# INNOVATION RESEARCH IN THE ERA OF MBKM Maya Malinda; Rene Arthur Palit; Naniwati Sulaiman; Gianti Gunawan; Olga Catherina Pattipawaej; Sinatra; Tery Setiawan; Antonius Suhartomo; Efnie Indrianie; Meilani Rohinsa; Rosida Tiurma Manurung; Seriwati Ginting; Miki Tjandra; Krismanto Kusbiantoro; Cindrawaty Lesmana; Irena Vanessa Gunawan; SeTin SeTin #### INNOVATION RESEARCH IN THE ERA OF MBKM #### **Penulis:** Maya Malinda; Rene Arthur Palit; Naniwati Sulaiman; Gianti Gunawan; Olga Catherina Pattipawaej; Sinatra; Tery Setiawan; Antonius Suhartomo; Efnie Indrianie; Meilani Rohinsa; Rosida Tiurma Manurung; Seriwati Ginting; Miki Tjandra; Krismanto Kusbiantoro; Cindrawaty Lesmana; Irena Vanessa Gunawan; SeTin SeTin #### Penyunting: Abdul Rahmat Rosida Tiurma Manurung #### **Novateur Publication** Address: 466, Sadashiv Peth, Pune, Maharashtra, India-411030 https://novateurpublication.com/. ISBN: 978-93-90753-46-8 https://novateurpublication.com/index.php/np/catalog/book/49 #### @2021 Copyright protected by law Do not quote or reproduce part of it Or the contents of this entire book without written permission from the publisher #### **FOREWORD** Thanks to God Almighty for all that is visible and hidden, this book can be done, even in a very simple measure. Research innovation is a new breakthrough that is based on research results, scientific findings, research outputs that can provide benefits in human life. Thus, research and science are needed in the development of innovation. Without research and scientific development, innovation will not work as it should. In fact, it could even be misdirected, did not last long, and became just wishful thinking. Research-based innovation is very useful in all areas of life. Research that is focused and leads to innovation is very much needed. Research innovation is a research, development, or engineering activity that aims to develop the practical application of new scientific values and contexts, or new ways to apply existing science and technology into a process. Every innovation needs to be communicated including in this book chapter so that the public understands innovative thinking. We are aware that this book is full of shortcomings, therefore we really hope for constructive criticism and suggestions for the perfection of this book. Finally, for all the blessings of God Almighty, hopefully it can be useful for the treasures of knowledge on this earth. Amen! Jakarta, August 2021 **Editing Team** # **CONTENTS** | FOREWORD | iii | |---------------------------------------------------------------------------------------------------------------------------------|-----| | CONTENTS | v | | EDUCATION AND LEARNING BUSINESS PLAN WITH COACHING METHOD Maya Malinda | 1 | | PSIKOLOGI IMAJI: MEMAHAMI BERAGAM PENDEKATAN<br>PERSUASI IKLAN | | | | 15 | | SELF DISRUPTIVE LEADERSHIP IN THE ERA OF MBKM Gianti Gunawan | 29 | | LEARNING MEDIA OF RUBBLE-MOUND BREAKWATER<br>DESIGN FOR EDUCATIONAL PURPOSE | | | | 39 | | BRAIN RESPIRATION TO IMPROVE STUDENT BRAIN WORK Efnie Indrianie | 65 | | APPLICATION OF SELF DETERMINATION THEORY:<br>DEVELOPING STUDENT ENGAGEMENT IN MERDEKA<br>BELAJAR KAMPUS MERDEKA | | | Meilani Rohinsa | 73 | | LANGUAGE RESEARCH INNOVATIONS: THE EFFECT OF EDUCATION ON MEDICAL LANGUAGE UNDERSTANDING DURING PANDEMIC Rosida Tiurma Manurung | 90 | | - | 03 | | RESEARCH INNOVATION: IMPLEMENTATION OF CHARACTER EDUCATION TO IMPROVE THE MENTALITY OF THE YOUNG GENERATION | | | Seriwati Gintina dan Miki Tiandra | 91 | | HYBRID APPROACHES IN CULTUR | AL HERITAGE | |------------------------------------|----------------------| | RECONSTRUCTION OF CHINESE L | IEUTENANT TOMB IN | | <b>BANDUNG: A MULTIDISCIPLINAR</b> | Y SURVEY | | Krismanto Kusbiantoro, Cindrawaty | J Lesmana, | | dan Irena Vanessa Gunawan | 105 | | MANAGEMENT ACCOUNTING RES | SEARCH DEVELOPMENTS, | | RESPONSES, CHALLENGES, AGEN | DA AND ROLE OF | | LECTURERS | | | SeTin SeTin | 120 | # LEARNING MEDIA OF RUBBLE-MOUND BREAKWATER DESIGN FOR EDUCATIONAL PURPOSE Olga Catherina Pattipawaej<sup>1)</sup>, Sinatra<sup>2)</sup> <sup>1)</sup>Civil Engineering, Universitas Kristen Maranatha, olga.pattipawaej@eng.maranatha.edu <sup>2)</sup>Civil Engineering, Universitas Kristen Maranatha, ryu.sin@hotmail.com #### A. Introduction The rapid development of science and technology today, has brought very rapid changes in various aspects of life. The work and way work changes, many jobs are lost, while various types of work just popped up. Economic, social, and cultural changes are also occurring at a rapid rate high. In this very dynamic time, higher educations must respond quickly and right. Learning transformation is needed to be able to equip and prepare higher education graduates to become a superior generation. The responsive generation and ready to face the challenges of his time, without being uprooted from his nation's cultural roots. Nowadays creativity and innovation are important keywords to ensure development sustainable Indonesia. Students currently studying at the higher educations, must be prepared to become a true learner who is skilled, flexible and tenacious (agile learner). Merdeka Belajar – Kampus Merdeka (MBKM) or Independent Learning – Independent Campus Policy launched by the Minister of Education and Culture, Republic of Indonesia is a framework to prepare students to become graduates who tough, relevant to the needs of the times, and ready to be a leader with passion high nationality (Directorate General of Higher Education, Ministry of Education and Culture, 2020). Minister of Education and Culture Regulation Number 3 of 2020 concerning National Higher Education Standards, gives students the right for three semesters of study outside the study program. Through this program, opportunities are opened broad area for students to enrich and improve their insight and competence in the real world according to their passions and ideals. Learning can happens anywhere, the universe of learning is limitless, not only in classrooms, libraries and laboratories, but also in villages, industry, workplaces, places service, research centers, and in the community. Through close interaction between higher educations with the world of work, with the real world, then the higher education will be presented as a springs for the progress and development of the nation, also coloring culture and civilization nation directly. One way to support the MBKM program for lecturers is to develop innovative and creative learning methods. One of the learning methods used is by developing the application of computational techniques. The learning media is focused on the coastal protection structure, namely rubble mound breakwaters use structural voids to dissipate the wave energy. Rubble mound breakwaters consist of piles of stones sorted according to their unit weight: smaller stones for the core and larger stones as an armour layer protecting the core from wave attack. In designing a rubble mound breakwater structure, several variables are using graphs and tables to get the value. The high possibility of making mistakes when reading graphs and tables can be affected to the result which can make the rubble mound breakwater becomes unstable and not strong enough. To avoid errors in the calculation and reading graphs or tables, it is needed a program that can automatically calculate in designing the structure of the rubble mound breakwater. This learning media can save the time, can avoid the errors in calculation and reading graphs or tables, and can be used as a learning media for the educational purpose. #### B. Discussion #### 1. Rubble Mound Breakwater A breakwater built as a rubble mound is constructed by placing material of various sizes layer by layer (or unit by unit) until the desired cross-section shape is achieved. A rubble mound breakwater on Glagah beach, Kulon Progo, Indonesia is shown in Figure 1. Figure 1. A rubble mound breakwater on Glagah beach, Kulon Progo, Indonesia. Figure 2 shows a typical cross section of a rubble mound breakwater. The core, shown in the cross section is usually composed of sand fill, and the armour layers are made up of more rock or the concrete armour units (Palmer and Christian, 1998). Figure 2. Cross section of a typical rubble mound breakwater. Generally, the units are not structurally connected, so that the integrity of the rubble-mound depends on features such as the weight of the material, the interlocking nature of the material, and the cross section of the structure. The structure is usually built with material graded from smaller sizes in the core to larger material for armour layer against wave attack (Raichlen, 1975). The armour layer may be composed of quarry-stone if it is available in the required sizes and is economically feasible to use. When these conditions are not met, specially designed concrete units for armour layer of the rubble-mound have been developed that tend to interlock better than rock when properly placed; hence, it may be possible to use armor units lighter than the required quarry-stone. Over the years numerous geometric shapes have been developed for such armour units, with each shape generally introduced to improve on the interlocking characteristics of its predecessors. To mention only a few, various names used for different units: tribars, tetrapods, quadripods, and dolos. ## 2. Design of Rubble Mound Breakwater Various studies related to rubble-mound breakwater have been carried out and it is very useful to obtain a stable rubble mound breakwater before it is constructed at the specified location (Carrasco, et.al, 2014; Contestabilea, et.al., 2017; Iuppa, et.al., 2016). Research in the laboratory is carried out to ensure the condition of the rubble mound breakwater is safe, stable and survive for a long time (Pattipawaej, Dani and Samskerta, 2015; Pattipawaej and Dani, 2016 and 2017). The initial action required is the calculation for stability of the rubble mound breakwater. Initial input data that is required are HWL (Height Water Level), MWL (Mean Water Level), LWL (Low Water Level), wave height, wav eperiod, depth of the sea, slope of the sea bed, and slope of the rubble mound breakwater, refraction coefficient, also specific gravity of rubble/broken stone. The calculations process (Triatmodjo, 2014) as follows: - a. location water depth of breakwater structure based on HWL, MWL, and LWL ( $d_{HWL}$ , $d_{MWL}$ , and $d_{LWL}$ ) - b. determination of the wave condition in the location breakwater planned, such as the height of breaking wave (see Figure 3) and the water depth at the location of the breaking wave (see Figure 4) Figure 3. Breaker wave heigth index versus deepwater water steepness (Shore Protection Manual, 1984) **Figure 4.** Water depth at the location of breaking wave (Shore Protection Manual, 1984) • Determination of top elevation of breakwater, i.e., the height of wave in deep water (H), irribaren number: $$I_r = \frac{\tan \theta}{(H/L_0)^{1/2}},\tag{1}$$ • Where $L_0$ is offshore wave length, $\theta$ is slope angle of the stucture, and wave run-up (see Figure 5) Figure 5. Wave run up (Shore Protection Manual, 1984) - The height of breakwater according to the selected armor unit material on each layer - The weight of an individual armor unit in the primary cover layer (W) using hudson equation: $$W = \frac{w_r H^3}{K_D(S_r - 1)\cot\theta} \tag{2}$$ Where K<sub>D</sub> is an empirical stability coefficient, w<sub>r</sub> is unit of weight of the armor material, H is the design wave height, and S<sub>r</sub> is the specific gravity of the armor unit 44 • The width at the top breakwater: $$B = nk_{\Delta} \left(\frac{w}{w_a}\right)^{1/3} \tag{3}$$ Where n is number of stone, $k_{\Delta}$ is the layer coefficient (Triatmojo, 2010), and $w_a$ is the specific weight of armor unit material The thickness of armor unit: $$r = nk_{\Delta} \left(\frac{w}{w_a}\right)^{1/3} \tag{4}$$ ## 3. Learning Media of Rubble Mound Breakwater Model Figure 6 shows the initial display when the program starts. When the program is started, the user is prompted to the login. This login is intended to distinguish between users who have access right to users and who do not have access right, and user who have access right as the administrator and user who have access right as a guest. After the user login, then the application will present the main view. The main view can be seen in Figure 7. Figure 6. Initial Program Figure 7. Main view To create a new project, the user must push the New Project button. Afterward the system will show the first phrase of the new project view which allows the user to insert a project name. The first phrase new project view can be seen in Figure 8. Figure 8. The first phrase new project view. When the user had already inserted a project name, the learning media system will display the second phrase new project view which allow user to insert an initial data project. The second phrase new project view can be seen in Figure 9. Figure 9. The second phrase new project view Figure 10 shows the cross-sectional image of the output program. The drawing project is created automatically by the learning media program based on the initial data and computational results. Figure 10. The cross-sectional image based on the initial data and computational result # 4. Numerical Example using the Application First, the input data is required and can be seen in Table 1. Based on the input data from Table 1, Table 2 shows the result of the manual computation on the design of the rubble mound breakwater. Tabel 1 Initial Data | Input Parameter | | |---------------------------|-------------------------| | HWL | 1.85 m | | MWL | 1.05 m | | LWL | 0.3 m | | Height of wave | 3 m | | Water depth | - 8 m | | Specific gravity of stone | 2.65 ton/m <sup>3</sup> | | Armor unit | Hexapod | | Wave period | 10 second | | Slope of sea-bed | 1:50 | | Slope of structure | 1:2 | | Coefficient.refraction | 0.95 | Tabel 2 Manual calculation results | Output | | |--------------------------|------------------| | Height of breaking wave | 0.00291 m | | Depth of breaking wave | 4.0 m | | Wave condition | nonbreaking wave | | Runup wave (Ru/H) | 1.4 | | Elevation of breakwater | 6.55 m | | Height of breakwater | 14.55 m | | Weight of armor unit | 0.967 m | | Width of top breakwater | 2.5 m | | Thickness of armor layer | 1.67 m | The result of numerical calculations can be seen in Figure 9. Table 3 shows the comparison results between the manual and the numerical calculations. The average difference of the results obtained is 0.73 %. These results demonstrate the accuracy of the results of numerical calculation with the highly efficient. #### Calculation results: | Value Value | | | |--------------------------|---------------------|--| | Height of breaking wave | 0.00290519877675841 | | | Depth of breaking wave | 4.132832665092 | | | Wave condition | Unbreaking wave | | | Runup wave (Ru/H) | 1.42399653312583 | | | Elevation of building | 6.62198959937749 | | | Height of building | 14.6219895993775 | | | Coef.Stability (KD) | 9.5 | | | Weight of armor unit | 0.967882566976045 | | | Coef. Layer (ΚΔ) | 1.15 | | | Width top breakwater | 2.46610384119958 | | | Thickness of armor layer | 1.64406922746639 | | Figure 11. Output of the numerical computation # Table 3 Comparison results between manual and numerical computation | Output | Manual computation | Numerical computation | Difference<br>(%) | |----------------------------|---------------------|-----------------------|-------------------| | Height of breaking wave | 0.00291 | 0.00290519877675841 | 0.16 | | Depth of breaking wave | 4.1 | 4.132832665092 | 0.79 | | Wave condition | nonbreaking<br>wave | nonbreaking wave | - | | Runup wave<br>(Ru/H) | 1.4 | 1.42399653312583 | 0.36 | | Elevation of breakwater | 6.55 | 6.62198959937749 | 1.08 | | Height of<br>breakwater | 14.55 | 14.6219895993775 | 0.49 | | Weight of armor unit | 0.967 | 0.967882566976045 | 0.09 | | Width of top<br>breakwater | 2.5 | 2.46610384119958 | 1.35 | | Output | Manual computation | Numerical computation | Difference (%) | |--------------------------|--------------------|-----------------------|----------------| | Thickness of armor layer | 1.67 | 1.64406922746639 | 1.55 | | Average<br>difference | | | 0.73 | #### C. Conclusion The rubbble-mound breakwater design is focused to provide coastal protection from the excessive wave action. Furthermore, the learning media of rubble-mound breakwater design is intentionally made for the educational purpose. The armor units form the primary cover layers of protection that exist in this application program consists of some variation among tetrapod, quadripod, hexapod, cube, dolos, tribar, smooth natural stone and rough natural stone. The numerical example shows that the average difference between the manual and the numerical computation for all form of protected items in primary cover layer obtained is equal to approximately 0.73 %. The result makes obvious that this learning media is satisfactory to design the rubble-mound breakwaters accurately and efficiently in the execution time. The future research will include the determination of toe beam and first underlayer, second underlayer, and core and bedding layer. On the other hand, the simulation of this rubble-mound breakwater design will use the flash animation that supports simulation process to be more close to reality. #### References - Carrasco, A.R., Reis, M.T., Neves, M.G., Ferreira, O., Matias, A., and Almeida, A. (2014). Overtopping hazard on rubble mound breakwater. Jurnal of Coastal Research, Special Issue No. 66. - Coastal Engineering Research Center. (1984). Shore Protection Manual, US Army Coastal Engineering Research Center, Washington - Contestabilea, P., Iuppa, C., Lauroa, E.D., Luca Cavallarob, Andersen, T.L., and Vicinanzaa, D. (2017). Wave loadings acting on innovative rubble mound breakwater for overtopping wave energy conversion. Coastal Engineering: 122; 60-74 - Direktorat Jenderal Pendidikan Tinggi Kementrian Pendidikan dan Kebudayaan, Republik Indonesia (2020). Buku Panduan Merdeka-Kampus Merdeka. - Iuppa, C., Contestabile, P., Cavallaro, L., Foti, E. and Vicinanza, D. (2016). Hydraulic performance of an innovative breakwater for overtopping wave energy conversion. Sustainability: 8, 1226 - Minister of Education and Culture Regulation Number 3 of 2020 concerning National Higher Education Standards (2020) - Palmer, G, and Christian, C.D. (1998). Design and construction of rubble mound breakwaters. *IPENZ Transactions*: 25(1). - Pattipawaej, O.C., Dani, H.J., and Samskerta, I.P. (2015). Two dimensional rubble mound breakwater model using tetrapod at armour layer and geotube at core layer. *Proceeding of International Conference on Science, Technology, and Humanity*. Universitas Muhammadiyah Surakarta, Indonesia. - Pattipawaej, O.C. dan Dani, H.J. (2016). Two dimensional submerged rubble mound breakwater model using tetrapod at armour layer. *Proceeding of International Conference on Technology, Innovation, and Society*. Institut Teknologi Padang. Indonesia. - Pattipawaej, O.C. and Dani, H.J. (2017). Modeling two dimensional of rubble mound breakwater using dolos at armour layer and geotube at core layer. *Civil, Architecture, and Environmental Engineering*: 194-197. - Raichlen, F. (1975). The effect of waves on rubble-mound structures. Annual Review of Fluid Mechanics: 7, 327-356p. - Triatmodjo, B. (2014). Perencanaan Bangunan Pantai. Yogyakarta: Beta Offset.