% data for all variables, such as XLY, XLP,
IPD, BRAQ, CHIQ, and INCO. In contrast, the IPS and ECON test results indicate
that 33% of data leads to better predictions. The MAE test results are similar to the
results of the CE test. For all variables, 50% of the data can better predict XLY, IPD,
IPS, and CHIQ.

The testing results of the high GRG variables, including XLP (RMSE=0.386;
CE=-2799; MAE=0.338) and IPD (RMSE=0227; CE=-0.184;
MAE =0.169), can be better predicted by using 50% data. The ANN tests proposed
the use of 20% and 33% data to predict CHIQ and INCO, respectively. Using the
BPN model to evaluate low GRG variables, only IPD exhibited consistent results for
all the measurement tests (RMSE=0.241; CE = —0.334; MAE=0.192) when using
50% data for prediction. Lee et al. (2008) found that BPN performed better than
Chiao’s Bayesian model for medium- and long-term forecasts.

Table 6 shows the effects of the RNN model, which was used to anticipate the
best samples. For all variables, the RMSE test proposed the use of 50% data for
IPD, IPS, ECON, and INCO, and 33% data for XLY, BRAQ, and CHIQ. The CE
test results mostly proposed the use of 50% data, except for the use of 33% data for
BRAQ (—1.161) and 20% data for CHIQ (16.217). The high GRG variables results
showed consistency for all the tests (RMSE, CE, and MAE), such as using 50% data
for XLY, XLP, and IPD predictions and 20% for CHIQ predictions. Moreover, we
determined that only IPD and BRAQ for low GRG variables had consistent results
for all tests that used 50% data for prediction. Likewise, Tables 10, 11 and 12 in an
“Appendix” exhibit the effects of consumer ETFs for the GRG, using the RBFNN
and TDRNN models and comparing the forecasting ability using ANN.

As explained above, the NYSE Composite Index, the CRB Index, the EUR/USD
Exchange Rate, and the PCR are the top four consumer ETF variables by country.
In contrast, the short-term TRIN variable has the least impact on classification,
followed by INT, INF, and VIX. Comparing the ANN models’ forecast ability for
consumer ETFs classified by country, the eight variables divided into two groups,
namely high GRG variables and low GRG variables, as shown in Table 7. This
work uses three measures, RMSE, MAE, and CE, to examine which group has an
improved forecasting capacity.

The GRA’s empirical effects constructed with the BPN, RBFNN, and TDRNN
models consistently showed that CHIQ has the best forecasting model examined by
the RMSE and MAE tests for the groups of all high GRG variables and low vari-
ables. Moreover, the CE tests consistently revealed that BRAQ exhibited good pre-
dictions. Using the RNN model, we found that the CHIQ for high GRG variables
and low GRG variables had an excellent predictive efficiency. Moreover, BRAQ) for
all variables and low GRG variables and ECON for high GRG variables worked
well. At the same time, other findings showed that IPS exhibited better performance
for all variable categories, using only the RNN model.

The three ANN models (BPN, RBFNN, and TDRNN) consistently show that
BRAQ and CHIQ are the best predictive models based on statistical tests. These
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findings suggest that consumer ETFs in Brazil and China were more comfortable
in predicting reliably. The RNN model’s effects indicate that IPS, ECON, BRAQ,
and CHIQ have good predictive results. These results differ from previous studies
(Zhang and Xiao 2000; Diaz 2012), showing that RNN is the best model, com-
pared to BPN, RBFNN, and TDRNN. However, we found the BPN, RBFNN, and
TDRNN models to be more consistent and accurate.

We aim to forecast the accuracy of the consumer ETF return categorized by
country. The comparative results of the forecasting ability, using the ANN for
consumer ETFs, based on the MSE test for 10%, 20%, 33%, and 50% testing
sets, are consistent with the results obtained by Chen and Fang (2011) and Chen
and Trang (2013), as shown in Table 8. The results of all variables show that
all ANN models consistently proposed the use of 10% data to predict the United
States ETFs, XLP, and XLY. This finding indicates that BPN, RNN, RBFNN, and
TDRNN can forecast XLP and XLY well at a test level of 10%. Other results of
the three ANN models (BPN, RBFNN, and TDRNN) also proposed using 10%
data to forecast ETFs that excluded the United States, such as IPD and IPS. In
line with previous studies by Zhang and Xiao (2000) and Chen and Trang (2013),
ANN models are efficient in providing predictions based on time series data.
However, the results of ECON and BRAQ indicated that the forecast utilized 33%
data for BPN and RNN. Furthermore, RNN and TDRNN can predict CHIQ using
33% data. Using the 50% testing level, the BPN, RNN, and TDRNN models have
good performance in predicting INCO because of the lowest MSE.

From the perspective of high GRG variables, the findings showed that most
ANN models proposed using 10% data for prediction, except for 20% data for
CHIQ and ECON. Based on the results of BPN, RBFNN, and TDRNN for pre-
dicting INCO, we proposed using 33% data excluding the United States (EX-US),
while the results of RBFNN indicated the use of 50% data for prediction. The
outcomes of the United States” ETFs (such as XLY and XLP) and the IPD for
all ANN models indicated the use of 10% and 50% data for forecasting associ-
ated with low GRG variables, respectively. ANN models can be useful predictors
with different test data samples (Chen and Fang 2008). We revealed that the low-
est measure of MSE of all, high GRG, and low GRG variables indicated the use
of 10% data for a precise forecast consistent with the results of Hong and Yoon
(2011), Gallego et al. (2013), and Monteiro et al. (2012).

The DM test results for ANN models, based on 90% of training data and 10%
of testing data to measure whether prediction accuracy 1s significantly different,
are presented in Table 9. For example, BRAQ's training data and testing data are
based on the 925 observations from 2010.7.9 to 2014.11.3. We compared several
pairs of ANN models, such as BPN versus RNN, BPN versus TDRNN, BPN ver-
sus RBFNN, RNN versus TDRNN, ENN versus RBFNN, and TDRNN versus
RBFNN, using the DM test. The best predictive model for all variables 1s BPN,
which is superior to other models with the exception of IPD and XLP. However,
the DM test results show that no model predicts better for the Dow Jones Emerg-
ing markets consumer Titans Index Fund (ECON).
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Table 9 The comparison of Diebold—Mariano (DM) test for ANN models

ETF Obs BPN BPN BPN RENN RENN TDENN Sig-

RNN TDRNMN RBFNN TDENN RBFNN RBFNN nificantly
different

BRAQ 925 58353 6.304 20914 5853 12.469 1.204 BPN
(0001 %% (0001 =+ (0001 **  (DO001)#**  (D001y*** (0,229

CHIQ 925 2.268 5.314 7077 3903 5.626 2.379 BPN
(0.023)%%  (0.001)*%*+ (0001 **  (O001)#**  (0001y***  (0.018)**

ECON 915 3.261 9.897 11.825 7419 9.430 1.023 -
(0.906) (0.669) (0.651) (0.756) (0.738) (0.980)

INCO 6% 2270 4.452 6.740 5169 7.320 4,984 BPN
(0.023)%% (0001 (0001 )=+ (0001 (0001 (0001 )***

IPD 925 1.386 8.479 9.084 7642 3.133 1.537 BPN
(0.166) (0.001y*** (0001 (0001)**++  (0001)*+*  (0.124) RNN

IPS 925 1.801 10.904 12444 9660 11.463 1.886 BPN
(0.072)* (0001 (0001 =+ (D001 (0001 (D.059)*

XLP 925 1.323 44955 44955 3836 3.836 1.387 BPN
(0.1859) (0001 (0001 =+ (D001 (0001 (.1653) RNN

KLY 925 1.695 7.461 5498 11.986 5.636 0.461 BPN

(0.090)* (0,001 %% (0001 %+ QOO0+ (0001 (0.6448)

Obs stands for observation. p value is given within parentheses
#etn <001 **p<0.05; ¥p<0.1

4 Conclusion

We used the GRA and ANN models for predicting the volatility of consumer ETF
returns. The impacts and contributions are summarized. We found that the four main
variables affected consumer ETFs according to the GRA, including the NYSE Com-
posite Index, the CRB Index, the USD/EUR Exchange Rate, and the PCR. The cri-
teria test (MSE, RMSE, r, and MAE) revealed that BPN exhibited an outstanding
performance concerning consumer ETFs forecasting. The GRA test results, classi-
fied into different data samples (10%, 20%, 33%, and 50%), showed that RBFNN
and TDRNN performed better than BPN and RNN. This finding is in line with Kim
(1998), who proposed that TDRNN obtained the best temporal signal recognition,
prediction, and 1dentification results.

We present a comparison of the forecasting ability of the ANN models. The
results suggest that the BPN and RNN models consistently have the lowest values
and predict consumer ETFs better (Oh and Han 2000; Versace et al. 2004; Chen and
Fang 2008; Diaz 2012; Trang 2014). The ANN models examined and compared the
forecasting ability of consumer ETFs, classified by country. The results showed that
BRAQ and CHIQ were more predictive than other ETFs.

Most ANN models indicated that 10% of the testing data were suitable for pre-
diction, particularly for the ETFs of the United States (US) and those excluding the
ETFs of the United States (EX-US). The ANN models were useful in providing
predictions that were based on a few time-series data consistent with the findings
of Zhang and Xiao (2000) and Chen and Trang (2013). The ANN models’ results
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indicated better predicting performance for evaluating consumer ETFs, with 20%
or 30% training data for BRAQ and ECON, and 50% training data for CHIQ. The
Diebold—Mariano test results showed that the best prediction model was BPN for
consumer ETFs, which outperforms other models except for IPD and XLP.

Finally, we contribute to the research of different learning schemes that influence
the efficiency of neural network models (Donaldson and Kamstra 1997; Pradhan and
Kumar 2008; Hadavandi et al. 2010; Ticknor 2013; Bekiros and Georgoutsos 2008;
Sookhanaphibarn et al. 2007; Ho et al. 2002; Zhang 2003: Singhal and Swarup
2011; Hamzacebr 2008). From the viewpoint of different input data, we assess the
highest-ranking financial variables that influence consumer ETFs among ANN mod-
els, and it examines the various input data testing methods. The findings will enable
policymakers to make the best decisions to confirm the financial market behavior,
identify what additional components are essential or sufficient for influencing inves-
tor behavior in the capital market, and formulate appropriate policies.

For fund managers and investors, particularly those interested in consumer ETFs,
we imply that ANN models with few data provide accurate predictions and establish
appropriate portfolio investment strategies, especially for the consumer ETFs of the
international finance market. It suggests that practitioners, investors, and academics
can mainly observe stock indices and get involved 1n theory building. For academ-
ics and practitioners, this research bridges the gap and ensures a strong correlation
between theory and practice. We aimed at improving neural network models for
the best prediction performance. To improve capital gains, investors need to look at
equity and benchmarks when investing in ETFs. The application of grey relational
analysis (GRA) and the artificial neural network (ANN) positively influence the
stock market indices.

The future study can apply ANNs for testing the hypothesis to classify consumer
ETFs that will fail as excellent performance ETFs (Type I error) and categorize con-
sumer ETFs that will perform poorly as one that will accept (Type II error). If other
approaches are more sensitive to exogenous variables connected with macroeco-
nomic factors and financial ratios, they may obtain different findings related to the
various preceding variables.

Appendix

Table 10 presents the impact of consumer ETFs on GRG. using the RBFNN tem-
plate. We found that high GRG and low GRG variables tested by RMSE, CE, and
MAE had similar results by specifying all variables. All tests for XLY, XLP, and
IPD suggested using 50% training data to define all variables. For the specification
of high and low GRG variables, the CHIQ results proposed using 20% training data,
and the INCO results suggested using 20% and 33% training data for forecasting.
Table 11 summarizes the TDRNN model results based on the GRG prediction
results. According to RBFNN results for XLY, XLP, and IPD, all measurement tests
(RMSE., CE, and MAE) show consistency and strongly suggest that consumer ETFs
can be better predicted by using 50% training data. Most measurement tests for
INCO propose the use of 50% training data for prediction. Other consumer ETFs,
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such as ECON, CHIQ, and BRAQ, are suitable for selecting different percentage
data for prediction.

We compare the forecastability for consumer ETFs as shown in Table 12. The
BPN and RNN models have the lowest values for consumer ETFs, based on the
average use of RMSE, CE, and MAE. The specifications of all variables in the BPN
model show that XLY and XLP have the lowest test values. Wang et al. (2013) found
that the RNN model has a better forecast accuracy and generalization performance
on real-time data. Using the RNN model, they revealed that the specifications of
XLP, IPD, IPS, ECON, CHIQ, and INCO were suitable for higher GRG variables.
The results showed that the RNN model has a relatively strong predictive capacity
for high GRG variables. In contrast, RBFNN is the best predictor of low GRG vari-
ables. In line with Pradhan and Kumar (2008) conclusions, ANN models are a pow-
erful tool to predict economic growth.
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