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Abstract

Our study uses the grey relational analysis (GRA) and artificial neural network
(ANN) models for the prediction of consumer exchange-traded funds (ETFs). We
apply eight variables, including the put/call ratio, the EUR/USD exchange rate, the
volatility index, the Commodity Research Bureau Index (CRB), the short-term trad-
ing index, the New York Stock Exchange Composite Index, inflation, and the inter-
est rate. The GRA model results showed that the NYSE, CRB, EUR/USD, and PCR
were the four main variables influencing consumer ETFs. The GRA test results of
all the ANN models’ data showed that the back propagation neural network (BPN)
was the best predictive model. Based on the classification of different percentages
of training data, the results of GRA revealed that the radial basis function neural
network and the time-delay recurrent neural network exhibited consistent results,
compared to BPN and the recurrent neural network. The results also pointed out that
different percentages of training data were suitable for predicting consumer ETFs’
performance based on high and low grey relationship grade variables. Evidence has
shown that the ETFs in Brazil and China are more predictable than those in other
countries. All ANN models’ results indicated that the use of 10% testing data could
predict consumer ETFs better, particularly the ETFs of the United States (US) and
those excluding the United States (EX-US). The Diebold—Mariano (DM) test results
suggest that the best predictability model for consumer ETFs is BPN, which is sig-
nificantly superior to other models.

Keywords Grey relational analysis - Artificial neural network - Consumer exchange-
traded funds
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1 Introduction

The exchange-traded funds (ETFs) database (ETFdb) indicates that, since its intro-
duction in 1993, ETFs have become very popular with investors who are seeking
alternatives to mutual funds. Investors may see an advantage in such instruments.
ETFs are a set of assets designed to track an index, which offer lower management
fees and greater visibility of intraday prices. However, no investment is perfect, and
ETFs also have their drawbacks (small dividends, the large spread between the bid,
and the ask prices). Identifying the pros and cons of ETFs can help investors to man-
age the risks and rewards and to decide whether these securities make sense for their
portfolios (Palmer 2019).

We consider consumer discretionary and consumer staples ETFs. Discretionary
consumption is a sectoral classification of non-essential consumer goods and ser-
vices monitored by analysts and investors. Consumers tend to spend more on discre-
tionary consumer products during the economic growth stages, usually character-
ized by higher disposable incomes. Discretionary consumption may be compared
to consumer staples, which is a classification of enterprises considered to produce
necessities (Scott 2020).

The New York Stock Exchange (NYSE) has started to launch the consumer ETF
on December 23, 1998. The first Consumer ETFs are Sector SPDR (XLY) and Sec-
tor SPDR Fund (XLP), classified as new ETFs, which have been growing. Since the
Consumer ETFs launch, the return rate of the top-ten consumer discretionary ETFs
and consumer staple ETFs has increased by approximately 261% and 132%, respec-
tively. Consumer ETFs have become popular to attract investors. By applying the
grey relational analysis (GRA) and the artificial neural network (ANN) models, we
predict the return volatility of consumer ETFs. Furthermore, we apply four different
ANN approaches, namely the back propagation neural network (BPN), the recurrent
neural network (RNN), the time-delay recurrent neural network (TDRNN), and the
radial basis function neural network (RBFNN). We aim to measure the nonlinear
relationship between the discrete time series in a grey system and to examine the
possibility of this connection. The ETFs are mainly consumer ETFs from several
countries. We also seek to derive the nonlinear trends in order to better forecast con-
sumer ETFs.

We propose a novel methodology for forecasting ETFs, particularly consumer
ETFs. The test results of GRAs, which were sorted into different training data,
such as 10%, 20%, 33%, and 50%, revealed that RBFNN and TDRNN exhibited
more consistent results than BPN and RNN. We apply the root-mean-square error
(RMSE), the coefficient of efficiency (CE), and the mean average error (MAE) to
compare the forecast ability. The results revealed that the BPN and RNN models
consistently have the lowest values for consumer ETFs.

Using the GRA model, we identified the NYSE Composite Index, the Commod-
ity Research Bureau Index (CRB), the EUR/USD Exchange Rate, and the put/call
ratio (PCR) as the four key variables influencing the consumer ETFs. Based on the
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MSE, RMSE, correlation (r) measurements, and MAE results, we revealed that
BPN was the best forecasting model. By applying the ANN models to the consumer
ETFs, this work determined that the Global X Brazil Consumer ETF (BRAQ) and
Global X China Consumer ETF (CHIQ) were accessible, predicting the consumer
ETFs of other countries.

The results revealed that the ANN models using 10% data for test could better
predict consumer ETFs, particularly the United States (US) and those excluding the
United States (EX-US). However, the findings indicated that using 20% or 33% data
for test could better predict the BRAQ and Dow Jones Emerging Markets Consumer
Titans Index Fund (ECON). Using 50% data for test can better predict the CHIQ.
The Diebold—Mariano test’s results revealed that BPN performed the best forecast-
ing accuracy for consumer ETFs and determined that the forecasts are significantly
different from other models.

We provide an innovative methodology for determining the best forecasting
model to help investors choose the best investments. By reviewing previous research
in consumer ETFs, we contribute the analysis to apply the GRA and ANN models to
evaluate consumer ETFs and help investors make better decisions when investing in
consumer ETFs to enhance investment returns.

We introduce consumer ETFs classified by country, such as the US, excluding
the US, emerging markets, Brazil, China, and India. The relevant literature review
describes previous studies on forecasting consumer ETFs and appropriate finan-
cial instruments. Next, the GRA and four ANN model types, namely BPN, RNN,
TDRNN, and RBENN, are explained. Finally, the empirical findings, as well as the
conclusions reached, are discussed.

2 Related literature

Consumer ETFs quickly became famous worldwide and were divided into con-
sumer discretionary ETFs and consumer staple ETFs. Bollapragada et al. (2013)
used different techniques, including single exponential smoothing, Holt’s exponen-
tial smoothing, and various versions of the Box—Jenkins [autoregressive integrated
moving average (ARIMA)] models, to forecast ETFs. They found that multiple
regression was the most appropriate method. Yang et al. (2010) reported unconvinc-
ing predictions using the generalized autoregressive conditional heteroskedasticity
(GARCH) models.

The grey relational analysis (GRA) model is formed by estimating the relation-
ship between two discrete time series in a grey system theory (GST). The grey
theory stands for insufficient and unclear information compared to white (knowing
everything) and black (knowing nothing) dealing with system problems. Also, the
incomplete information of grey theory retains considerable room for flexible adjust-
ment. The likelihood of such a relationship may change after a while (Deng 1989).
Likewise, Kung and Wen (2007) decided that significant financial variables, such as
the ratio of operating revenues to long-term investments and the ratio of operating
revenues to total assets, have dealt with venture capitalists’ financial transactions.
Lin and Wu (2011) reported that the GRA model might analyze the financial data
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used to construct banks’ first financial crisis warning models. Hamzacebi and Pek-
kaya (2011) used the GRA. They revealed that financial ratios, such as the price/
earnings ratio, the profit margin on sales, and the market/book value, are usually
used for stock selection in the production sector. Jiang and He (2012) showed that
the GRA model could accurately assess and predict China’s financial instruments.
The purpose is to examine the power of the GRA model for evaluating the perfor-
mance and attributes of consumer ETFs. To our best knowledge, there has not been
any study on consumer ETFs. We will, therefore, serve as the first consumer ETFs
study.

In previous studies, predictions in finance have been focused on artificial neu-
ral networks (ANN) models. Bekiros and Georgoutsos (2008) have used recurrent
neural networks (RNN) to predict the direction of market changes in the NASDAQ
composite index. Sookhanaphibarn et al. (2007) used three neural networks: learn-
ing vector quantization, the probabilistic neural network, and the feedforward net-
work with backpropagation learning, for bankruptcy forecasting in Thailand, while
Armano et al. (2005) used the feedforward artificial neural network (FANN) to per-
form local-scale market index predictions. Previous research by Poddig and Rehku-
gler (1996) provided accurate forecasts for the stock, bond, and currency markets
of the United States, Japan, and Germany. Hamzacebi (2008) suggested an artificial
neural network (ANN) structure in the seasonal prediction of time series. The results
of previous studies have shown that ANN models could provide accurate forecasts
for the financial field. Ho et al. (2002) found that RNN at the optimal weighting fac-
tor performs well against the ARIMA model in forecasting time series.

Experimental results suggest that the combined ARIMA and ANN models can
improve the predictive accuracy achieved by either of the models used separately.
Zhang (2003) and Zou et al. (2007) concluded that the ANN model is the best
model, relative to ARIMA, and can be used as an alternative method to model the
future price of food grains in China. Singhal and Swarup (2011) revealed that an
ANN method is being developed for predicting market clearing prices (MCPs) for
one-day energy markets. The neural network structure is a three-layer BPN model
and shows that the market’s deregulated electricity price depends strongly on the
trend in load demand and the clearing price. Their findings showed that the neural
network model was reasonably reliable for trend analysis.

ETFs have developed a well-known research topic for finance (Boehmer and
Boehmer 2003; Peterson 2003; Alexander and Barbosa 2008; Jarrow 2010;
Charupat and Miu 2011; DeFusco et al. 2011). Previous research has shown
that ETFs are potential portfolios and one of the investment products that can
successfully be scaled up on the capital market. Krause and Tse (2013) defined
Granger’s daily causal relationship between Canadian and US ETFs using an
autoregressive vector model. They noted that US industry ETF returns are higher
than those in Canada in a broader marketplace. Chen (2011) found no dissimilar-
ity regarding the impact of volatility and leveraging on ethical and non-ethical
ETFs. In contrast, Chen and Diaz (2012) used the exponential generalized autore-
gressive conditional heteroscedasticity (EGARCH)-in-mean model and revealed
the spillover and asymmetric volatility effects of leveraged and inverse lever-
aged ETFs. Based on the autoregressive fractionally integrated moving average
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(ARFIMA)—fractionally integrated generalized autoregressive conditional heter-
oskedasticity (FIGARCH) model, Chen and Diaz (2013) revealed the existence of
long-term memory attributes in the volatilities of non-green ETFs.

Estimating with ANN models has been controversial over the past decade
(Zhang et al. 1998; Hamzacebi et al. 2009). Motivated by examining the human
brain, ANN models can simplify practices. ANN models are currently used for
various business, industry, and science domains (Widrow et al. 1994). ANN mod-
els have been successfully used in training networks to measure the cost curve in
the accurate prediction of flour prices (Chakraborty et al. 1992). ANN is much
more predictable than linear regression by utilizing 384 subsets of economic
and demographic time series from chemical engineering applications (Foster
et al. 1992). Enke and Thawornwong (2005) predicted stock market returns and
observed that an organizational model’s trading approach generated higher risk-
adjusted earnings than the buying-and-holding strategy. Chen and Fang (2008)
used ANN, GARCH, and random market models for predicting the Asian cur-
rency unit. The ANN models performed better than both the GARCH and random
models. The research has identified ETFs as being supportive and engaging port-
folios for consideration.

Deng (1989), Liu and Lin (2005), and Kayacan et al. (2010) pointed out that
the GRA has been one of the best analytical tools. Moreover, this model pro-
vides the appropriate tools for observing the ranking of multiple variables and
examines the order of particular aspects (Kuo et al. 2008). The GRA model has
recently been applied to many applications, including economic decision-making
and marketing research (Yamaguchi et al. 2004; Cenglin 2012) and financial per-
formance (Kung and Wen 2007). Furthermore, Hu (2007), Zhao et al. (2012),
Cenglin (2012), and Chang et al. (2013) used the GRA to predict and explain the
relationship among variables.

Hu (2007) applied efficient methods such as the GRA and RBFNN to measure
learning costs across all dual competencies. Li et al. (2012a, b) indicated that the
GRA model predicts electricity use more accurately than the limited sample size.
Similarly, Chang et al. (2013) examined the relationship between online gaming
revenues and Internet users in Taiwan, R.O.C., for predicting the trend in revenue
growth. Wang et al. (2012) used a hybrid method by combining the exponential
smoothing model, the ARIMA model, and the back propagation network model
(BPNN). Their results displayed that the hybrid model could predict and explain
the relationship between real stock prices in China and the United States.

Donaldson and Kamstra (1997) utilized the GARCH, EGARCH, and GJR
models connected with the ANN and estimated the predictability of return vola-
tility in London, New York, Tokyo, and Toronto. Using ANN models to deter-
mine the stock index option price, Tseng et al. (2008) revealed that the Grey-
EGARCH volatility was more predictable than other volatility methodologies.
Hadavandi et al. (2010) confirmed that fuzzy genetic systems and ANN are the
best predictive models to estimate stock prices in the information technology and
airline sectors. Ticknor (2013) reported that the ANN standard Bayesian model is
robust for forecasting financial market behavior.
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3 Data and methodology

This work collected data sources from the ETFdb and Yahoo! Finance website as
of May 2014. Consumer ETFs can be sorted by countries like the United States
(US), excluding the United States (EX-US), emerging markets, Brazil, China, and
India, as shown in Table 1. We will use information from the different incep-
tion periods to the most recent data. In this study, several countries compare their
highest forecasting levels. The Diebold—Mariano (DM) test is being studied to
provide an assessment framework for various consumer ETFs forecast models.

We extracted the macroeconomic and financial variables with the view to influ-
encing consumer ETFs. Table 2 shows the sources of information for the input
variables, namely the PCR, the USD/EUR exchange rate, the volatility index
(VIX), the CRB index, the short-term TRIN, and the NYSE composite index used
in the present study.

This study includes PCR, measured by the market sentiment, and examines the
influence for consumer ETFs. The measurement of PCR is a ratio of the number
of traded put options to the number of traded call options. Investors may use their
money more on put options than on call options with an increase in the PCR. This
condition instructs investors to speculate on the market’s worsening or the start
of hedging their portfolios. Investors need to focus on PCR, as the growth in this
ratio reflects a partly bearish market. Simon and Wiggins (2001) indicated the
negative relationships between PCR and the Standard and Poor (S&P) Futures
Index. The significant results showed that the PCR reflected a bearish market and
is a signal for trading, including ETFs (Houlihan and Creamer 2019). Bandopad-
hyaya and Jones (2011) found that PCR is a better explanatory variable than the
VIX for changes in the Standard & Poor’s 500 index.

The next variable related to consumer ETFs is the USD/EUR exchange rate.
Maya and Chen (2018) revealed that the Euro could strongly affect agricultural
ETNs by using ANN. The purpose is to analyze the high correlation between con-
sumer ETFs and exchange rates. Historically, financial analysts have seen a strong
linkage between ETFs and the S&P Futures Index. Since the start of 2009, the
strong relationship between SPDR S&P 500 (SPY) and the Barclays Aggregate
Bond Fund has been significant, reaching 0.94. However, there has been a reverse
correlation between the SPDR Gold Trust and SPY.

Another interesting financial variable that is used to determine consumer ETFs
is the VIX. Previous research has shown an opposing variable to the S&P futures
index (Simon and Wiggins, 2001). The VIX is a widely assessed measure of fear.
However, higher volatility is not a new phenomenon. Essentially, the volatility of
the S&P 500 index, as measured by 2% index movements on a given trading day,
has risen sharply over the past decade, compared to the historical averages. From
1973 to 1982, the S&P 500 index had less than 100 trading days, a 2% movement
in both directions.

The CRB index is an index that measures the general track of the commod-
ity sectors, and it distinguishes and determines the directional price movements
in the general commodity trade. Acharya et al. (2009) used the CRB index to
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represent an Index of Inflation (INF) and examined how it affects investment. Pre-
vious research has shown a mutual connection between the CRB index and the
Shanghai Index (Goleg et al., 2012). Ho et al. (2010) found a bi-directional rela-
tionship between the CRB Index and the Gold Futures Index. We use the CRB
index as a financial variable because of the consumer ETFs traded in the com-
modities sector.

The Arms Index is applied for short-term trading to calculate the intra-day market
supply and demand. If the Trading Index (TRIN) value is 1.0, then the ratio from the
high volume to the low volume is related to the advancing issues’ rate to the declining
issues. The market represents a neutral status, where the index equals 1.0. This neutral
state indicates that the high volumes are evenly distributed over the ongoing issues,
while the low volumes are evenly distributed over the declining issues. Also, the TRIN
provides a bullish signal when the index is below 1.0. In the meantime, the average
stock has a higher volume than the average downgrade of the stock. Several analysts
have determined that the index’s long-term balance is below 1.0, which could confirm
a bullish bias in the stock market. On the other hand, if the TRIN is above 1.0, seen as
a bearish signal, then the average declining stock has a higher volume than the average
increasing stock. Simon and Wiggins (2001) found that the TRIN is negatively related
to the S&P Futures Index.

We used the NYSE Composite Index to evaluate all listed firms’ performance on
the NYSE, including real estate investment trusts, American depositary receipts, and
tracking stocks. In January 2003, the NYA re-established the NYSE Composite Index
by using a new approach that is entirely transparent and rule-based. This approach
excludes all fixed funds, ETFs, partial partnerships, and index derivatives. Maya and
Chen (2018) found that the NYSE Composite Index strongly influenced agricultural
ETFs and ETNs using the GRA model.

The current study uses INF, one of the key financial variables, to examine the rela-
tionship of consumer ETFs. An increase in INF will usually affect the consumer’s
decision to buy goods and services. Many previous studies have pointed out that the
INF has an impact on consumer behavior. Arora et al. (2013) and Hajzler and Fielding
(2014) observed a negative correlation between INF and consumer behavior, reflecting
energy and food prices. Georganas et al. (2014) found that INF influenced consumer
perceptions, which caused various goods’ prices to increase.

Another variable that influences the purchasing power of the consumer is the interest
rate (INT). Juselius (1995) found a link between the purchasing power parity and long-
term interest parity. The INT has a significantly strong correlation with the consumers’
decisions about household behavior (Edelberg 2006). Chisasa and Dlaminier (2013)
reported that higher INTs negatively affect consumer expenses, particularly for durable
goods such as automobiles in South Africa. Wang and Hu (2015) also observed a cross-
correlation between the INT and commodity markets, such as the rice, corn, soybean,
and wheat markets.
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3.1 Grey relational analysis

Deng (1989) proposed the GRA and applied it extensively to evaluate financial
variables. The GRA theory is created by measuring the relationship between
two discrete time series in a grey system. The likelihood of this connection may
change over time. The GRA procedure calculates various auxiliary components
applied to examine the sets of random factors with missing messages. There-
fore, only a small amount of data is needed to control the correlation between the
determinants.

Many previous studies have used GRA in their financial application. Kung and
Wen (2007) identified the key financial variables affecting the financial success
of venture capital companies. Lin and Wu (2011) indicated that financial factors
could help develop early financial crisis alert models for banks. Hamzagebi and
Pekkaya (2011) used financial ratios when selecting stocks in the production sec-
tor. Jiang and He (2012) accurately predicted China’s real-time financial series.

The GRA model provides investors with assistance to assess and recognize
venture capital firms’ returns and attributes to reduce investment risk. Chang
et al. (2013) and Hamzagebi and Pekkaya (2011) proposed the following formula
based on the original study of Deng (1989):

1. Describe the original series:
x; = (D, 52, x03). ... x,(0) €X, )

where criteria: k=1, 2, 3,..., n € N, and alternative: i =1,2,3,..., m€ X.

2. Define the reference series: The reference series can exist as maximums or
minimums. When the measure desires maximization (minimization), the linked
measure’s reference series value becomes the maximum (minimum) value of the
alternative series.

X = (x(1), %0(2), %(3), ... Xo(N)).

3. Normalization data:We conducted the pre-processing stage of the data before calcu-
lating the grey relationship grade (GRG), known as the grey relationship generation
(Hsia et al. 2004; Kung and Wen 2007). Then the data in the series can be processed
for the following three situations (Wu and Chen 1999; Kung and Wen 2007):

i. A high level of expectancy is favorable. If the situation is “the larger, the
better expectation example of the profit,” then we can use the following
equation:

xO(k) — min 1" (k)

xi (k) = .
max -xl(.o) (k) — min -xf.o)(k)

@)

ii. A low level of expectancy is favorable. If the situation is “the smaller,
the better expectation example of the cost or loss,” then we can use the
following equation:
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. max -x\ (k) — x” (k)
% (k) = © Oy &)
max -x; (k) — min -x;” (k)

iii. A nominal status for the best expectation is favorable. If the expected
specific value is between the maximum and the minimum objectives,
then we can use the following equation:

|x§°>(k) _ OB|
xi(k)y=1- ,
max -{max [xl(.o)(k)] —OB:-0OB [min -xl(.o)(k)] }
4)
where x7(k) is the value of the grey relation after
the normalization, min -xﬁo) (k): xf.o) stands for

the minimum value of (k) before normalization,
max x( )(k) x( 9 denotes the maximum value of (k) before normalization ,
and OB x(o)(k) is the object value.

4. Calculate the grey relatlonal coefficient:The localization of the GRA reflects the
association between the reference sequence xl@ (k) and the relative sequence x’ (k).
Thus, the grey relational coefficient € (x,(k), x;(k)) is expressed as follows (Lin
and Hsu 2001; You et al. 2006; Kung and Wen 2007):

mln + gAde
£(xg(k), x;(k)) = W7 5)
0i

max
where ¢ € (0, 1) is the notable coefficient, Ay;(k) = |xy(k) — x;(k)|,
A = n\lfm min A (k) = mln mln |xo(k) — x;(k)|, and

ALy = max max Ay (k) = max max |xo(k) — x;(k)|.

5. Calculate the GRG:

The GRG process measures the association between the sequences measured
and sorted as a function of localization and GRG globalization (Lin and Hsu
2001; You et al. 2006; Kung and Wen 2007).

When all criteria have the same degree of importance, the GRG can be meas-
ured by (6).

For the different degrees of importance of the criteria, the GRG can be calcu-
lated by (7).

v(xp, X;) = 2 pre (xo(k)axi(k))a (6)
k=1

Y0x) = ) fe (x,(0), x,(K)). %
k=1
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where f;, denotes weight value and }/_, ;= 1. Depending on the importance of
each determinant in the sample, different weights can be ranked. By using equal
weights, GRG derived from the average value of the grey relational coefficient,
that is ﬂkzi, k=1,2,...,n.

At the last stage, the order of the GRG is sorted in descending order. The grey
relational order may be described as the primary factors in the series connected
to the reference series. The highest value in the series shows the variable with the
most influence; however, the series’ lower value shows that the variable has the least
effect.

3.2 Artificial neural network for consumer ETFs

The application of ANN in the financial area has increased year by year. Wong et al.
(1997) and Wong and Selvi (1998) investigated journal articles published between
1988 and 1996 on how neural networks work across various commercial activities.
Kaastra and Boyd (1996) found that neural networks can make predictions with data
from economic time series, and Kim and Han (2000) used ANN models to fore-
cast the Korean Stock Price Index. The structure of ANN models has three levels,
namely:

(1) the “processing element” (or artificial neurons) defines the basic unit,
(2) the “layers” is formed by the processing elements, and
(3) the “network” is composed of several layers.

The version of Braspenning et al. (1995) discussed as follows:

3.2.1 Back propagation neural network

The BPN has an architecture called multilayer perception (MLP) and uses the EBP
as its learning algorithm (Azadeh et al. 2008; Zhang and Wu 2009; Huang and
Wang 2008; Wang et al. 2011).

Numerous studies have used the BPN to address the actual issues. Chang and
Wang (2006) used it to estimate sales in the printed circuit board industry, while Li
et al. (2012a, b) indicated that the BPN could detect fiber optics. Wang et al. (2011)
identified the BPN as an efficient algorithm that can be used to predict the Shang-
hai Composite Index. Guresen et al. (2011) used GARCH, MLP, dynamic ANN,
and hybrid neural networks to extract different input variables. They applied the real
daily exchange rate values of the NASDAQ Stock Exchange Index.

The BPN involves transmitting directly from the input to the input layer’s hidden
layer and calculating the weighted accumulation. The BPN generates an output with
a transfer function that is fed into the output layer. Note that the transfer function,
called the sigmoid function, is typically used as follows:
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SO == ®)
where x is called the input layer. Moreover, the network augments related to a hid-
den layer in the system, revealing the relationship between input processing ele-
ments. The reduction of the error function requires the smooth transition function
and the gradient steepest descent method. The method used to derive the formula of
modified network weights is obtained when the output of processing element j in the
layer n becomes the nonlinear function of the output of processing elements in the
layer n — 1, which is expressed as follows:

Al=f (net ) <Z wAI! — 6, > (©))

where f represents the transfer function; W;; indicates the weight of netj’?:activity
function processing element i in the layer n — 1, in addition to processing element j
in layer n; and 6, denotes the bias of processing element j in the layer n for the
threshold value.

The BPN decreases the differences between the output of the network and the
target output. The learning quality of this supervised learning is stated by the
error function E as follows:

1
=5 2T -A), (10)
J

where T} represents the goal output of the processing element j, and A; represents
the network output of the processing element ;.

The procedure modifies the weight in the array, while processing the training
example. The sensitivity and error functions of the partial weight-for-adjustment
differential and the error function are correlated proportionally, and are extracted
as follows:

oE
oW’ 1D

y

AWijz -n-

where # denotes the learning rate, which recognizes the amplitude for the gradient
steepest descent method to alter the error function. W;; represents the output and hid-
den layers and can be calculated as follows:

oE n—1

aw, = =07 AT (12)

where A”‘1 is the output of the processing element in the lower layer, which is
related by W;. 5” denotes the gap of the processing element in the upper layer, which

is accompanymg by W;. By substituting AW; = —n - 7 it derives the following
equation:
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n n—1
AWijzn-éj CATT (13)

This equation expresses that the input is adjusted and serves as a training sample of
weight formation. This equation is critical for the backpropagation algorithm.

3.2.2 Recurrent neural network

The RNN is a dynamic neural network, with links between the units in a directed
cycle. The network incorporates the time factors for completing the formation. The
procedure feeds the neuron’s output value into the hidden layer or output layer to
develop the neuron’s output in the next step (Elman 1990). The learning process is
accelerated due to inter-neuronal feedback mechanisms (Ge et al. 2007; Wang et al.
2013).

The forward propagation of the network multiplies the output x;(¢) by an equiva-
lent weight w;;(¢); net;(?) is the product of that process. The network converts net;(7)
through a nonlinear function f*to obtain output y;() in the feedback processing layer.
This process of multiplying y;(7) by a corresponding weight v,;(#) again produces a
product net,(7). Notably, net;(7) defines transformed through a nonlinear function f
and obtains the product z;(¢) in the output layer. This relationship can be expressed
as follows:

yi(#) = f(net;(r)),

net,(t) = )" v(0y;(@). (14)

The real-time recurrent learning (RTLR) algorithm consists of the most com-
monly used type of RNN (Elman 1990; Ge et al. 2007; Wang et al. 2013). RTLR
adjusts the weight vector of the network connection in real time. Assuming that d(¢)
represents the output value of neuron k in the output layer at time ¢, and e(f) repre-
sents the error vector at time #, the unit k can be expressed as follows:

e, (t) = di (1) — z,(1).

The instantaneous error function E(f) at time ¢ can be expressed as follows:

K

E(t) = % Z (). (15)

k=1

(a) The gradient steepest descent method serves as the basis of the correction of spe-
cific weight vkj(t) and is expressed as follows:
0E(t)
_]1 9
1 v (1) (16)

Avy(1) =

where 7, represents a positive constant and is called the learning rate. The partial
differential of the error function E(#) with respect to the weight v;;(#) can be calcu-
lated by utilizing the chain rule as follows:
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0E(f)
(D)

= —e (Of (et (1))y;(0). a7

(b) The gradient steepest descent method serves as the basis for the correction of
specific weight w,,,(f) and is expressed as follows:

OE(f)

Awmn(t - 1) = —ﬂzm,

(18)

where #, denotes a positive constant called the learning rate. In general, the partial
differential of the error function E(¢) related to the weight w,,,(f) can be measured by
utilizing the chain rule as follows:

K
SF ay;(1)
® _ Z —ek(l‘)f’(netk(t))vkj(t) F :

=1 | & TS (19)

3.2.3 Radial basis function neural network

The RBFNN is a mix of learning processes, combining mutually unsupervised and
supervised learning rules. Unsupervised learning is used to identify the cluster
center and to determine the initial value. The RBFNN was recommended by Broom-
head and Lowe (1988), in which linear optimization techniques guarantee the learn-
ing process for analyzing the adjustable weight layer’s special assessment. Shen
et al. (2011) used the RBFNN to form data to rapidly and accurately predict Shang-
hai stock market indexes. Wu and Liu (2012) reported that the RBFNN model was
efficient and performed satisfactorily in predicting car fuel consumption. However,
the RBFNN may model an arbitrary nonlinear transformation, which is a new linear
perception.

The RBFNN model is similar to the architecture of BPN, which consists of three
layers. The input layer contains the import information for each input node attached
to all hidden nodes in the single hidden layer. The hidden layer consists of an array
of nodes, one for each radial base function center (Broomhead and Lowe 1988). The
Euclidean standard is generally used for estimating the distance from the middle
of the input value. In turn, this process takes into account the optimum number of
cluster centers in the second layer. Establishing many radial base functions through
curve adjustment is one of the main features of RBFNN, which leads to learning the
mapping relationship between the input and output values. As indicated by Bors and
Gabbouj (1994) and Bors and Pitas (1996), the Gaussian function is the most widely
used in the RBFNN and is expressed as:

TN\ ! .
B0 =exp [-X =)' Y X =g forj=1,....L, 20)
where X denotes the input feature vector, L is the number of hidden units, and H

and Zi stand for the mean and the covariance matrix of the jth Gaussian function,
respectively.

@ Springer



794 M. Malinda, J.-H. Chen

The graphical demonstration of the RBFNN model is expressed in the following
equation:

21

where ¢ denotes the cluster center for each node of the hidden layer, x is the input
vector, and v represents the vector that shows the range of length between input
nodes and cluster center of each hidden layer.

_ 2
R(|lx —c|l) = exp <_M> (22)

202
where “x —¢ ” denotes the Euclidean distance between x and cj.
3.2.4 Time-delay recurrent neural network (TDRNN)

Based on an extensive neuronal model, the TDRNN model achieves the benefits
of adaptive delay and recurrence. It manipulates time information from the input
sequences using adaptive delay and recurrent connections (Waibel 1989; Kim 1998;
Lin et al. 1992). The internal state units can be assessed as additional inputs at time t
under the duplication procedures of hidden units at time #— 1. The TDRNN uses and
adjusts adaptable synaptic weights and flexible time lags for evaluating the intercon-
nection between the input and the hidden units. The delay box comprises intercon-
nections from the input layer to the first hidden layer and the internal state layer
to the first hidden layer (Waibel 1989; Kim 1998; Lin et al. 1992).The net inputs
are derived from the activation values for the last neuron. They can be summed up
through the equivalent time delays, based on each connecting line at the time of unit
j on layer & that takes a weighted sum, as follows (Waibel, 1989; Kim, 1998; Lin
et al., 1992):

Kji -1

net; (t,) = Z Bjign=1 * %1y = Tiig 1) (23)
ieN,, k=1

where net; ,(7,) denotes the product of the TDRNN process; a;,_ (f, — Tjy 1) is the
activation level of unit i on layer A —1 at time #, — 7j; ,_1; N,,_; represents the set of
nodes of layer 72— 1; and K/.l.!h_1 denotes the total number of connections to node j of
layer i from node i of layer /— 1.

Through the selection of a sigmoid function, the output of node j is determined

by using a nondiminishing function f of the net input (Kim 1998).

a,(t)= {];"h(netj,h(tn)) ifh>2
j.h\fn/ —

(1) ifh=1" 24)
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Bin

where ;(7,) denotes the jth channel of the input signal at time 7,; «;,, f;, and y;,
represent real numbers; and —y;, and f;, — v;,, are the upper and lower limits of the
sigmoid function, respectively. The steepness of f; ,(net), for example, ]3’ ,(0), is
(- B;;)/4 (Kim 1998; Lin et al. 1992).

The internal state vector at a time t,,, S;,_,(z,), is expressed as follows:

Spo1(t,) = Ap (,21)s (26)

where A, (t,_,) denotes the activation vector of the second hidden unit at a time
t
An instantaneous error measure stands for the mean square error (MSE) as fol-

lows (Kim 1998; Lin et al. 1992):

E(,) =% D, @(t,) = a0t 27)

JEN, h+2

where N,,,, represents the set of nodes of the output layer, and d,(7,) is the preferred
target number of output node j at a time ¢,

The weights (w) and time delays (7) are rearranged by applying an amount that is
equivalent to the opposite direction of the error gradient, as follows (Kim 1998; Lin
et al. 1992):

A OE(t,)
Wien = M5 —> 28
j Wi (28)
0E(t))
Aty =-n - 29
Jik, 1 a"’fjik,h (29)
where 7, and #, stand for the learning rates.
The summary of the learning rules can be expressed as follows:
AWt = 1165,(6,)a; 1 (8 = Tigg 1), (30)
ATy py = ﬂzpj,h(tn)wjik,h—la,/-,h_l(tn = Tiikh-1)> 3D
where
(d(t,) = a;,(t,))f (net; ,(t,)), if j is an output unit
5.4(t,) = T
PR Y X 8 ne1 (EIW g () |f' (met; ,(2,)), if j is an output unit
PENy, g=1
(32)
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(dj(tn) - aj,h(tn))f,(netj,h(tn))’ lf.] is an Output unit
— Kpjn
Pinty) = Y X a1 GIWyn(t,) | (net;,(2,), if j is an output unit
PENy g=1
(33)

3.3 Diebold-Mariano (DM) test for ANN models

We use the Diebold—Mariano (DM) test proposed by Diebold and Mariano (1995) to
test ANN models for improving predictive accuracy. This comparison includes BPN
versus RNN, BPN versus TDRNN, BPN versus RBFNN, RNN versus TDRNN, and
RBFNN versus RBFNN for each ETF. The DM test uses it possible to distinguish
the significant differences in predictive accuracy between the various models, based
on the quantitative analysis diagram (Chen et al, 2014).

Suppose that two predictions f;, ..., f,, and g, ..., g, for a time series are linked
withy,, ..., y,. Let ¢; and r; be the residuals for the two forecasts, i.e.

The forecast residuals are defined as follows:

&=y —fo Ti=Yi— 8 (34)
Forecast residuals are defined as follows:

di=e —r’ or d;=|e;| - |r, (35)

i

and let d; be defined as one of the following.

The time series is called the loss-differential. The key assumption for using the
Diebold-Mariano test is that the loss differential time series d; is stationary (Zaiontz
2020). The first of these formulas is related to the MSE error statistic, and the sec-
ond is related to the MAE error statistic. Now define Loss-differential mean as:

__1 " 3
d=— Z}diy = E[d], (36)

For n>k>1, define:

==Y (d-d)(de-d), 37

where autocovariance is at lag k.
As described in autocorrelation Function r;, is the autocovariance at lag k.

DM = d s (38)
\/[ro +2 ZZ;: rk] /n

For h>1, we define the Diebold-Mariano (DM) statistic, where the value
h=n"P+1.
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The DM test is based on a standard normal distribution. The null hypothesis
indicates that an equal predictive capacity exists between the models. The alter-
native hypothesis regarding the higher predictability of the model has the lowest
value of the loss function.

3.4 Empirical results

Table 3 reveals the results of the GRG for consumer ETFs. These studies determined
that the NYSE Composite Index, the CRB Index, the EUR/USD Exchange Rate,
and the PCR are the four main variables influencing consumer ETFs. However, the
short-term TRIN variable has the lowest influence on the classification, followed by
INT, INF, and VIX. This study is in line with previous research conducted by Kung
and Wen (2007), which used GRA globalization and found a significant relationship
between venture capitalists’ characteristics and financial performance.

The NYSE Composite Index has a strong impact on the Consumer Discretion-
ary Select Sector SPDR Fund (XLY), the Consumer Staples Select Sector SPDR
Fund (XLP), the SPDR S&P International Consumer Discretionary Sector ETF
(IPD), the SPDR S&P International Consumer Staples Sector ETF (IPS), and the
EGShares India Consumer Exchange-Traded Fund (INCO). The results show that
the NYSE Composite Index can measure the performance of equities, tracking
equities, and ETFs. A bilateral link between the ETFs and market indices have
been observed (Chen 2011; Chen and Diaz 2012; Chen and Malinda 2014).

Table 3 Consumer ETFs and GRGs of eight determinants

Category ETFs XI X2 X3 X4 X5 X6 X7 X8
USEUR CRB NYA VIX PCR TRIN  INF ITR

us XLY 230.520 230.664 230.676 229.889 230.464 195.513 227.862 195.743
Ranking 3 2 1 5 4 8 6 7
XLP 230.630 230.737 230.771 229.777 230.393 195.438 227.976 195.656
Ranking 3 2 1 5 4 8 6 7
EX-US IPD 176.027 176.237 176.531 174.183 175.562 150.518 171.057 156.864
Ranking 3 2 1 5 4 8 6 7
IPS 176.156 176.349 176.521 174.056 175.453 150.432 171.186 156.762
Ranking 3 2 1 5 4 8 6 7
Emerging ECON 114.188 114.145 114.158 112.886 113.029 92.2163 111.147 101.37
Market Ranking 1 3 2 5 4 8 6 7
Brazil BRAQ 119.997 120.079 119.892 118.666 118.914 96.9119 116.639 106.338
Ranking 2 1 3 5 4 8 6 7
China CHIQ  137.790 137.889 137.832 136.845 137.232 117.793 134.621 125.840
Ranking 3 1 2 5 4 8 6 7
India INCO  86.6353 86.6424 86.8351 86.1795 86.4375 70.4185 84.7315 77.812
Ranking 3 2 1 5 4 8 6 7
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Further results have shown that the CRB index variable has the most significant
influence on BRAQ and CHIQ. The CRB index could be used as an indicator of the
INF, taking into account its impact on investments (Acharya et al. 2009). India and
China were the two largest countries that have experienced rapid economic growth
over the past three decades (Holscher et al. 2010). Besides, Brazil, India, and China,
which are part of the BRIC countries, have reported remarkable economic growth.
These findings show that BRAQ, CHIQ, and INCO have good growth opportuni-
ties and investment potential. Therefore, investors should pay more attention to the
CRB Index when investing in consumer ETFs in Brazil and China. Besides this, the
exchange rate variable has a considerable influence on emerging markets, such as
ECON. This ETF contains vital consumer goods and services company regulations
in developing markets. These corporations obtain most of their income from emerg-
ing market sales. Business people from emerging markets mostly use major curren-
cies, such as the EUR, to alleviate currency fluctuation. As such, the exchange rate
variable has strongly influenced the emerging market ETFs.

Table 4 reveals the effects of consumer ETFs, using ANN models categorized by
all variables, high GRG variables, and low GRG variables. We use MSE, RMSE,
MAE, and correlation (r) measurements to measure the ANN model’s perfor-
mance. The results of measuring the MSE of all variables showed that BPN is the
best predictive model. Consistent with other MAE measurements, the findings also
revealed that BPN performed well. The RMSE measurement shows that BPN is the
best prediction model, except for INCO (0.119). As previously reported by Oh and
Han (2000), Versace et al. (2004), Chen and Fang (2011), and Trang (2014), the
BPN model shows that it has a predictability of financial instruments vis-a-vis RBF,
RNN, and TRDNN. The correlation measure () indicates that BPN has a high cor-
relation between the variables, except for BRAQ (0.684) with the RNN measure.
Zhang and Xiao (2000) and Diaz (2012) also found RNN effectively forecasts for a
small sample.

The findings of MSE, RMSE, and MAE measurements revealed that BPN is the
best prediction model for high GRG variables. The correlation (r) measurement
also shows that BPN is superior to other models that show the connection between
variables, except for CHIQ (r=0.671) using TDRNN and ECON (r=0.850) using
RNN. The results of the MSE and RMSE measurements showed that BPN performs
well for the low GRG variables. The MAE measurement findings also revealed
that BPN is the best forecasting model, except for CHIQ (MAE=0.127) using the
RNN model. The correlation measure (r) also shows that BPN is the best predictive
model, except for BRAQ (0.366), when using the RNN model. Besides, Zhang and
Xiao (2000) and Diaz (2012) found the RNN and RBFNN are relatively significant
predictive models when using multiple variables. Tables 4, 5, 6 and 7 present the
GRG testing results for consumer ETFs based on the ANN model. The results of the
three statistical values (RMSE, CE, and MAE) and the four types of training data for
the test (10%, 20%, 33%, and 50%) were consistent with earlier studies conducted by
Andreou et al. (2002), Chen and Fang (2011), and Diaz (2012).

The test results of the GRG using the BPN model are presented in Table 5. The
RMSE test shows that XLY, XLP, IPS, and BRAQ for all variables performed better,
using 10% data for predicting ETFs; for example, XLY (RMSE=0.342). The use of
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50% data can better predict IPD (RMSE =0.231), CHIQ (RMSE=0.111), and INCO
(RMSE=0.304). For emerging markets, the findings for ECON (RMSE=0.269)
show that the use of 33% data leads to the best samples for prediction. The CE test
exhibits the best performance for 50% data for all variables, such as XLY, XLP,
IPD, BRAQ, CHIQ, and INCO. In contrast, the IPS and ECON test results indicate
that 33% of data leads to better predictions. The MAE test results are similar to the
results of the CE test. For all variables, 50% of the data can better predict XLY, IPD,
IPS, and CHIQ.

The testing results of the high GRG variables, including XLP (RMSE=0.386;
CE=-2.799; MAE=0.338) and IPD (RMSE=0.227, CE=-0.184;
MAE=0.169), can be better predicted by using 50% data. The ANN tests proposed
the use of 20% and 33% data to predict CHIQ and INCO, respectively. Using the
BPN model to evaluate low GRG variables, only IPD exhibited consistent results for
all the measurement tests (RMSE=0.241; CE= —0.334; MAE =0.192) when using
50% data for prediction. Lee et al. (2008) found that BPN performed better than
Chiao’s Bayesian model for medium- and long-term forecasts.

Table 6 shows the effects of the RNN model, which was used to anticipate the
best samples. For all variables, the RMSE test proposed the use of 50% data for
IPD, IPS, ECON, and INCO, and 33% data for XLY, BRAQ, and CHIQ. The CE
test results mostly proposed the use of 50% data, except for the use of 33% data for
BRAQ (—1.161) and 20% data for CHIQ (16.217). The high GRG variables results
showed consistency for all the tests (RMSE, CE, and MAE), such as using 50% data
for XLY, XLP, and IPD predictions and 20% for CHIQ predictions. Moreover, we
determined that only IPD and BRAQ for low GRG variables had consistent results
for all tests that used 50% data for prediction. Likewise, Tables 10, 11 and 12 in an
“Appendix” exhibit the effects of consumer ETFs for the GRG, using the RBFNN
and TDRNN models and comparing the forecasting ability using ANN.

As explained above, the NYSE Composite Index, the CRB Index, the EUR/USD
Exchange Rate, and the PCR are the top four consumer ETF variables by country.
In contrast, the short-term TRIN variable has the least impact on classification,
followed by INT, INF, and VIX. Comparing the ANN models’ forecast ability for
consumer ETFs classified by country, the eight variables divided into two groups,
namely high GRG variables and low GRG variables, as shown in Table 7. This
work uses three measures, RMSE, MAE, and CE, to examine which group has an
improved forecasting capacity.

The GRA’s empirical effects constructed with the BPN, RBFNN, and TDRNN
models consistently showed that CHIQ has the best forecasting model examined by
the RMSE and MAE tests for the groups of all high GRG variables and low vari-
ables. Moreover, the CE tests consistently revealed that BRAQ exhibited good pre-
dictions. Using the RNN model, we found that the CHIQ for high GRG variables
and low GRG variables had an excellent predictive efficiency. Moreover, BRAQ for
all variables and low GRG variables and ECON for high GRG variables worked
well. At the same time, other findings showed that IPS exhibited better performance
for all variable categories, using only the RNN model.

The three ANN models (BPN, RBFNN, and TDRNN) consistently show that
BRAQ and CHIQ are the best predictive models based on statistical tests. These
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findings suggest that consumer ETFs in Brazil and China were more comfortable
in predicting reliably. The RNN model’s effects indicate that IPS, ECON, BRAQ,
and CHIQ have good predictive results. These results differ from previous studies
(Zhang and Xiao 2000; Diaz 2012), showing that RNN is the best model, com-
pared to BPN, RBFNN, and TDRNN. However, we found the BPN, RBFNN, and
TDRNN models to be more consistent and accurate.

We aim to forecast the accuracy of the consumer ETF return categorized by
country. The comparative results of the forecasting ability, using the ANN for
consumer ETFs, based on the MSE test for 10%, 20%, 33%, and 50% testing
sets, are consistent with the results obtained by Chen and Fang (2011) and Chen
and Trang (2013), as shown in Table 8. The results of all variables show that
all ANN models consistently proposed the use of 10% data to predict the United
States ETFs, XLP, and XLY. This finding indicates that BPN, RNN, RBFNN, and
TDRNN can forecast XLP and XLY well at a test level of 10%. Other results of
the three ANN models (BPN, RBFNN, and TDRNN) also proposed using 10%
data to forecast ETFs that excluded the United States, such as IPD and IPS. In
line with previous studies by Zhang and Xiao (2000) and Chen and Trang (2013),
ANN models are efficient in providing predictions based on time series data.
However, the results of ECON and BRAQ indicated that the forecast utilized 33%
data for BPN and RNN. Furthermore, RNN and TDRNN can predict CHIQ using
33% data. Using the 50% testing level, the BPN, RNN, and TDRNN models have
good performance in predicting INCO because of the lowest MSE.

From the perspective of high GRG variables, the findings showed that most
ANN models proposed using 10% data for prediction, except for 20% data for
CHIQ and ECON. Based on the results of BPN, RBFNN, and TDRNN for pre-
dicting INCO, we proposed using 33% data excluding the United States (EX-US),
while the results of RBFNN indicated the use of 50% data for prediction. The
outcomes of the United States’ ETFs (such as XLY and XLP) and the IPD for
all ANN models indicated the use of 10% and 50% data for forecasting associ-
ated with low GRG variables, respectively. ANN models can be useful predictors
with different test data samples (Chen and Fang 2008). We revealed that the low-
est measure of MSE of all, high GRG, and low GRG variables indicated the use
of 10% data for a precise forecast consistent with the results of Hong and Yoon
(2011), Gallego et al. (2013), and Monteiro et al. (2012).

The DM test results for ANN models, based on 90% of training data and 10%
of testing data to measure whether prediction accuracy is significantly different,
are presented in Table 9. For example, BRAQ’s training data and testing data are
based on the 925 observations from 2010.7.9 to 2014.11.3. We compared several
pairs of ANN models, such as BPN versus RNN, BPN versus TDRNN, BPN ver-
sus RBFNN, RNN versus TDRNN, RNN versus RBFNN, and TDRNN versus
RBFNN, using the DM test. The best predictive model for all variables is BPN,
which is superior to other models with the exception of IPD and XLP. However,
the DM test results show that no model predicts better for the Dow Jones Emerg-
ing markets consumer Titans Index Fund (ECON).
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Table 9 The comparison of Diebold—Mariano (DM) test for ANN models

ETF Obs BPN BPN BPN RNN RNN TDRNN Sig-

RNN TDRNN RBFNN TDRNN RBFNN RBFNN nificantly
different

BRAQ 925 5.853 6.304 8.914 5.853 12.469 1.204 BPN
(0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.229)

CHIQ 925 2.268 5.314 7.077 3.903 5.626 2.379 BPN
(0.023)**  (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.018)**

ECON 915 3.261 9.897 11.825 7.419 9.430 1.023 -
(0.906) (0.669) (0.651) (0.756) (0.738) (0.980)

INCO 696 2.270 4.452 6.740 5.169 7.320 4.984 BPN
(0.023)**  (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)***

IPD 925 1.386 8.479 9.084 7.642 8.133 1.537 BPN
(0.166) (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.124) RNN

IPS 925 1.801 10.904 12.444 9.660 11.463 1.886 BPN
(0.072)* (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.059)*

XLP 925 1.323 44955 44955 3.836 3.836 1.387 BPN
(0.1859) (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.1653) RNN

XLY 925 1.695 7.461 5.498 11.986 5.636 0.461 BPN

(0.090)* (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.6448)

Obs stands for observation. p value is given within parentheses
**¥p<0.01; ¥*¥p<0.05; *p<0.1

4 Conclusion

We used the GRA and ANN models for predicting the volatility of consumer ETF
returns. The impacts and contributions are summarized. We found that the four main
variables affected consumer ETFs according to the GRA, including the NYSE Com-
posite Index, the CRB Index, the USD/EUR Exchange Rate, and the PCR. The cri-
teria test (MSE, RMSE, r, and MAE) revealed that BPN exhibited an outstanding
performance concerning consumer ETFs forecasting. The GRA test results, classi-
fied into different data samples (10%, 20%, 33%, and 50%), showed that RBFNN
and TDRNN performed better than BPN and RNN. This finding is in line with Kim
(1998), who proposed that TDRNN obtained the best temporal signal recognition,
prediction, and identification results.

We present a comparison of the forecasting ability of the ANN models. The
results suggest that the BPN and RNN models consistently have the lowest values
and predict consumer ETFs better (Oh and Han 2000; Versace et al. 2004; Chen and
Fang 2008; Diaz 2012; Trang 2014). The ANN models examined and compared the
forecasting ability of consumer ETFs, classified by country. The results showed that
BRAQ and CHIQ were more predictive than other ETFs.

Most ANN models indicated that 10% of the testing data were suitable for pre-
diction, particularly for the ETFs of the United States (US) and those excluding the
ETFs of the United States (EX-US). The ANN models were useful in providing
predictions that were based on a few time-series data consistent with the findings
of Zhang and Xiao (2000) and Chen and Trang (2013). The ANN models’ results
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indicated better predicting performance for evaluating consumer ETFs, with 20%
or 30% training data for BRAQ and ECON, and 50% training data for CHIQ. The
Diebold—Mariano test results showed that the best prediction model was BPN for
consumer ETFs, which outperforms other models except for IPD and XLP.

Finally, we contribute to the research of different learning schemes that influence
the efficiency of neural network models (Donaldson and Kamstra 1997; Pradhan and
Kumar 2008; Hadavandi et al. 2010; Ticknor 2013; Bekiros and Georgoutsos 2008;
Sookhanaphibarn et al. 2007; Ho et al. 2002; Zhang 2003; Singhal and Swarup
2011; Hamzagebi 2008). From the viewpoint of different input data, we assess the
highest-ranking financial variables that influence consumer ETFs among ANN mod-
els, and it examines the various input data testing methods. The findings will enable
policymakers to make the best decisions to confirm the financial market behavior,
identify what additional components are essential or sufficient for influencing inves-
tor behavior in the capital market, and formulate appropriate policies.

For fund managers and investors, particularly those interested in consumer ETFs,
we imply that ANN models with few data provide accurate predictions and establish
appropriate portfolio investment strategies, especially for the consumer ETFs of the
international finance market. It suggests that practitioners, investors, and academics
can mainly observe stock indices and get involved in theory building. For academ-
ics and practitioners, this research bridges the gap and ensures a strong correlation
between theory and practice. We aimed at improving neural network models for
the best prediction performance. To improve capital gains, investors need to look at
equity and benchmarks when investing in ETFs. The application of grey relational
analysis (GRA) and the artificial neural network (ANN) positively influence the
stock market indices.

The future study can apply ANNSs for testing the hypothesis to classify consumer
ETFs that will fail as excellent performance ETFs (Type I error) and categorize con-
sumer ETFs that will perform poorly as one that will accept (Type II error). If other
approaches are more sensitive to exogenous variables connected with macroeco-
nomic factors and financial ratios, they may obtain different findings related to the
various preceding variables.

Appendix

Table 10 presents the impact of consumer ETFs on GRG, using the RBFNN tem-
plate. We found that high GRG and low GRG variables tested by RMSE, CE, and
MAE had similar results by specifying all variables. All tests for XLY, XLP, and
IPD suggested using 50% training data to define all variables. For the specification
of high and low GRG variables, the CHIQ results proposed using 20% training data,
and the INCO results suggested using 20% and 33% training data for forecasting.
Table 11 summarizes the TDRNN model results based on the GRG prediction
results. According to RBFNN results for XLY, XLP, and IPD, all measurement tests
(RMSE, CE, and MAE) show consistency and strongly suggest that consumer ETFs
can be better predicted by using 50% training data. Most measurement tests for
INCO propose the use of 50% training data for prediction. Other consumer ETFs,
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such as ECON, CHIQ, and BRAQ, are suitable for selecting different percentage
data for prediction.

We compare the forecastability for consumer ETFs as shown in Table 12. The
BPN and RNN models have the lowest values for consumer ETFs, based on the
average use of RMSE, CE, and MAE. The specifications of all variables in the BPN
model show that XLY and XLP have the lowest test values. Wang et al. (2013) found
that the RNN model has a better forecast accuracy and generalization performance
on real-time data. Using the RNN model, they revealed that the specifications of
XLP, IPD, IPS, ECON, CHIQ, and INCO were suitable for higher GRG variables.
The results showed that the RNN model has a relatively strong predictive capacity
for high GRG variables. In contrast, RBFNN is the best predictor of low GRG vari-
ables. In line with Pradhan and Kumar (2008) conclusions, ANN models are a pow-
erful tool to predict economic growth.

Compliance with Ethical Standards:

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed
by any of the authors.

References

Acharya RN, Gentle PF, Paudel KP (2009) Examining the CRB index as a leading indicator for US infla-
tion. Appl Econ Lett 17(15):1493-1496

Alexander C, Barbosa A (2008) Hedging index exchange-traded funds. J Bank Finance 32(2):326-337

Andreou AS, Georgopoulos EF, Likothanassis SD (2002) Exchange-rates forecasting: a hybrid algorithm
based on genetically optimized adaptive neural networks. Comput Econ 20(3):191-210

Armano G, Marchesi M, Murru A (2005) A hybrid genetic-neural architecture for stock indexes forecast-
ing. Inf Sci 170(1):3-33

Arora V, Gomis-Porqueras P, Shi S (2013) The divergence between core and headline inflation: Implica-
tions for consumers’ inflation expectations. J] Macroecon 38:497-504

Azadeh A, Ghaderi SF, Sohrabkhani S (2008) Annual electricity consumption forecasting by neural net-
work in high energy consuming industrial sectors. Energy Convers Manage 49(8):2272-2278

Bandopadhyaya A, Jones A (2011) Measures of investor sentiment: a comparative analysis put-call ratio
vs. volatility index. J Bus Econ Res 6:27-34

Bekiros SD, Georgoutsos DA (2008) Direction-of-change forecasting using a volatility-based recurrent
neural network. J Forecast 27(5):407-417

Boehmer B, Boehmer E (2003) Trading your neighbor’s ETFs: competition or fragmentation? J Bank
Finance 27(9):1667-1703

Bollapragada R, Savin I, Kerbache L (2013) Price forecasting and analysis of exchange traded fund. J
Math Finance 3(1):181-191

Bors AG, Gabbouj M (1994) Minimal topology for a radial basis functions neural network for pattern
classification. Digit Signal Process 4(3):173-188

Bors AG, Pitas I (1996) Median radial basis function neural network. IEEE Trans Neural Netw
7(6):1351-1364

Braspenning PJ, Thuijsman F, Weijters AJMM (1995) Artificial neural networks: an introduction to ANN
theory and practice. Springer, Berlin

@ Springer



820 M. Malinda, J.-H. Chen

Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex
Systems 2:321

Cenglin Y (2012) Application of Grey relational analysis method in comprehensive evaluation on the
consumer satisfaction of automobile 4S enterprises. Phys Proc 33:1184—1189

Chakraborty K, Mehrotra K, Mohan CK, Ranka S (1992) Forecasting the behavior of multivariate time
series using neural networks. Neural Netw 5(6):961-970

Chang PC, Wang YW (2006) Fuzzy Delphi and back-propagation model for sales forecasting in PCB
industry. Expert Syst Appl 30(4):715-726

Chang TS, Ku CY, Fu HP (2013) Grey theory analysis of online population and online game industry
revenue in Taiwan. Technol Forecast Soc Chang 80(1):175-185

Charupat N, Miu P (2011) The pricing and performance of leveraged exchange-traded funds. J Bank
Finance 35(4):966-977

Chen JH (2011) The spillover and leverage effects of ethical exchange traded fund. Appl Econ Lett
18(10):983-987

Chen JH, Diaz JF (2012) Spillover and asymetric-volatility effects of leverage and inverse leverage
exchange-traded funds. J Bus Policy Res 7(3):1-10

Chen JH, Diaz JF (2013) The long memory and shifts in the returns of green and non-green exchange-
traded funds (ETFs). Int J Human Soc Sci Invent 2(10):29-32

Chen JH, Fang YP (2008) Forecasting the performance of the Asian currency unit and the causes of con-
tagion of the Asian financial crisis. Asia Pac Manag Rev 13:665-684

Chen JH, Fang YP (2011) A study on the modified components of Asian currency unit: an application of
the artificial neural network. Qual Quant 45(2):329-347

Chen JH, Malinda M (2014) The study of the spillover and leverage effects of financial exchange-traded
funds (ETFs). Front Finance Econ 11(2):41-59

Chen JH, Trang DTV (2013) Grey rational analysis and chaos effects of ethanol and biofuel: an artificial
neural network analysis. Int Res J Appl Finance 4(9):1234-1255

Chen H, Wan Q, Wang Y (2014) Refined Diebold—Mariano test methods for the evaluation of wind power
forecasting models. Energies 7:4185-4198

Chisasa J, Dlaminier W (2013) An empirical analysis of the interest rate vehicle purchase decision Nexus
in South Africa. Int Bus Econ Res J 12(5):477-488

DeFusco R, Ivanov S, Karels G (2011) The exchange-traded funds’ pricing deviation: analysis and fore-
casts. J Econ Finance 35(2):181-197

Deng JL (1989) Introduction to grey system theory. J Grey Syst 1(1):1-24

Diaz JF (2012) Application of grey relational analysis and artificial neural networks on currency exchange
trade notes (ETNs). Doctoral Dissertation Chung Yuan Christian University

Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253-263

Donaldson RG, Kamstra M (1997) An artificial neural network-GARCH model for international stock
return volatility. ] Empir Finance 4(1):17-46

Edelberg W (2006) Risk-based pricing of interest rates for consumer loans. J Monet Econ
53(8):2283-2298

Elman J (1990) Finding structure in time. Cogn Sci 14(2):179-211

Enke D, Thawornwong S (2005) The use of data mining and neural networks for forecasting stock market
returns. Expert Syst Appl 29(4):927-940

Foster WR, Collopy F, Ungar LH (1992) Neural network forecasting of short, noisy time series. Comput
Chem Eng 16(4):293-297

Gallego J, Mondragon F, Catherine D (2013) Simultaneus production of hydrogen and carbon nanostruc-
tured materials from ethanol over LaNiO; and LaFeO; perovskites as catalyst precursors. Appl
Catal A 450(13):73-79

Ge HW, Liang YC, Marchese M (2007) A modified particle swarm optimization-based dynamic
recurrent neural network for identifying and controlling nonlinear systems. Comput Struct
85(21-22):1611-1622

Georganas S, Healy PJ, Li N (2014) Frequency bias in consumers’ perceptions of inflation: an experimen-
tal study. Eur Econ Rev 67:144-158

Goleg A, Murat A, Tokat E, Burhan Tiirksen I (2012) Forecasting model of Shanghai and CRB commod-
ity indexes. Expert Syst Appl 39(10):9275-9281

Guresen E, Kayakutlu G, Daim TU (2011) Using artificial neural network models in stock market index
prediction. Expert Syst Appl 38(8):10389-10397

@ Springer



The forecasting of consumer exchange-traded funds (ETFs)... 821

Hadavandi E, Shavandi H, Ghanbari A (2010) Integration of genetic fuzzy systems and artificial neural
networks for stock price forecasting. Knowl-Based Syst 23(8):800-808

Hajzler C, Fielding D (2014) Relative price and inflation variability in a simple consumer search model.
Econ Lett 123(1):17-22

Hamzagebi C (2008) Improving artificial neural networks’ performance in seasonal time series forecast-
ing. Inf Sci 178(23):4550-4559

Hamzacebi C, Pekkaya M (2011) Determining of stock investments with grey relational analysis. Expert
Syst Appl 38(8):9186-9195

Hamzagebi C, Akay D, Kutay F (2009) Comparison of direct and iterative artificial neural network fore-
cast approaches in multi-periodic time series forecasting. Expert Syst Appl 36(2):3839-3844

Ho SL, Xie M, Goh TN (2002) A comparative study of neural network and Box—Jenkins ARIMA mod-
eling in time series prediction. Comput Ind Eng 42(2-4):371-375

Ho WR, Wang YC, Liou GJ (2010) The interactive relationship among international gold indexes, gold
futures and the overall economy. Afr J Bus Manag 4(9):1903-1915

Holscher J, Marelli E, Signorelli M (2010) China and India in the global economy. Econ Syst
34(3):212-217

Hong SY, Yoon HH (2011) Ethanol production from food residues. Biomass Bioenerg 35:3271-3275

Houlihan P, Creamer G (2019) Leveraging a call-put ratio as a trading signal. Quant Finance
19(5):763-7717

Hsia KH, Chen MY, Chang MC (2004) Comments on data pre-processing for Grey relational analysis. J
Grey Syst 7(1):15-20

Hu YC (2007) Grey relational analysis and radial basis function network for determining costs in learning
sequences. Appl Math Comput 184(2):291-299

Huang CY, Wang TY (2008) Enhancing a GA-based BPN forecasting model by employing the Taguchi
method. Int J Prod Res 47(5):1391-1410

Jarrow RA (2010) Understanding the risk of leveraged ETFs. Finance Res Lett 7(3):135-139

Jiang H, He W (2012) Grey relational grade in local support vector regression for financial time series
prediction. Expert Syst Appl 39(3):2256-2262

Juselius K (1995) Do purchasing power parity and uncovered interest rate parity hold in the long run?
An example of likelihood inference in a multivariate time-series model. J Econom 69(1):211-240

Kaastra I, Boyd M (1996) Designing a neural network for forecasting financial and economic time series.
Neurocomputing 10(3):215-236

Kayacan E, Ulutas B, Kaynak O (2010) Grey system theory-based models in time series prediction.
Expert Syst Appl 37(2):1784-1789

Kim SS (1998) Time-delay recurrent neural network for temporal correlations and prediction. Neurocom-
puting 20(1-3):253-263

Kim KIJ, Han I (2000) Genetic algorithms approach to feature discretization in artificial neural networks
for the prediction of stock price index. Expert Syst Appl 19(2):125-132

Krause T, Tse Y (2013) Volatility and return spillover in Canadian and US industry ETFs. Int Rev Econ
Finance 25:244-259

Kung CY, Wen KL (2007) Applying grey relational analysis and grey decision-making to evaluate the
relationship between company attributes and its financial performance—a case study of venture
capital enterprises in Taiwan. Decis Support Syst 43(3):842-852

Kuo Y, Yang T, Huang GW (2008) The use of grey relational analysis in solving multiple attribute deci-
sion-making problems. Comput Ind Eng 55(1):80-93

Lee K, Chi A, Yoo S, Jin J (2008) Forecasting Korean stock price index (Kospi) using back propaga-
tion neural network model, Bayesian Chiao’s Model, and sarima model. Acad Inf Manag Sci J
11(2):53-62

Li DC, Chang CJ, Chen CC, Chen WC (2012a) Forecasting short-term electricity consumption using the
adaptive grey-based approach—an Asian case. Omega 40(6):767-773

LiJ, Cheng JH, Shi JY, Huang F (2012) Brief introduction of back propagation (BP) neural network algo-
rithm and its improvement. In: Jin D, Lin S (eds) Advances in computer science and information
Engineering, vol 169, pp 553-558

Lin CT, Hsu PF (2001) Selection of advertising agencies using grey relational analysis and analytic hier-
archy process. J Int Mark Mark Res 26(3):115-128

Lin SL, Wu SJ (2011) Is grey relational analysis superior to the conventional techniques in predicting
financial crisis? Expert Syst Appl 38(5):5119-5124

@ Springer



822 M. Malinda, J.-H. Chen

Lin DT, Dayhoff JE, Ligomenides PA (1992) Adaptive time-delay neural network for temporal correla-
tion and prediction. In: Proceedings of SPIE conference on biological, neural net, and 3-D meth-
ods, pp 170-181

Liu S, Lin Y (2005) Grey information: theory and practical applications (advanced information and
knowledge processing). Springer, New York

Maya M, Chen J-H (2018) The forecasting of agriculture exchange-traded funds (ETFs): using gray rela-
tional analysis (GRA) and artificial neural networks (ANNS). J Int Glob Econ Stud 11(2):47-62

Monteiro N, Altman I, Ahiri S (2012) The impact of ethanol production on food prices: the role of inter-
play between the U.S. and Brazil. Energy Policy 41:193-199

Oh KIJ, Han I (2000) Using change-point detection to support artificial neural networks for interest rates
forecasting. Expert Syst Appl 19:105-115

Palmer B (2019) Mutual Fund ETF. https://www.investopedia.com/ask/answers/09/mutual-fund-etf.asp

Peterson M (2003) Discussion of “Trading your neighbor’s ETFs: competition or fragmentation?” by
Boehmer and Boehmer. J Bank Finance 27(9):1705-1709

Poddig T, Rehkugler H (1996) A ‘world’ model of integrated financial markets using artificial neural
networks. Neurocomputing 10(3):251-273

Pradhan RP, Kumar A (2008) Forecasting economic growth using an artificial neural network model. J
Financ Manag Anal 21(1):24-31

Scott G (2020) Customer discretionary. https://www.investopedia.com/terms/c/consumer-discretionary.
asp

Shen W, Guo X, Wu C, Wu D (2011) Forecasting stock indices using radial basis function neural net-
works optimized by artificial fish swarm algorithm. Knowl-Based Syst 24(3):378-385

Simon DP, Wiggins RA (2001) S&P futures returns and contrary sentiment indicators. J Futures Mark
21:447-462

Singhal D, Swarup KS (2011) Electricity price forecasting using artificial neural networks. Int J Electr
Power Energy Syst 33(3):550-555

Sookhanaphibarn K, Polsiri P, Worawat C, Lin FC (2007) Application of neural networks to business
bankruptcy analysis in Thailand. Int ] Comput Intell Res 3(1):91-96

Ticknor JL (2013) A Bayesian regularized artificial neural network for stock market forecasting. Expert
Syst Appl 40(14):5501-5506

Trang DTV (2014) An evaluation of precious metal ETFs: testing for leverage effect, spillover effect
volatility dynamic and forecasting. Doctoral Dissertation Chung Yuan Christian University

Tseng CH, Cheng ST, Wang YH, Peng JT (2008) Artificial neural network model of the hybrid EGARCH
volatility of the Taiwan stock index option prices. Phys A 387(13):3192-3200

Versace M, Bhatt R, Hinds O, Shiffer M (2004) Predicting the exchange traded fund DIA with a combi-
nation of genetic algorithms and neural networks. Expert Syst Appl 27:417-425

Waibel A (1989) Modular construction of time-delay neural networks for speech recognition. Neural
Comput 1(2):39-46

Wang Q, Hu Y (2015) Cross-correlation between interest rates and commodity prices. Phys A 428:80-89

Wang JZ, Wang JJ, Zhang ZG, Guo SP (2011) Forecasting stock indexes with back propagation neural
network. Expert Syst Appl 38(11):14346-14355

Wang JJ, Wang JZ, Zhang ZG, Guo SP (2012) Stock index forecasting based on a hybrid model. Omega
40(6):758-766

Wang X, Ma L, Wang B, Wang T (2013) A hybrid optimization-based recurrent neural network for real-
time data prediction. Neurocomputing 120:547-559

Widrow B, Rumelhart DE, Lehr MA (1994) Neural networks: applications in industry, business and sci-
ence. Commun ACM 37(3):93-105

Wong BK, Selvi Y (1998) Neural network applications in finance: a review and analysis of literature
(1990-1996). Inform Manag 34(3):129-139

Wong BK, Bodnovich TA, Selvi Y (1997) Neural network applications in business: a review and analysis
of the literature (1988-1995). Decis Support Syst 19(4):301-320

Wu JH, Chen CB (1999) An alternative form for grey relational grades. J Grey Syst 11(1):7-12

Wu JD, Liu JC (2012) A forecasting system for car fuel consumption using a radial basis function neural
network. Expert Syst Appl 39(2):1883-1888

Yamaguchi D, Kobayashi T, Mizutani K, Akabane T, Nagai M (2004) Marketing research method based
on grey theory considering with consumer’s Kansei. J Jpn Soc Kansei Eng 4(2):101-106

@ Springer


https://www.investopedia.com/ask/answers/09/mutual-fund-etf.asp
https://www.investopedia.com/terms/c/consumer-discretionary.asp
https://www.investopedia.com/terms/c/consumer-discretionary.asp

The forecasting of consumer exchange-traded funds (ETFs)... 823

Yang J, Cabrera J, Wang T (2010) Nonlinearity, data-snooping, and stock index ETF return predictability.
Eur J Oper Res 200(2):498-507

You ML, Wang CW, Yeh CK (2006) The development of completed grey relational analysis toolbox via
Matlab. J Grey Syst 9(1):57-64

Zaiontz C (2020) Real statistics using Excel. www.real-statistics.com

Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocom-
puting 50:159-175

Zhang Y, Wu L (2009) Stock market prediction of S&P 500 via combination of improved BCO approach
and BP neural network. Expert Syst Appl 36(5):8849-8854

Zhang JS, Xiao XC (2000) Predicting chaotic time series using recurrent neural network. Chin Phys Lett
17(2):88-90

Zhang G, Eddy B, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J
Forecast 14(1):35-62

Zhao Z, Wang J, Zhao J, Su Z (2012) Using a grey model optimized by differential evolution algorithm
to forecast the per capita annual net income of rural households in China. Omega 40(5):525-532

Zou HF, Xia GP, Yang FT, Wang HY (2007) An investigation and comparison of artificial neu-
ral network and time series models for Chinese food grain price forecasting. Neurocomputing
70(16-18):2913-2923

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer


http://www.real-statistics.com

