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Abstract
BACKGROUND: Overdoses acetaminophen (APAP) could cause acute liver failure, even though it used is for 
analgesics. APAP could cause hepatotoxicity due to multiple mediators of inflammation and oxidative stress. Eugenol 
has been reported to have anti-inflammatory and antioxidant activity but its hepatoprotective effect has not been 
widely reported. 

AIM: The purpose of this research is to know if eugenol could protect HepG2 cells from APAP.

METHODS: HepG2 that induced by APAP as hepatotoxicity cells model was treated by using eugenol 
at 6.25 and 25 µg/mL. The protective effects of eugenol toward hepatotoxicity were evaluated by determine tumor 
necrosis factor-α (TNF-α) concentration, apoptotic activity, reactive oxygen species (ROS) level, also cytochrome 
(CYP)2E1 and GPX gene expression.

RESULTS: Eugenol at 6.25 and 25 µg/mL concentration can reduce TNF-α concentration, the apoptotic, 
necrotic, dead cells, and ROS level. Besides it can increase the gene expression (GPX and CYP2E1). The best 
hepatoprotective effect was found when using the eugenol at 25 µg/mL.

CONCLUSION: Therefore, eugenol can be used to protect HepG2 cells against APAP.
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Introduction

Acetaminophen (paracetamol) or known as 
APAP, is frequently used as analgesic [1]. Overdose of 
APAP has been reported can lead to acute liver failure 
[2]. In several countries such as USA, and UK, the most 
frequent cause of acute liver failure is APAP overdoses 
[3]. But, the mechanism of APAP-induced hepatotoxicity 
was still unclear. Based on various research, APAP can 
induce acute liver damage by mediators’ inflammation 
and oxidative stress [4]. One of the mediators was 
tumor necrosis factor-α (TNF-α) [5].

The mechanism of APAP hepatotoxicity 
is dominated by intracellular events including the 
Hepatotoxicity by APAP induction was intracellular events, 
including GSH depletion, protein adduct formation, 

and the formation of a reactive metabolite. It initiates 
mitochondrial oxidant stress and peroxynitrite formation 
[6]. At present, natural medicines have been investigated 
for their hepatoprotective ability, because it has many 
active compounds.  Therefore, new treatment protocols 
were needed urgently to be investigated [7], [8].

Eugenol or 4-allyl 2-methoxyphenol has 
many pharmacological activity such as antioxidant, 
antibacterial, antiviral, hypoglycemic, and anti-
inflammatory function in diabetes [9], [10]. These 
effects have been researched, but there are few 
reports concerning the hepatoprotective effects. It 
has been reported that eugenol at 25 µg/mL has 
the best hepatoprotective effects by decrease of 
lactate dehydrogenase (LDH) level also aspartate 
aminotransferase (AST) and alanin aminotransferase 
(ALT) activities in APAP-induced hepatotoxicity model 
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[11]. The focus of this research is to see if eugenol 
could protect HepG2 cells against APAP.

Methods

HepG2 cells culture and APAP-induced 
HepG2

This research using human hepatocellular 
carcinoma (HepG2) cells line (ATCC, HB-8065TM). 
The cell was obtained from Aretha Medika Utama, 
Biomolecular and Biomedical Research Center, 
Bandung, Indonesia. The cells were thawed and 
grown in Modified Eagle Medium (MEM) (Biowest, 
L0416-500). Grown medium enhanced by 1% (v/v) 
antibiotic-antimycotic (Gibco, 15240062), 10% (v/v) 
fetal bovine serum (FBS) (Biowest, S1810), and 1% 
(v/v) nanomycopulitine (Biowest, LX16). The cells were 
maintained in environment 37oC 5% CO2, and change 
the grown medium per 3 days.

APAP-induced HepG2 was used to create the 
hepatotoxic model in vitro. Confluent cells were rinsed 
with PBS before being incubated at 37°C with trypsin 
EDTA to extract the cells from the flask. After that, cells 
were counted using a hemocytometer and planted into 
6 well plates (5 x 105 cells per well). For 24 hours, cells 
were cultured in a 37°C incubator with 5% CO2. It was 
added by 40 mM APAP after the cells were connected 
(Sigma Aldrich, A7085-100G). Control normal cells 
(with medium complete); DMSO control (1 percent); 
APAP control 40 mM; APAP 40 mM + Eugenol 6.25 g/
mL; APAP 40 mM + Eugenol 25 g/mL; APAP 40 mM + 
Eugenol 6.25 g/mL; APAP 40 mM + Eugenol 25 g/mL; 
APAP 40 mM + Eugenol 25 g/ After the chemical was 
induced, the cell was incubated for another 24 hours at 
37o Cwith 5% CO2. The conditioned media was obtained 
for ELISA assays after incubation and centrifuged for 
10 minutes at 1600 rpm. For Tumour Necrosis Factor-α 
(TNF-α) assay, the supernatant was collected and kept 
at -80° C[11], [12], [13], [14], [15], [16].

Total protein assay

Bovine Standard Albumin (BSA) standard 
(Sigma, A9576) as much as 2 mg was dilute in 1000 
µL ddH2O.  Then, 20 μL of standard solutions and 200 
μL Quick Start Dye Reagen 1X (Biorad, 5000205) was 
added into well plate, then incubate at 5 min in room 
temperature. Absorbance of sample was measured 
by microplate reader (MultiskanTM GO Micro plate 
Spectrophotometer, Thermo Scientific, Waltham, MA, 
USA) at 595 nm [17]. The result from this assay was 
used for fibronectin data calculation [18].

TNF-α assay

For each treatment, the level of TNF-α 
was determined. According to the manual kit, the 
measurement was performed using an ELISA assay 
(BioLegend, ELISA kit 421701). The plates that would 
be used in the assay were coated with capture antibody 
solution and incubated overnight at 4°C before the assay 
began. The plate was rinsed four times with wash buffer 
before being incubated in an orbital shaker for one hour. 
Each sample and standard well received up to 50 μL 
of matrix C and assay buffer. The detection antibody 
solution was then added to each well and incubated at 
room temperature for 1 hour on an orbital shaker. After 
four washes, 100 μL of diluted Avidin-HRP solution was 
added to each well and incubated at room temperature 
for 30 minutes on an orbital shaker. The plate was 
then rinsed five times and 100 μL of substrate solution 
were added to each well. For ten minutes, the plate 
was incubated in the darkroom. To stop the reaction, 
then add the 100 μL of stop solution. The Multikan GO 
Microplate Reader (Thermo Fisher, 51119300) was then 
used to read the absorbance at 450 nm [19].

Apoptotic, necrotic, dead cells assay

The hepatotoxic HepG2 cell line was cultivated 
in MEM, 10% FBS, and 1% Antibiotic Antimycotic as a 
hepatotoxic model. For 24 hours, the cells were incubated 
at 37°C in a humidified environment with 5% CO2. Then, 
APAP was used to induced the cells. Each cell combined 
with administration of eugenol, and then the cells were 
incubated at 37°C and 5% CO2 for 24 h. The pellet cell 
was washed with 500 μL Annexin Binding Buffer 1X 
(130-092-820, Miltenyi Biotec) twice, before centrifuged 
at 1600 rpm for 5 minutes. The pellet cell was then 
stained with Annexin V-FITC (BioLegend, Part79998) 
and Propidium Iodide (BioLegend, Part79997) after 
being rinsed with 100 μL Annexin Binding Buffer (Miltenyi 
Biotec, 130-092-820). Apoptotic, necrotic, dead, and 
viable cells percentages of HepG2 cells were examined 
using MACSquant Analyzer 10 after the cells were kept 
in darkness at 4°C (Miltenyi Biotec) [20].

Reactive oxygen species (ROS) level assay

Flow cytometry was used to detect intracellular 
ROS levels using a DCF-DA fluorescent probe (Invitrogen) 
in accordance with Widowati et al method with minor 
modifications [14]. After being cultured for seven days, 
HepG2 cells were detached with trypsin-EDTA. As much 
as 2.5×104 cells/0.5 mL cells were incubated with 20 µM 
DCF-DA at 37ºC for 45 min. After incubated, eugenol was 
added (25 and 100 µg/mL) to the cells, then incubated 
again for 4 h. Miltenyi Flow Cytometer was used to 
measure the intracellular ROS levels (MAQS quant). The 
control used for ROS assay were HepG2 cells treated 
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with H2O2 without eugenol treatment. The fluorescence 
readings that were evaluated were expressed as a 
percentage of the control.
Table 1: Primer sequences of CYP2E1, GPX, and β-Actin gene 
used in RT-PCR
Gene 
symbols

Primer sequences (5’ to 3’) Upper strand: 
sense Lower strand: Antisense

Annealing 
(°C)

Cycle References

β-Actin 5’-TCTGGCACCACACCTTCTACAATG-3’
5’-AGCACAGCCTGGATAGCAACG-3’

63 40 [23]

CYP2E1 5’-GTTCTTTGCGGGGACAGAGA-3’
5’-GAGGGTGATGAACCGCTGAA-3’

59 40 [24]

GPX 5’-CCAAGCTCATCACCTGGTCT-3’
5’-TCGATGTCAATGGTCTGGAA-3’

59 40 [25]

CYP: Cytochrome

Cytochrome (CYP)2E1 and GPX gene 
expression assay

The HepG2 cell line was cultured in complete 
medium (MEM + 10% FBS + 1% Antibiotic Antimycotic) 
and incubated at 37°C with 5% CO2 for 24 h. After 
that, APAP was used to induce the cells, with the 
administration of 6.26 µg/mL and 25 µg/mL eugenol 
for each cell. The cells were incubated for 24 h at 
37°C and 5% CO2. The cells were then collected and 
processed for RNA isolation using AurumTM Total RNA 
mini Kit (Bio-Rad, 732-6820). The genes expression for 
CYP2E1, GPX, as well as the constitutively expressed 
β-actin gene, was analyzed using RT-qPCR (Clever, 
GTC96S) [20,21,22]. The primer sequences, purity, 
and concentration of RNA could be seen respectively in 
Table 1 and Table 2.

Table 2: Concentration and purity of isolated RNA
Sample Concentration (ng/µL) Purity (Absorbance 

280/260)
Normal cells 92.90 2.3212
APAP-induced cells 90.10 2.0904
APAP-induced + eugenol 6.25 μg/mL 77.20 2.1842
APAP-induced + eugenol 25 μg/mL 83.00 2.3621

Statistical analysis

The experiment was carried out three times. 
SPSS software was used for statistical analysis (version 
20.0). The data was presented in the form of a mean 
and standard deviation. On the basis of the normality 
of the data, significant differences in the groups were 
established using analysis of variance (One Way 
ANOVA) with >P 0.05. The post-hoc analytical statistics 
followed by Tukey’s HSD, Games-Howell, or Mann-
Whitney Post-Hoc Tests with a 95% confidence interval.

Results

TNF-α concentration 

Figure 1 shows the TNF-α concentration in 
HepG2 cells that were induced by APAP. According 

to the results, APAP can significantly elevate TNF-α 
concentration (P < 0.05) when compared to normal cells. 
Treatments of 6.25 and 25 µg/mL eugenol decreased 
the concentration of TNF-α significantly, it is means P 
< 0.05 compare to cell treated only with APAP (positive 
control). This result shows that eugenol has potential in 
suppressing TNF-α production and it can be beneficial 
in liver damage treatment. 

Apoptotic, Necrotic, and Dead Cells

The effect of APAP-induced and eugenol 
treatments can be seen in Figure 2. Based on 
the result, APAP induced were increased the 
percentage of cells in apoptotic, death, and necrotic. 
It means, the percentage of live cells was decreased 
compare to normal cells (without any induction) 
from 92.46 ± 0.68% to 68.41 ± 5.07%. Both eugenol 
treatments in HepG2 cells were decreased the apoptotic 
cells with the value of live cells are 79.98 ± 0.42% and 
82.39 ± 0.66%, respectively.

ROS Level

Figure 3 shows the effect of eugenol on 
the level of ROS in HepG2 cells induced by APAP. 
According to the findings, APAP induced in HepG2 cells 
could significantly increase the ROS levels in HepG2 
cells with P < 0.05 compared to cell without treatment 
or normal cells. Eugenol of 6.25 and 25 µg/mL was 
decreased the ROS level compare to APAP-induced 
significantly based on statistical analysis (p > 0.05).

CYP2E1 Gene Expression

The CYP2E1 gene expression in APAP-
induced HepG2 cells was significantly decreased (P 
< 0.05). Eugenol at 6.25 µg/mL and 25 µg/mL could 
increase the CYP2E1 gene expression significantly (P 
< 0.05). The results could be seen in Figure 4.

GPX Gene Expression

In Figure 5, the induction of APAP in HepG2 
cells has the same effect as CYP2E1 gene expression 
in GPX gene expression. The APAP-induced could 
significantly decrease the GPX gene expression (P 
< 0.05) compared to normal cells. The GPX gene 
expression increased in eugenol-treated cells (6.25 
and 25 µg/mL) compared with cells induced by APAP. 
Based on the statistical analysis, eugenol at 25 µg/mL 
could significantly increase the GPX gene expression. 
While the addition of eugenol at 6.25 µg/mL didn’t show 
any significant difference.
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Discussion

Overdoses of APAP have been reported 
can cause hepatotoxicity [26]. APAP can cause liver 
damage by inducing oxidative stress, which is triggered 
by the toxic metabolite NAPQI [27]. Inflammation also 
may potentially play a role in the pathophysiology of 
APAP-induced hepatotoxicity [4]. Eugenol belongs 
to the class of phenylpropanoids and is a phenolic 
compound [28]. Eugenol has pharmacological activities 
such as antioxidant, anti-inflammatory, anticancer, and 
antibacterial [10], [29], [30], [31]. Based on a study, 
eugenol has hepatoprotective effects in an APAP-
induced hepatotoxicity model. Also, eugenol could 
decrease LDH levels as well as AST and ALT activity 
[11].

TNF-α was major key pro-inflammatory 
cytokines involved in oxidative stress injury [2]. APAP-
induced can increase liver tissue of TNF-α [32].
Increased circulating TNF-α stimulates cell surface 
TNF-α receptors, which activate the stress-related 
protein kinases, JNK and IKKβ. This results in increased 
inflammatory cytokine production and decreased 
insulin sensitivity [33]. As a result, TNF-α inhibition 
was considered as a therapeutic way for fatty liver 
and liver injury [34], [35]. TNF has been manipulated 
pharmacologically and genetically to treat liver disease. 
Because low “basal” TNF levels are required for liver 
regeneration, down regulating but not completely 

Figure  1:  Effect  eugenol  toward  tumor  necrosis  factor-α (TNF-α) concentration in Acetaminophen (APAP)-induced human hepatocellular 
carcinoma (HepG2) cells as hepatotoxicity model. (a) TNF-α level (pg/mg protein) on APAP-induced HepG2 cells. (b) TNF-α level (pg/mL) on 
APAP-induced HepG2 cells. *n=3, the data is illustrated as mean + standard deviation. (I) Normal cells; (II) Vehicle control (APAP-induced 
HepG2 cells + DMSO 1%); (III) APAP-induced cells; (IV) APAP-induced cells + eugenol 6.25 μg/mL; (v) APAP-induced cells + eugenol 25 μg/
mL. Single star sign (*) marks statistical difference between control group and APAP-induced cells group and at 0.05 significance level based 
on Tukey HSD post hoc test, single hashtag (#) marks statistical difference in treatment groups compared to APAP-induced cells model group 
at 0.05 significance level based on Tukey HSD post hoc test

ba

Figure 2: Effect of eugenol towards apoptotic, necrotic, dead cells of 
Acetaminophen (APAP)-induced human hepatocellular carcinoma 
cells. (a) Live cells (%); (b) Apoptotic cells (%); (c) Dead cells (%); (d) 
Necrotic cells (%). *n=3, the data is illustrated as mean + standard 
deviation. (I) Normal cells; (II) APAP-induced cells; (III) APAP-induced 
cells + eugenol 6.25 μg/mL; (IV) APAP-induced cells + eugenol 25 μg/
mL. Single  star  sign  (*) marks  statistical  difference  between  control 
group  and APAP-induced  cells  group  and  at  0.05  significance  level 
based on Tukey HSD post hoc test, single hashtag (#) marks statistical 
difference in treatment groups compared to APAP-induced cells model 
group at 0.05 significance level based on Tukey HSD post hoc test

dc

ba
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production, inflammatory cell infiltration, and cytokine 
production by Kupffer cells [38].

Figure  5:  Effect  of  eugenol  toward  GPX  gene  expression  relative 
in Acetaminophen (APAP)-induced human hepatocellular 
carcinoma cells as hepatotoxicity model. *Data is presented as 
mean ±  standard deviation. (I) Normal cells; (II) APAP-induced cells; 
(III) APAP-induced cells + eugenol 6.25 μg/mL; (IV) dsx-induced cells 
+ eugenol 25 μg/mL. Single star sign (*) marks statistical difference 
between  control  group  and APAP-induced  cells  group  and  at  0.05 
significance  level,  single hashtag  (#) marks  statistical  difference  in 
treatment groups compared to APAP-induced cells model group 
at  0.05 significance level

Apoptosis and necrosis frequently coexist in 
pathological conditions of the liver, and the balance of 
cell death may be dictated by the particular insult [1]. 
Based on the results, when HepG2 cells were induced 
by APAP the TNF-α concentration also the apoptotic 
activity was increased. Eugenol treatments could 
decrease the TNF-α concentration including the 
apoptotic, necrotic, dead cells. The result was also 
in agreement with Yuan et al. study that said APAP-
induced could cause severe hepatocellular necrosis, 
while fewer apoptotic cells were seen in the APAP-
induced hepatotoxicity model treated with ferulic acid 
[37]. This result was validated with previous research 
that eugenol 3.125–25 µg/mL increased cell viability on 
HepG2 cells [11].

APAP treatment can increased ROS production 
[39]. APAP is metabolized mainly by the CYP2E1 
isoform of CYP to NAPQI, which depletes intracellular 
GSH and covalently binds to proteins, including 
many mitochondrial proteins, triggers mitochondrial 
damage and production of ROS [40]. It was leading 
to an overwhelming mitochondrial oxidant stress and 
mitochondrial dysfunction [41]. Based on the results, 
eugenol could decrease ROS level in HepG2 cells that 
induced by APAP. It’s because eugenol is an antioxidant 
and a scavenger of ROS [9], [38]. The findings are in 
agreement with Parikh et al. who found that quercetin 
and catechin, phenolic compounds found in Brassica 
juncea hydromethanolic extract, may lower ROS levels 
in HepG2 cells when induced by APAP [42]..

CYP2E1 plays a crucial role in the metabolism 
of a wide range of endogenous and exogenous 
chemicals, and it has been linked to chemical toxicity 
and liver carcinogenesis [43]. ROS produced by 

Figure 3: Effect of eugenol toward reactive oxygen species level  in 
Acetaminophen (APAP)-induced human hepatocellular carcinoma 
cells as hepatotoxicity model. *n=3, the data is illustrated as mean 
+ standard deviation. (I) Normal cells; (II) APAP-induced cells; (III) 
APAP-induced cells + eugenol 6.25 μg/mL; (IV) APAP-induced cells 
+ eugenol 25 μg/mL. Single star sign (*) marks statistical difference 
between  control  group  and APAP-induced  cells  group  and  at  0.05 
significance level based on Tukey HSD post hoc test, single hashtag 
(#)  marks  statistical  difference  in  treatment  groups  compared  to 
APAP-induced cells model group at 0.05 significance level based on 
Tukey HSD post hoc test

inhibiting TNF activity is a desirable therapeutic option 
for liver disease [34], [36].

Based on the results, treatments using eugenol 
can decreased TNF-α concentration in APAP-induced 
HepG2 cells. The results were in line with Yuan et al. 
study that used ferulic acid, a phenolic compound, at 
doses 100 mg/kg that decreased TNF-α concentration 
in the mice that received APAP at doses 350 mg/kg 
[37].Eugenol improves liver function to near-normal 
levels by inhibiting lipid peroxidation and cytokine 
release. Thus, it is obvious that the mechanism of 
eugenol protection may be due to a decrease in ROS 

Figure 4: Effect of eugenol toward CYP2E1 relative gene expression 
in Acetaminophen (APAP)-induced human hepatocellular carcinoma 
cells as hepatotoxicity model *n=3, the data is illustrated as mean 
+ standard deviation. (I) Normal cells; (II) APAP-induced cells; (III) 
APAP-induced cells + eugenol 6.25 μg/mL; IV) APAP-induced cells 
+ eugenol 25 μg/mL. Single star sign (*) marks statistical difference 
between  control  group  and APAP-induced  cells  group  and  at  0.05 
significance level based on Tukey HSD post hoc test, single hashtag 
(#)  marks  statistical  difference  in  treatment  groups  compared  to 
APAP-induced cells model group at 0.05 significance level based on 
Tukey HSD post hoc test
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CYP2E1 have been shown to increase lipid peroxidation 
and mitochondrial membrane permeability, release pro-
apoptotic proteins, and activate caspase 3 to induce 
apoptosis [44]. ROS produced by CYP2E1 have been 
shown to increase lipid peroxidation and mitochondrial 
membrane permeability, release pro-apoptotic proteins, 
and activate caspase 3 to induce apoptosis [37]. It 
was shown that eugenol has a protective effect in 
APAP hepatotoxicity that directly influences on APAP 
metabolism by inhibiting CYP2E1.

The oxidative stress response can be evaluated 
using GPX  [45]. Based on the results, APAP decreased 
the GPX gene expression while eugenol treatment 
increased the gene expression after the addition of 
APAP. It means eugenol has hepaprotective activity 
involves antioxidant gene expression restoration. The 
result was in agreement Zhao et al. study that used 
4-hydroxyphenylacetic, a phenolic compound, at 
doses 25 mg/kg resulting an increment of GPX gene 
expression in APAP-induced liver injury in mice [46]. 

Eugenol improved liver injury by decreasing LDH, AST, 
and ALT in APAP-induced liver injury [11].

Based on the findings of this research, 
eugenol has been shown to have hepatoprotective 
properties due to its anti-necrotic, anti-inflammatory, 
and antioxidant properties. We proposed a mechanism 
on how eugenol act as hepatoprotective agent in liver 
injury (Figure 6).

Conclusion

Eugenol at 6.25 and 25 µg/mL concentration 
can reduce TNF-α concentration, the apoptotic activity, 
and ROS level also increases the GPX and CYP2E1 
gene expression in APAP-induced HepG2 cells. The 
best hepatoprotective effect was found when using the 

Figure 6: Proposed mechanism on how eugenol could act as a hepatoprotective agent in liver injury model. Acetaminophen is transformed into 
NAPQI mainly by CYP2E1. The presence of NAPQI could induce GSH depletion and leads to production of reactive oxygen species (ROS). 
The excessive ROS led to down regulation of GPX gene expression and increasing the cell death. The presence of NAPQI could activate 
the kupper cell and causing the production of tumor necrosis factor-α (TNF-α). It was induced JNK signaling pathways resulting in increased 
ROS and leads to unregulated cell death, necrosis; increase inflammation; and promote cell death. On the other hand, JNK-induced cause 
downregulated of Bcl-2 and upregulated of Bax resulting in activation of caspase 9 and caspase 3. The activiation of caspase 9 and 3 leads 
to apoptotic. Treatment of eugenol could inhibit the CYP2E1 enzyme and suppress the NAPQI production. It leads to decrease the ROS level, 
TNF-α production, and necrosis that leads to lower inflammation. The treatment also could suppress the apoptotic by increasing the Bcl-2 level 
and decreasing the Bax level. So, the eugenol treatment could decrease the cell death and increase the survival of hepatic cells
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eugenol at 25 µg/mL. Therefore, eugenol can be used 
against APAP-induced in HepG2 cells.
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