BAB IV

STUDI KASUS

4.1 Analisis Stabilitas Lereng Dengan Metode Taylor

Analisis stabilitas lereng menggunakan kurva Taylor pada lereng galian tanah kohesif dengan variabel D_f , dan Ns akan disajikan pada pembahasan berikutnya.

4.1.1 Hasil Analisis Metode Taylor Dengan *Plotting*.

Data yang digunakan adalah kurva Taylor yang di-*plotting* ulang pada Gambar 4.1 sehingga didapatkan nilai Ns terhadap D_f untuk setiap variasi garis β dan garis n pada Tabel 4.1 dan Tabel 4.2.

Hasil *plotting* garis β dengan parameter D_f dan *Ns* tampak pada Tabel 4.1 untuk setiap $\beta = 7,5^\circ$, 15° , $22,5^\circ$, 30° , 45° .

4	45°		30°	2	2.5°		15°		7.5°
D_f	Ns								
1.00	0.1643	1.00	0.1333	1.00	0.1132	1.00	0.0832	1.00	0.0538
1.10	0.1672	1.19	0.1500	1.28	0.1407	1.50	0.1275	1.50	0.0809
1.20	0.1696	1.20	0.1510	1.50	0.1529	2.00	0.1493	2.00	0.1040
1.50	0.1743	1.50	0.1640	1.90	0.1645	2.24	0.1555	2.08	0.1075
1.53	0.1745	1.74	0.1687	2.00	0.1661	2.50	0.1597	2.50	0.1233
2.00	0.1777	2.00	0.1718	2.50	0.1709	2.96	0.1661	2.94	0.1365
2.04	0.1778	2.35	0.1743	2.56	0.1713	3.00	0.1662	3.00	0.1383
2.50	0.1795	2.50	0.1751	3.00	0.1738	3.50	0.1712	3.50	0.1515
2.60	0.1800	3.00	0.1768	3.50	0.1762	3.66	0.1726	3.59	0.1534
-	-	3.19	0.1772	3.38	0.1758	4.00	0.1741	4.00	0.1596
-	-	3.50	0.1780	4.00	0.1780	4.50	0.1754	4.35	0.1628
-	-	4.00	0.1790	4.50	0.1785	5.00	0.1758	4.50	0.1642
-	-	-	-	5.00	0.1788	5.50	0.176	5.00	0.1663
-	-	-	-	-	-	-	-	5.50	0.1670
-	-	-	-	-	-	-	-	6.00	0.1675

Gabel 4.1 Data Parameter D	f dan Ns	Berdasarkan	Plotting	Garis (В.
----------------------------	----------	-------------	----------	---------	----

Nilai D_f dan Ns yang ditandai dengan warna pada Tabel 4.1 merupakan koordinat titik yang berpotongan antara garis β dengan garis n. Hasil *plotting* garis n dengan parameter D_f dan Ns tampak pada Tabel 4.2 untuk setiap n = 0, 1, 2, 3.

Angka-angka yang didapat pada Tabel 4.1 dan Tabel 4.2 adalah nilai yang mendekati berdasarkan plotting dari kurva Taylor asli.

n	i = 0	n	= 1	n	n = 2	n	= 3
D_f	Ns	D_f	Ns	D_f	Ns	D_f	Ns
1.1	0.1672	1.53	0.1745	2.04	0.1778	2.84	0.1800
1.19	0.1500	1.74	0.1687	2.35	0.1743	3.19	0.1772
1.28	0.1407	1.90	0.1645	2.56	0.1713	3.38	0.1758
1.5	0.1275	2.24	0.1555	2.96	0.1661	3.66	0.1726
2.08	0.1075	2.94	0.1365	3.59	0.1534	4.35	0.1628
2.26	0.1031	3.1	0.1315	3.79	0.1482	4.63	0.1586

Tabel 4.2 Data Parameter D_f dan Ns Berdasarkan Plotting Garis n.

4.2 Analisis Stabilitas Lereng Galian Dengan Geo5

Analisis stabilitas lereng menggunakan Geo5 pada lereng galian tanah kohesif dengan variasi sudut kemiringan lereng (β), dan D_f akan disajikan pada pembahasan berikutnya.

4.2.1 Analisis Stabilitas Lereng Dengan Pemodelan Geo5

Hasil analisis stabilitas lereng akan dibahas pada subbab berikutnya dengan langkah-langkah pengerjaan seperti dibahas pada sub bab **3.2**.

Contoh analisis:

1. Data tanah yang digunakan pada analisis ini tampak pada Tabel 4.3

2. Data lereng yang digunakan: $D_f H = 600$ cm (6m), dengan $D_f = 2$

$$\beta = 30^{\circ}$$

$$D_f = D_f H / H$$

$$2 = 6/H$$

$$H = 3m \text{ dengan } D = D_f H - H = 3m$$

Maka pemodelannya tampak pada Gambar 4.2.

Gambar 4.2 Pemodelan Lereng untuk $D_f H = 600$ cm, $D_f = 2$

3. Pemodelan pada *interface* Geo5 tampak pada Gambar 4.3, Gambar 4.4, dan Gambar 4.5. Pada poin ini bentang pada layar diposisikan agar pemodelan lereng dapat dimuat sesuai dengan koordinatnya sepert yang digambarkani pada sub bab 4.2.1 langkah ke 2.

World coordinates	×
— Dimensions Minimum X range :	0.00 [m]
Maximum X range :	50.00 [m]
Depth of model below the deepest interface point :	5.00 [m]
	OK 🛛 Cancel

Gambar 4.3 Koordinat Bentang Minimum dan Maksimum Pemodelan

_		1.1		
🕂 🚎 Ada	d points textuall	y 🛄 Edit j	point No. 4	
— New in	terface points —			
No.	x [m]	z [m]		
1	0.00	3.00	~	
2	10.00	3.00		
3	15.00	6.00		014
> 4	50.00	6.00		Add interface
			\checkmark	🔀 Cancel

Gambar 4.4 Koordinat Dua Dimensi untuk Pemodelan Lapisan Tanah Medium Clay

+ 📾 Add	l points textually	l -	
— Edited ii	nterface points -		
No.	x [m]	z [m]	
> <u>1</u>	0.00	0.00	\wedge
2	50.00	0.00	
			\vee

Hasil pemodelan koordinat dari data diatas tampak pada Gambar 4.6. Pemodelan pada Geo5 harus sesuai dengan pemodelan pada Gambar 4.3 sebagai kontrol.

0 10 20 30 40 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10	25.00 26.00 27.00	20.06 29.90 30.84 20.00 32.40 33	80 34.88 35.86 36.00 37.80 38.88 35	0 40.00 41.00 42.00 42.00 44.00	45.00 46.00 47.00 40.0	0 40.00 50 [m] Fr	rames
1						. 8	E Project
						9	Settings
							⊴ Interface Soils
<u>_</u>							Rigid bodies
						-	Assign
							Anchors Reinforcement
						1	n Anti-slide piles
							Surcharge
							Earthquake
						1	Stage settings
							🤌 Analysis
					1.0	_	
Setup ranges + Add Interface					* Copy	0.	Utputs
Interface Interface 1					> complete	e 2D profile	Add picture
2 Interface 2						In	nterface :
					3	To	otar : El List of pict res
					oard		0.0
					Clipt		
V V					Š	5	Copy view

Gambar 4.6 Hasil Pemodelan *Interface* untuk Koordinat Lapisan Tanah Permukaan dan Lapisan Tanah Dasar

4. Input data tanah pemodelan dengan opsi soils.

Data lapisan tanah dasar yang digunakan adalah *medium clay* sebagai tanah kohesif yang tidak mempunyai sudut geser dalam seperti pada Tabel 4.3 tampak pada Gambar 4.7. Pada analisis ini kondisi muka air tanah tidak diperhitungkan, maka nilai $\gamma_{sat} = \gamma$.

— Identification ——							Draw
Name :	Clay with lov	v or medium plas	ticity (CL, (CI), firm co	nsistency		Color
Clay v — Basic data —	vith low or n	nedium plasticity	(CL, CI), fi	rm consiste	ncy	- 121 -	Pattern category
Unit weight :		γ =	16.00	[kN/m ³]	21.0		GEO
Stress-state :		effective		-			
Angle of internal frid	tion :	φef =	0.00	[°]	17 - 21		
Cohesion of soil :		c _{ef} =	34.20	[kPa]	8 - 16		
— Uplift pressure —						. ? -	
Calc. mode of uplift	:	standard		-			
Saturated unit weigh	nt:	ysat =	16.00	[kN/m ³]			
							Classification
- Foliation							Classify
Soil foliation :		not considered		-			Clear

Gambar 4.7 Data Lapisan Tanah Permukaan Medium Clay

Untuk data lapisan tanah dasar akan diasumsikan sebagai lapisan tanah yang lebih keras yaitu *gravelly clay* yang data tanahnya akan diklasifikasikan secara otomatis oleh Geo5 dengan memilih konsistensi tanah *stiff gravelly clay*. *Input* data lapisan tanah dasar tampak pada Gambar 4.8.

Identification						Draw
Name :	Gravelly clay	(CG), stiff consiste	ency, Sr > 0.8			Color
	Gravelly cla	ay (CG), stiff consi	stency, Sr > 0.8			
— Basic data ——					- 2 -	Pattern category
Unit weight :		γ =	19.50 [kN/m ³]	19.5		GEO
Stress-state :		effective	-			Pattern
Angle of internal f	friction :	φef =	27.00 [°]	24 - 30		
Cohesion of soil :		C _{ef} =	14.00 [kPa]	10 - 18		
— Uplift pressure –					- ? -	
Calc. mode of upli	ift :	standard	-			
Saturated unit wei	ight :	γ _{sat} =	19.50 [kN/m ³]			
- Foliation						
Soil foliation :		not considered	-			Classification

Gambar 4.8 Data Lapisan Tanah Dasar

Kemudian *input* data tersebut dilmpirkan pada opsi *assign* dengan lapisan 1 sebagai medium clay dan lapisan 2 sebagai *gravelly clay*, seperti pada Gambar 4.9 dan Gambar 4.10

Region	Assigned soil		
1	Clay with low or medium plasticity (CL, CI), soft consistency	•	 \mathbf{A}
* 2	Gravelly clay (CG), stiff consistency, Sr > 0.8	-	

Gambar 4.9 Data Tanah Terlampir Pemodelan Geo5

5. Menjalankan analisis dengan memilih opsi analysis dengan menggunakan metode Bishop yang dilakukan tipe analisis secara optimasi, kemudian menambahkan bidang longsor dangan cara grafis. Agar analisis berjalan optimal maka bidang longsor digambarkan pada bidang permukaan tanah terluas. Analisis tampak pada Gambar 4.11.

Gambar 4.11 Input Analisis

Hasil analisis didapatkan dengan memilih opsi *analyze* tampak pada Gambar 4.12 dan Gambar 4.13.

Gambar 4.13 Data Hasil Analisis Geo5

Hasil analisis adalah x = 12,62, z = 8,68, r = 8,68, F = 4,17.

6. Dari data hasil analisis Geo5 maka angka stabilitas dapat dihitung dengan rumus pada Persamaan 3.4.

Contoh perhitungan:
$$Ns = \frac{c}{Fs.\gamma.H_c}$$

 $Ns = \frac{34.2}{4,17.16.3}$
 $Ns = 0,1709$

Dengan data Ns dan D_f dari analisis Geo5, maka kurva Taylor dapat digambar kembali berdasarkan tinjauan setiap β seperti tampak pada Gambar 4.14.

FAKTOR KEDALAMAN (Df)

7. Untuk mencari nilai n maka harus didapatkan terlebih dahulu panjang nH (AB) dengan mengolah data hasil analisis geo5 pada sub bab 4.2.1 langkah ke 5 menggunakan rumus persamaan garis seperti pada sub bab 3.2 langkah ke 6.

x = 12,62 Contoh perhitungan:

- z = 8,68
- r = 8.68

Koordinat titik B = (10, 3)

Garis yang ditinjau adalah garis yang berpotongan dengan lingkaran bidang longsor dan sejajar dengan sumbu x, sehingga nilai m = 0, dan berada pada n = 3 menggunakan Persamaan 3.4 dan Persamaan 3.5.

Persamaan garis lurus untuk lapisan tanah galian:

$$z = m \cdot x + n$$
$$z = 0 \cdot x + 3$$

maka:

Persamaan lingkaran untuk bidang longsor:

maka:

Untuk mendapatkan persamaan garis singgungnya (titik A) maka dengan Persamaan i disubtitusikan dengan Persamaan ii.

$$x = \pm \sqrt{8,68^2 - (3 - 8,68)^2} + 12,62$$

$$x = \pm (6.556) + 12.62$$

maka:

$$x = 19,176$$

dan

$$x = 6,056$$

Nilai x yang didapat merupakan koordinat sumbu x yang adalah letak titik perpotongan garis. Pada pemodelan poin 2 lereng galian digambarkan pada koordinat x yang lebih kecil daripada permukaan tanah, sehingga nilai x yang

(i)

digunakan harus yang terkecil, maka diambil x = 6,056. Untuk menghitung AB maka koordinat x titik Bdikurangi dengan nilai x:

$$AB = 10 - 6,056 = 3,944 \text{ m}$$

Didapat panjang nH yaitu 3,944 m, maka nilai n adalah:

$$n = \frac{nH}{H} = \frac{3,944}{3} = 1,315$$

8. Pada *output* dari poin 5 titik pusat lingkaran bidang longsor berada pada koordinat (x, z) = (12,62), (8,68), dengan jari-jari (r) = 8,68 dan \overline{AB} = 3,944 m tampak pada Gambar 4.15

Hasil pemodelan ini harus sesuai dengan analisis pemodelan pada Gambar 4.12.

4.2.2 Analisis Stabilitas Lereng Galian Medium Clay Dengan $D_f H = 6m$

Hasil analisis lereng *medium clay* dengan $D_fH = 600$ cm untuk $\beta = 7,5^\circ$, 15° , 22,5°, 30°, 45°, tampak pada Tabel 4.4, Tabel 4.5, Tabel 4.6, Tabel 4.7, dan Tabel 4.8.

Contoh perhitungan :

Medium clay ($c = 34,2 \text{ kg/cm}^2$, y = 16) = 30° β Η = 3 m $D_f H = 6 \text{ m}$ $D_f H = H + D$ $D_f = \frac{D_f H}{H}$ $=\frac{6}{3}=2$

Hasil *plotting* D_f pada kurva Taylor untuk $\phi = 0^\circ$ dan $\beta < 53^\circ$ adalah Ns =MAR 0,172 dan n = 1,314

$$F = \frac{34,2}{(0,172)(16)(3)}$$
$$= 4,14$$

nilai nH didapat bahwa nH = n. H = 1,314. 3 = 3,94m sehingga bidang gelincir akan memotong permukaan tanah pada jarak 3,94m dari tumit lereng. Dari analisis pada Gambar 4.13 dituliskan bahwa bahwa dengan nilai F = 4,14 atau F >1,5 maka lereng termasuk kategori "STABIL" atau aman, hal ini sesuai dengan Tabel 3.2 (Bowles, 1984) yang mensyaratkan batas ijin faktor keamanan, F > 1.5.

BANDUNG

														34.2	16	1.00	5.00	9	30	6.00	11.95	7.523	7.52	0.1789
	34.2	16	1.00	5.00	6.00	45	6.00	11.93	7.753	7.75	0.1792			34.2	16	1.20	4.80	9	30	5.00	9.98	5.977	7.17	0.1785
	34.2	16	1.20	4.80	6.00	45	5.00	9.94	6.232	7.48	0.1792			34.2	16	1.50	4.50	9	30	4.00	8.01	4.394	6:59	0.1779
	34.2	16	1.50	4.50	6.00	45	4.00	7.97	4.718	7.08	0.1788	$= 30^{\circ}$	=3	34.2	16	1.88	4.12	9	30	3.19	6.44	<u>3.163</u>	5.95	0.1765
	34.2	16	2.00	4.00	6.00	45	3.00	6.00	3.181	6.36	0.1781	arameter β	Π=	34.2	16	2.00	4.00	9	30	3.00	6.06	2.382	4.76	0.1764
=2	34.2	16	2.94	3.06	6.00	45	2.04	4.13	1.675	4.93	0.1760	o5 dengan I	=2	34.2	16	2.55	3.45	9	30	2.35	4.83	1.888	4.82	0.1733
	34.2	16	3.00	3.00	6.00	45	2.00	4.05	1.628	4.88	0.1759	Analisis Ge	n=	34.2	16	3.00	3.00	9	30	2.00	4.17	1.315	3.94	0.1709
=]	34.2	16	3.92	2.08	6.00	45	1.53	3.14	0.882	3.46	0.1736	el 4.5 Hasil	=1	34.2	16	3.45	2.55	9	30	1.74	3.69	0.924	3.19	0.1680
u. ∎	34.2	16	5.00	1.00	6.00	45	1.20	2.53	0.276	1.38	0.1690	Tab	ΠΞ	34.2	16	5.00	1.00	9	30	1.20	2.80	0.003	0.01	0.1527
0=	34.2	16	5.45	0.55	6.00	45	1.10	2.30	0.427	2.33	0.1704		0=	34.2	16	5.04	0.96	9	30	1.19	2.78	0.001	0.01	0.1525
Π	c (kN/m ²)	Y (kN/m ³)	H (m)	D (m)	DfH (m)	45° B°	Df	$\mathbf{F}_{\mathbf{S}}$	u	(m) Hn	$N_{\rm S}$		n ⁻	c (kN/m²)	Y (kN/m ³)	H (m)	D (m)	DfH (m)	30° β°	Df	$\mathbf{F}_{\mathbf{S}}$	u	nH (m)	N_{S}

Tabel 4.4 Hasil Analisis Geo5 dengan Parameter $\beta=45^\circ$

Universitas Kristen Maranatha

	11 ⁻	=0 u:	=]	iii	=2		=3			
c (kN/m ²)	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2
$Y (kN/m^{3})$	16	16	16	16	16	16	16	16	16	16
H (m)	5.00	4.69	3.16	3.00	2.34	2.00	1.78	1.50	1.20	1.00
D (m)	1.00	1.31	2.84	3.00	3.66	4.00	4.22	4.50	4.80	5.00
DfH (m)	9	9	9	9	9	9	9	9	9	9
22.5¢β°	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
Df	1.20	1.28	1.90	2.00	2.56	3.00	3.38	4.00	5.00	6.00
Fs	3.17	3.24	4.15	4.33	5.34	6.16	6.86	8.08	10.03	11.99
n	0.026	0.003	0.929	1.090	1.902	2.588	<u>3.168</u>	5.708	5.692	7.195
(m) Hn	0.13	0.01	2.93	3.27	4.46	5.18	5.62	8.56	6.83	7.19
$N_{\mathbf{S}}$	0.1349	0.1407	0.1631	0.1645	0.1708	0.1735	0.1755	0.1764	0.1776	0.1783
		Tab	el 4.7 Hasil	Analisis Gé	eo5 dengan	Parameter [3 = 15°			
	Π	0=	n	=1 n	=2	n	=3			
$c (kN/m^2)$	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2
Y (kN/m ³)	16	16	16	16	16	16	16	16	16	16
H (m)	5.00	4.00	3.00	2.68	2.03	2.00	1.64	1.50	1.20	1.00
D (m)	1.00	2.00	3.00	3.32	3.97	4.00	4.36	4.50	4.80	5.00
DfH (m)	9	9	9	9	9	9	9	9	9	9
15° β°	15	15	15	15	15	15	15	15	15	15
Df	1.20	1.50	2.00	2.24	2.96	3.00	3.66	4.00	5.00	6.00
Fs	3.92	4.16	4.76	5.12	6.33	6.41	7.61	8.25	10.16	12.10
n	0.110	0.002	0.672	<u>1.021</u>	<u>2.055</u>	2.127	<u>3.097</u>	3.571	5.082	6.627
nH (m)	0.55	0.01	2.02	2.74	4.16	4.25	5.08	5.36	6.10	6.63
$N_{\mathbf{S}}$	0.1091	0.1285	0.1497	0.1559	0.1666	0.1667	0.1713	0.1727	0.1753	0.1767

Tabel 4.6 Hasil Analisis Geo5 dengan Parameter $\beta=22,5^\circ$

		Π	=0 n ⁼	=1	n	=2	n	=3		
c (kN/m ²)	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2
Y (kN/m ³)	16	16	16	16	16	16	16	16	16	16
H (m)	5.00	3.00	2.88	2.04	2.00	1.67	1.50	1.38	1.20	1.00
D (m)	1.00	3.00	3.12	3.96	4.00	4.33	4.50	4.62	4.80	5.00
DfH (m)	9	9	9	9	9	9	9	9	9	9
7.5° β°	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
Df	1.20	2.00	2.08	2.94	3.00	3.59	4.00	4.35	5.00	6.00
$\mathbf{F}_{\mathbf{S}}$	6.35	6.64	69.9	7.58	7.66	8.52	9.16	9.74	10.87	12.68
u	0.074	0.017	<u>0.09</u>	<u>1.022</u>	1.155	1.875	2.424	2.880	3.696	5.218
(m) Hn	0.37	0.05	0.03	2.09	2.31	3.13	3.64	3.97	4.44	5.22
$N_{\mathbf{S}}$	0.0673	0.1073	0.1108	0.1382	0.1395	0.1501	0.1556	0.1591	0.1639	0.1686
			R	IAT.	RAN	<u> </u>				

Tabel 4.8 Hasil Analisis Geo5 dengan Parameter $\beta = 7,5^{\circ}$

4.3 Hasil Pengolahan Data Analisis Geo5

Dari hasil analisis menggunakan Geo5 didapatkan kurva garis β dan Ns, yang ditunjukan pada Gambar 4.16.

Gambar 4.16 Kurva Taylor dengan Hasil Analisis Geo
5 Untuk Setiap Garis β dan Garis n

Dari analisis Geo5 pada sub bab 4.2 dapat dikomparasikan parameter D_f dan Ns dengan hasil *plotting* parameter D_f dan Ns yang terdapat pada Tabel 4.2. Hasil analisis untuk garis n = 0, 1, 2, 3 ditampilkan pada Tabel 4.9, Tabel 4.10, Tabel 4.11, Tabel 4.12. Garis berwarna abu-abu adalah plotting dari kurva Taylor asli pada Gambar 2.9, sedangkan Garis putus-putus adalah kurva Taylor dari hasil analisis Geo5. Tanda titik pada tiap garis putus-putus merupakan titik-titik yang ditinjau untuk analisis. Sedangkan komparasi D_f dan Ns untuk setiap garis β = 7,5°, 15°, 22,5°, 30°, 45° dapat dilihat pada Tabel 4.13, Tabel 4.14, Tabel 4.15, Tabel 4.16, Tabel 4.17.

Tabel 4.9 Kompara	si Kurva Tayl	or untuk l	Hasil A	nalisis (Geo5	dengan
	Paramete	er Nilai n	= 0			

	5	GAF	RIS $n = 0$						
D.	KURVA 7	FAYLOR	GE	05	SELISI	$H(\Delta)$			
D_f	Ns	Ν	Ns	n	Ns	n			
1.100	0.1672	0.000	0.1704	0.427	0.0032	0.427			
1.190	0.1500	0.000	0.1525	0.001	0.0025	0.001			
1.280	0.1407	0.000	0.1407	0.003	0.0000	0.003			
1.500	0.1275	0.000	0.1285	0.002	0.0010	0.002			
2.080	0.1075	0.000	0.1108	0.009	0.0033	0.009			
$*\Delta =$	(+): Taylor	: < Geo5; 4	A = (-): T	Taylor >	Geo5				

Dari Tabel 4.9 diatas menunjukkan bahwa pada kolom delta perbandingan nilai *Ns* dan n dengan metode Taylor dan Geo5 memiliki delta mendekati nol (0,00). Analisis kurva Taylor dibatasi untuk kondisi sudut kemiringan lereng: 7,5° $\leq \beta \leq 45^{\circ}$ dan faktor kedalaman: $1 < D_f < 6$.

Tabel 4.10 Komparasi Kurva Taylor untuk Hasil Analisis Geo5 dengan Parameter Nilai n = 1

		GA	RIS $n = 1$			
ת	KURVA T	AYLOR	GEO	D5	SELISI	$H(\Delta)$
D_f	Ns	Ν	Ns	n	Ns	n
1.530	0.1745	1.000	0.1736	0.882	-0.0009	-0.118
1.740	0.1687	1.000	0.1680	0.924	-0.0007	-0.076
1.900	0.1645	1.000	0.1631	0.929	-0.0014	-0.071
2.240	0.1555	1.000	0.1559	1.021	0.0004	0.021
2.940	0.1365	1.000	0.1382	1.022	0.0017	0.022
* ^	(1) T 1			г 1 .		

* Δ = (+): Taylor < Geo5; Δ = (-): Taylor > Geo5

Dari Tabel 4.10 diatas menunjukkan bahwa pada kolom delta perbandingan nilai *Ns* dan n dengan metode Taylor dan Geo5 memiliki delta mendekati nol (0,00). Analisis kurva *Tayor* dibatasi untuk kondisi sudut kemiringan lereng: $7,5^{\circ} \le \beta \le 45^{\circ}$ dan faktor kedalaman: $1 < D_f < 6..$

	GA	RIS $n = 2$	2						
KURVA TA	AYLOR	GEO	D5	SELISI	$\mathrm{H}\left(\Delta\right)$				
Ns	N	Ns	n	Ns	n				
0.1778	2.000	0.1760	1.675	-0.0018	-0.325				
0.1743	2.000	0.1733	1.888	-0.0010	-0.112				
0.1713	2.000	0.1708	1.902	-0.0005	-0.098				
0.1661	2.000	0.1666	2.055	0.0005	0.055				
0.1534	2.000	0.1501	1.875	-0.0033	-0.125				
): Taylor <	Geo5; Δ =	= (—): Ta	ylor > C	Jeo5					
	KURVA TA Ns 0.1778 0.1743 0.1743 0.1713 0.1661 0.1534): Taylor < 0	GA KURVA TAYLOR Ns N 0.1778 2.000 0.1743 2.000 0.1713 2.000 0.1661 2.000 0.1534 2.000): Taylor < Geo5; Δ=	GARIS n = 2KURVA TAYLORGEONsNs0.17782.0000.17600.17432.0000.17330.17132.0000.17080.16612.0000.16660.15342.0000.1501): Taylor < Geo5; Δ =(-): Tag	GARIS n = 2KURVA TAYLORGEO5NsNNs0.17782.0000.17601.6750.17432.0000.17331.8880.17132.0000.17081.9020.16612.0000.16662.0550.15342.0000.15011.875): Taylor < Geo5; Δ =(-): Taylor > C	GARIS n = 2GARIS n = 2KURVA TAYLORGEO5SELISINsNNsn Ns 0.17782.0000.17601.675-0.00180.17432.0000.17331.888-0.00100.17132.0000.17081.902-0.00050.16612.0000.16662.0550.00050.15342.0000.15011.875-0.0033): Taylor < Geo5; Δ = (-): Taylor > Geo5				

Tabel 4.11 Komparasi Kurva Taylor untuk Hasil Analisis Geo5 dengan Parameter Nilai n = 2

Dari Tabel 4.11 diatas menunjukkan bahwa pada kolom delta perbandingan nilai *Ns* dan n dengan metode Taylor dan Geo5 memiliki delta mendekati nol (0,00). Analisis kurva *Tayor* dibatasi untuk kondisi sudut kemiringan lereng: $7,5^{\circ} \le \beta \le 45^{\circ}$ dan faktor kedalaman: $1 < D_f < 6$..

Tabel 4.12 Komparasi Kurva Taylor untuk Hasil Analisis Geo5 dengan Parameter Nilai n = 3

		GA	RIS $n = 3$		~	
ת	KURVA I	AYLOR	GE	05	SELIS	IH (Δ)
D_f	Ns	N	Ns	n	Ns	n
3.190	0.1772	3.000	0.1765	3.163	-0.0007	0.163
3.380	0.1758	3.000	0.1755	3.168	-0.0003	0.168
3.660	0.1726	3.000	0.1713	3.097	-0.0013	0.097
4.350	0.1628	3.000	0.1591	2.880	-0.0037	-0.120
*Δ= ((+): Taylor	< Geo5; /	$\Delta = (-): [$	Faylor >	Geo5	

Dari Tabel 4.12 diatas menunjukkan bahwa pada kolom delta perbandingan nilai *Ns* dan n dengan metode Taylor dan Geo5 memiliki delta mendekati nol (0,00). Analisis kurva Tayor dibatasi untuk kondisi sudut kemiringan lereng: $7,5^{\circ} \leq \beta \leq 45^{\circ}$ dan faktor kedalaman: $1 < D_f < 6$.

		GAR	α IS $\beta = 43$	5°		
ת	KURVA T	AYLOR	GE	05	SELIS	Η (Δ)
D_f	Ns	Ν	Ns	n	Ns	n
1.100	0.1672	0.000	0.1704	0.427	-0.0032	-0.427
1.200	0.1695	0.233	0.1690	0.276	0.0005	-0.043
1.530	0.1745	1.000	0.1736	0.882	0.0009	0.118
2.000	0.1777	1.922	0.1759	1.628	0.0018	0.293
2.040	0.1778	2.000	0.1760	1.675	0.0018	0.325
3.000	-	-	0.1781	3.181	-	-
4.000	-	-	0.1788	4.718	-	-
5.000	-	-	0.1792	6.232	-	-
6.000		(0)	0.1792	7.753	-	-
*^—	(+). Taylor	< Geo5. /	(-)	Lavlor >	Geo5	

Tabel 4.13 Komparasi Kurva Taylor untuk Hasil Analisis Geo5 dengan Parameter Sudut $\beta = 45^{\circ}$

Dari Tabel 4.13 diatas menunjukkan bahwa pada kolom delta perbandingan nilai Ns dan n dengan metode Taylor dan Geo5 memiliki delta mendekati nol (0,00). Analisis kurva Taylor dibatasi untuk kondisi $0 \le n \le 3$ dan faktor kedalaman $1 < D_f < 6$.

Tabel 4.14 Komparasi Kurva Taylor untuk Hasil Analisis Geo5 dengan Parameter Sudut $\beta = 30^{\circ}$ --

		GAR	$RIS \beta = 30$)°		57
D .	KURVA 7	TAYLOR	GE	05	SELIS	Η (Δ)
D_f	Ns	N	Ns	n	Ns	n
1.190	0.1500	0.000	0.1525	0.001	-0.0025	-0.001
1.200	0.1510	0.018	0.1527	0.003	-0.0017	0.016
1.740	0.1687	1.000	0.1680	0.924	0.0007	0.076
2.000	0.1718	1.426	0.1709	1.315	0.0009	0.112
2.350	0.1743	2.000	0.1733	1.888	0.0010	0.112
3.000	0.1768	2.774	0.1764	2.382	0.0004	0.391
3.190	0.1772	3.000	0.1765	3.163	0.0007	-0.163
4.000	0.1790	-	0.1779	4.394	0.0011	-
5.000	-	-	0.1785	5.977	-	-
6.000	-	-	0.1789	7.523	-	-
۸ بار		0 5 4		n 1	~ -	

* Δ = (+): Taylor < Geo5; Δ = (-): Taylor > Geo5

Dari Tabel 4.14 diatas menunjukkan bahwa pada kolom delta perbandingan nilai Ns dan n dengan metode Taylor dan Geo5 memiliki delta mendekati nol (0,00). Analisis kurva Taylor dibatasi untuk kondisi $0 \le n \le 3$ dan faktor kedalaman $1 < D_f < 6$.

				,		
		GARI	S $\beta = 22$.	5°		
	KURVA T	AYLOR	GE	05	SELIS	IH (Δ)
D_f	Ns	Ν	Ns	n	Ns	n
1.200	-	-	0.1349	0.026	-	-
1.280	0.1407	0.000	0.1407	0.003	0.0000	-0.003
1.900	0.1645	1.000	0.1631	0.929	0.0014	0.071
2.000	0.1661	1.152	0.1645	1.090	0.0016	0.062
2.560	0.1713	2.000	0.1708	1.902	0.0005	0.098
3.000	0.1738	2.537	0.1735	2.588	0.0003	-0.051
3.380	0.1758	3.000	0.1755	3.168	0.0003	-0.168
4.000	0.1780	1.	0.1764	5.708	0.0016	-
5.000	0.1788	-	0.1776	5.692	0.0012	-
6.000	$\overline{\mathbf{A}}$	-	0.1783	7.195	T	1
*Δ= (+): Taylor <	Geo5; $\Delta =$	(–): Ta	ylor > G	eo5	

Tabel 4.15 Komparasi Kurva Taylor untuk Hasil Analisis Geo5 dengan Parameter Sudut $\beta = 22.5^{\circ}$

Dari Tabel 4.15 diatas menunjukkan bahwa pada kolom delta perbandingan nilai Ns dan n dengan metode Taylor dan Geo5 memiliki delta mendekati nol (0,00). Analisis kurva Taylor dibatasi untuk kondisi $0 \le n \le 3$ dan faktor kedalaman $1 < D_f < 6$.

Tabel 4.16 Komparasi Kurva Taylor untuk Hasil Analisis Geo5 dengan Parameter Sudut $\beta = 15^{\circ}$

	X	GAR	RIS $β = 13$	5°	X		
ח.	KURVA 7	TAYLOR	GE	05	5 SELISIH (Δ)		
D_f	Ns	N	Ns	n	Ns	n	
1.200	-	71	0.1091	0.110		-	
1.500	0.1275	0.000	0.1285	0.002	-0.0010	-0.002	
2.000	0.1493	0.676	0.1497	0.672	-0.0004	0.003	
2.240	0.1555	1.000	0.1559	1.021	-0.0004	-0.021	
2.960	0.1661	2.000	0.1666	2.055	-0.0005	-0.055	
3.000	0.1662	2.057	0.1667	2.127	-0.0005	-0.070	
3.660	0.1726	3.000	0.1713	3.097	0.0013	-0.097	
4.000	0.1741	-	0.1727	3.571	0.0014	-	
5.000	0.1758	-	0.1753	5.082	0.0005	-	
6.000	-	-	0.1767	6.627	-	-	

* Δ = (+): Taylor < Geo5; Δ = (-): Taylor > Geo5

Dari Tabel 4.16 diatas menunjukkan bahwa pada kolom delta perbandingan nilai *Ns* dan n dengan metode Taylor dan Geo5 memiliki delta mendekati nol (0,00). Analisis kurva *Tayor* dibatasi untuk kondisi $0 \le n \le 3$ dan faktor kedalaman $1 < D_f < 6$.

		GAR	IS $\beta = 7$.	5°		
Д.	KURVA 1	TAYLOR	GE	O5	SELISI	$(\mathrm{H}(\Delta))$
D_f	Ns	Ν	Ns	n	Ns	n
1.200	-	-	0.0673	0.074	-	-
2.000	0.1040	-	0.1073	0.017	-0.0033	-
2.080	0.1075	0.000	0.1108	0.009	-0.0033	-0.009
2.940	0.1365	1.000	0.1382	1.022	-0.0017	-0.022
3.000	0.1383	1.092	0.1395	1.155	-0.0012	-0.062
3.590	0.1534	2.000	0.1501	1.875	0.0033	0.125
4.000	0.1596	2.539	0.1556	2.424	0.0040	0.116
4.350	0.1628	3.000	0.1591	2.880	0.0037	0.120
5.000	0.1663		0.1639	3.696	0.0024	7 -
6.000	0.1675	-	0.1686	5.218	-0.0011	Z -
*Δ= ((+): Taylor	< Geo5; 4	∆= (−): [¬]	Faylor >	Geo5	

Tabel 4.17 Komparasi kurva Taylor dengan Hasil Analisis Geo5 dengan Parameter Sudut $\beta = 7.5^{\circ}$

Dari Tabel 4.17 diatas menunjukkan bahwa pada kolom delta perbandingan nilai Ns dan n dengan metode Taylor dan Geo5 memiliki delta mendekati nol (0,00). Analisis kurva Taylor dibatasi untuk kondisi $0 \le n \le 3$ dan faktor kedalaman $1 < D_f < 6$.

4.4 Pembahasan Analisis Kurva Taylor dan software Geo5

Dari hasil pengolahan data diatas maka dapat disimpulkan bahwa kurva Taylor terkomparasi oleh *software* Geo5 dengan data-data pada Tabel 4.18 dan Tabel 4.19.

Dari Tabel 4.18 pada kondisi 1 < Df < 6, dan 0 < n < 3, ΔNs_{max} bervariasi dari 0,0017 hingga 0,0037. Sedangkan pada kondisi 1 < Df < 6, dan 7,5° < n <45°, ΔNs_{max} bervariasi dari 0,0013 hingga 0,0040.

D_f	n	ΔNs_{max}	D_f	β	ΔNs_{max}
2,080	0	0.0033	1,167	45°	-0.0032
2,940	1	0.0017	1,190	30°	-0.0025
3,590	2	-0.0033	1,280	22,5°	0.0016
4,350	3	-0.0037	1,500	15°	0.0013
			2,000	7,5°	0.0040

Tabel 4.18 Selisih Angka Stabilitas Maksimum ($\Delta N s_{max}$)

* Δ = (+): Taylor < Geo5; Δ = (-): Taylor > Geo5

Tabel 4.19 Selisih Faktor Letak Horizontal Bidang Longsor dari Tumit Lereng (Δn_{max})

	D _f	n	Δn_{max}	D_f	β	Δn_{max}	
	1.100	0	0.001	1.100	45°	-0.427	
	1.530	1	0.118	3.000	30°	0.391	
6	2.040	2	-0.325	3.380	22,5°	-0.168	
2	3.380	3	0.168	3.660	15°	-0.097	-
111				4.350	7,5°	0.125	
* Δ = (+): Taylor < Geo5; Δ = (-): Taylor > Geo							

Dari Tabel 4.19 diatas pada kondisi 1 < Df < 6, dan 0 < n <3, Δn_{max} bervariasi dari 0,001 hingga 0,325. Sedangkan pada kondisi 1 < Df < 6, dan 7,5° $< n < 45^{\circ}$, Δn_{max} bervariasi dari 0,097 hingga 0,427.

4NDUN^G