STUDI PENGEMBANGAN PETA ZONA GEMPA UNTUK WILAYAH PULAU SUMATRA,JAWA DAN BALI (INDONESIA BAGIAN BARAT)

Dudi Udayana NRP: 0221017

Pembimbing: Theodore F. Najoan, Ir., M.Eng

FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG

ABSTRAK

Gempa bumi merupakan suatu bencana alam yang tidak dapat dihindari, tetapi kerusakan pada bangunan dapat dikurangi yaitu dengan membuat bangunan sipil tahan gempa.

Penulisan Studi Pengembangan Peta Zona Gempa Untuk Wilayah Pulau Sumatra, Jawa dan Bali ini dimaksudkan untuk membuat peta zona gempa Indonesia. Peta tersebut merupakan peta percepatan gempa di permukaan tanah, sehingga dengan peta tersebut besarnya percepatan gempa desain dapat diperoleh dengan cepat. Analisis mencakup wilayah Indonesia Barat yang terdiri dari pulau Sumatera, Jawa dan Bali dengan memperhitungkan kejadian gempa baik yang diakibatkan oleh subduksi maupun patahan. Agar didapat hubungan frekuensi kejadian gempa dan besaran magnitude, digunakan analisa statistik dari GUTTENBERG RICHTER. Selanjutnya, untuk mencari besarnya percepatan gempa digunakan rumus dari FUKUSHIMA dan TANAKA. Program komputer yang digunakan dalam analisis ini adalah Seisrisk dan Map Info Profesional 8.0.

Dari output program komputer Seisrisk, diperoleh percepatan gempa permukaan untuk perioda ulang 10,20,50,100,200,500, 1000,5000 dan 10000 tahun yang diplotkan dalam program Map Info 8.0 menjadi peta percepatan gempa untuk setiap kecamatan di pulau Sumatra, Jawa dan Bali. Untuk membuat peta zona gempa Indonesia, maka percepatan gempa untuk setiap koordinat harus dibagi dengan besarnya percepatan gempa kota Jakarta untuk selanjutnya dirata-ratakan. Berdasarkan peta zona tersebut, wilayah Indonesia dapat dibagi menjadi 6 buah zona gempa yaitu Zona A (Z=0.10-0.30), Zona B (Z=0.30-0.60), Zona C (Z=0.60-0.90), Zona D (Z=0.90-1.20), Zona E (Z=1.20-1.40) dan Zona F (Z=1.40-2.0), dimana Z=Nilai Koefisien Zona Gempa setiap Kecamatan. Nilai Z tersebut dapat dijadikan sebagai acuan dalam mendesain bendungan tahan gempa berupa besaran percepatan gempa desain yang telah dikoreksi terhadap pengaruh jenis tanah setempat untuk setiap periode ulang dan mendesain bangunan tinggi yang menghasilkan Kurva Spektrum Inelastik Desain yang telah dikoreksi. Besarnya faktor koreksi kurva tersebut didapat dengan cara membagi percepatan gempa desain dengan percepatan tanah maksimum akibat gempa rencana dengan periode ulang 200 tahun. Dan juga dibandingkan PGA (Peak Ground Acceleration) dibeberapa kota di pulau Sumatra, Jawa dan Bali untuk mengetahui apakah pembuatan pengembangan peta zona gempa yang telah dibuat mengalami kenaikan, penurunan atau masih dalam nilai rata-rata dari nilai PGA sebelumnya.

PRAKATA

Syukur Alhamdulillah penulis panjatkan kepada Allah SWT Yang Maha Esa atas segenap rahmat dan karunia yang telah dilimpahkanNya sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul " STUDI PENGEMBANGAN PETA ZONA GEMPA UNTUK WILAYAH PULAU SUMATARA, JAWA DAN BALI (INDONESIA BAGIAN BARAT) ".

Tugas Akhir ini ditujukan sebagai syarat untuk menempuh ujian sarjana di Fakultas Teknik Jurusan Teknik Sipil Universitas Kristen Maranatha Bandung. Dalam Tugas Akhir ini dibahas mengenai keadaan tektonik dan kegempaan semua pulau di Indonesia, analisis resiko gempa berdasarkan subduksi dan patahan serta cara pembuatan peta zona gempa Indonesia per kecamatan.

Penulis menyadari bahwa Tugas Akhir ini masih jauh dari sempurna, mengingat keterbatasan waktu dan kemampuan penulis, sehingga tidak lepas dari banyaknya kekurangan yang ada dalam penyusunan Tugas Akhir ini.

Begitu banyak masukan, dorongan dan bantuan yang telah didapat oleh penulis dalam masa penyusunan Tugas Akhir ini, sehingga Tugas Akhir ini dapat diselesaikan dengan lancar. Maka pada kesempatan ini penulis menyampaikan ucapan terima kasih yang sebesarbesarnya kepada:

- 1. Bapak Theodore F. Najoan, Ir., M.Eng, selaku Pembimbing Tugas Akhir Geoteknik yang telah memberikan bimbingan dan pengarahan selama penyusunan Tugas Akhir ini.
- Ibu Hanny J. Dani., ST., MT, selaku Ketua Jurusan Teknik Sipil Universitas Kristen Maranatha Bandung.
- 3. Ibu Rini I.R, Ir., selaku Koordinator Tugas Akhir Fakultas Teknik Jurusan Teknik Sipil Universitas Kristen Maranatha Bandung.

4. Ibu Asriwiyanti Desiani, Ir., MT, selaku Dosen Wali yang telah banyak memberikan

bimbingan dan pengarahan selama masa studi penulis.

5. Ibu Asriwiyanti Desiani, Ir., MT, Bapak Herianto Wibowo.,Ir.,M.sc, dan Ibu Hanny J.

Dani., ST., MT selaku Dosen penguji yang telah banyak memberikan Saran dan Kritik

yang membangun dalam penyusunan Tugas Akhir ini.

6. Seluruh Staf Pengajar, Tata Usaha serta Perpustakaan Fakultas Teknik Jurusan Teknik

Sipil Universitas Kristen Maranatha Bandung.

7. Bapak, Mamah dan kakak-kakak tercinta yang dengan penuh kesabaran memberikan do'a

serta dukungan baik moril, materiil dan semangat untuk tercapainya penyelesaian studi

ini.

8. Renny Nugrahaeni., A.Ma tercinta yang selalu setia mendampingi, membantu, dan

mendo'akan hingga tercapainya penyelesaian studi ini.

9. Rahmat, Mahdi ST., dari UNPAR, Irfan, Endang S., ST, Rizaldi, Mulyadi, Ahmad, Desi

serta rekan-rekan seperjuangan angkatan 2002 FTS UKM.

10. Semua pihak yang tidak dapat penulis sebutkan namanya satu persatu.

Akhir kata penulis berharap Tugas Akhir ini dapat bermanfaat baik bagi penulis, ilmu

V

pengetahuan Teknik Sipil maupun bagi yang membacanya.

Bandung, 20 Juli 2007

<u>Dudi Udayana</u>

Penulis

DAFTAR ISI

		Halaman	
SURAT	KETERANGAN TUGAS AKHIR		i
SURAT	KETERANGAN SELESAI TUGAS AKHIR		ii
ABSTR	AK		iii
PRAKA	ATA		iv
DAFTA	AR ISI		vi
DAFTA	AR NOTASI DAN SINGKATAN		ix
DAFTA	AR GAMBAR		xi
DAFTA	AR TABEL		xiii
DAFTA	AR LAMPIRAN		XV
BAB 1	PENDAHULUAN		
	1.1 Latar Belakang Masalah		1
	1.2 Maksud dan Tujuan		2
	1.3 Ruang Lingkup Masalah		2
	1.4 Sistematika Pembahasan		4
BAB 2	TINJAUAN PUSTAKA		
	2.1 Struktur Bumi	• • • • • • • • • • • • • • • • • • • •	. 6
	2.2 Definisi Gempa Bumi		7
	2.3 Parameter Gempa.		11
	2.4 Kejadian Gempa		14
	2.5 Statistik Kejadian Gempa		15
	2.6 Peta Zona Gempa Wilayah Indonesia		17
	2.6.1 Pengertian Dasar		17

	2.6.2 Prosedur Pembuatan Peta Zona Gempa Wilayah	
	Indonesia	18
	2.7 Koreksi Pengaruh Jenis Tanah Setempat	22
	2.8 Penentuan Beban Gempa	25
	2.8.1 Penentuan Beban Gempa Untuk Bangunan Pengairan	
	Dan Bendungan Tahan Gempa	25
	2.8.2 Penentuan Beban Gempa Untuk Bangunan Tinggi	
	Tahan Gempa	27
BAB 3	TINJAUAN TEKTONIK DAN KEGEMPAAN WILAYAH PULAU	
	SUMATRA, JAWA DAN BALI	
	3.1 Pendahuluan	29
	3.2 Sejarah Kejadian Gempa Akibat Sesar/Patahan Dan Subduksi	31
	3.3 Tinjauan Tektonik Dan Kegempaan Di Pulau Sumatera	35
	3.3.1 Zona Subduksi Sumatera	37
	3.3.2 Patahan Sumatera	37
	3.4 Tinjauan Tektonik Dan Kegempaan Di Pulau Jawa-Bali	38
	3.4.1 Zona Subduksi Jawa-Bali	40
	3.4.2 Patahan Jawa	40
BAB 4	ANALISIS DATA	
	4.1 Analisis Frekuensi Kejadian Gempa	41
	4.2 Analisis Data Masukan dan Keluaran Program Seisrisk III	45
	4.3 Data Masukan Program Komputer Seisrisk III	46
	4.3.1 Penggunaan Fungsi Atenuasi	46
	4.3.2 Penentuan Daerah Sumber Gempa Akibat	
	Subduksi	49

	4.3.3	3 Perhitungan Data Patahan	50
	4.4 Data	a Keluaran Program Komputer	54
	4.5 Peta	a Percepatan Gempa	54
	4.6 Peta	a Zona Gempa Indonesia	55
	4.7 Apli	ikasi Penggunaan Peta Zona Gempa Untuk Keperluan	
	Reka	xayasa Sipil	56
	4.8.1	1 Bendungan	56
	4.8.2	2 Bangunan Tinggi	58
	4.8 Hasil	il Perbandingan Peta Zona Gempa Indonesia	62
BAB 5	KESIMP	PULAN DAN SARAN	
	5.1 Kesii	impulan	66
	5.2 Sarar	an	69
DAFTA	R PUSTA	AKA	71
I.AMPI	RAN		$\mathbf{A} = \mathbf{W}$

DAFTAR NOTASI DAN SINGKATAN

+ = Jarak episentrum

a, a' = Konstanta yang bergantung pada periode pengamatan

 a_c = Percepatan gempa dasar

a_d = Percepatan gempa desain

a_{d1} = Percepatan gempa desain menurut peraturan

a_{d2} = Percepatan gempa desain berdasarkan peta zona yang dibuat

a_g = Percepatan gempa maksimum di permukaan tanah

b = Konstanta yang bergantung pada sifat tektonik suatu daerah

BMG = Badan Meteorologi dan Geofisika

BT = Bujur Timur

C = Koreksi daerah

g = Percepatan gravitasi

 H_i = Tebal lapisan tanah ke-i

Length = Panjang segmen patahan

LS = Lintang Selatan

LU = Lintang Utara

M = Magnitude/besaran gempa

M = Magnitude lokal rata-rata

m_b = Magnitude gempa berdasarkan gelombang badan

 M_L = Magnitude lokal

MMI = Modified Mercalli Intensity

 M_{max} = Magnitude maksimum yang dapat terjadi

M_o = Batas magnitude terendah

Ms = Magnitude gempa berdasarkan gelombang permukaan

N = Masa guna bangunan

n(M) = Frekuensi jumlah kejadian gempa > M

N(M) = Frekuensi kumulatif jumlah kejadian gempa > M

 $N_1(M)$ = Frekuensi kumulatif gempa tahunan

R = Jarak hiposentrum

R_A = Resiko tahunan untuk suatu intensitas gempa

 R_N = Resiko gempa selama suatu masa guna bangunan

Slip-rate = Tingkat pergerakan patahan

SPT = Standard Penetration Test

T = Periode ulang rata-rata

 T_s = Periode predominan dari perlapisan tanah dengan regangan besar pada waktu

terjadi gempa

T_p = Periode predominan dari perlapisan tanah dengan regangan kecil pada waktu

terjadi gempa

USGS = United States Geological Surveys

v = Faktor koreksi pengaruh jenis tanah setempat

V_s = Kecepatan rambat gelombang geser

 V_{si} = Kecepatan rambat gelombang geser pada lapisan tanah ke-i

Z = Koefisien zona gempa

DAFTAR GAMBAR

	Hala	man
Gambar 1.1	Flow Chart Pembuatan Peta Zona Gempa	
	Pulau Sumatra, Jawa dan Bali	5
Gambar 2.1	Susunan Lapisan Bumi	7
Gambar 2.2	Jarak Episentrum, Hiposentrum, Fokus dan Titik Pengamatan	10
Gambar 2.3	Model Gutenberg-Richter (Kramer, 1996)	16
Gambar 2.4	Peta Wilayah Gempa Indonesia (Menurut SNI-1726)	29
Gambar 2.5	Kurva Spektrum Respons Inelastik Desain (Menurut SNI-1726)	30
Gambar 3.1	Peta Geoteknik Indonesia	33
Gambar 3.2	Terjadinya Sesar/Patahan Akibat Perbenturan 3 Lempeng	34
Gambar 3.3	Peta Zona Subduksi dan Patahan di Indonesia	37
Gambar 3.4	Daerah Patahan di Pulau Sumatra	38
Gambar 3.5	Penampang Melintang Pulau Sumatra	38
Gambar 3.6	Daerah Patahan di Pulai Jawa-Bali	41
Gambar 3.7	Penampang Melintang Pulau Sumatra	41
Gambar 4.1	Gambar Grafik Hubungan Ms & Log1(Ms)	46
Gambar 4.2	Hubungan Jarak Episentrum Dan Jarak Hiposentrum	
	Dengan Kedalaman Gempa	49
Gambar 4.3	Kurva Spektrum Respons Inelastik Desain Untuk Kota Jakarta	
	(Wilayah Gempa 4, Struktur Diatas Tanah Keras	
	Dengan Koreksi = 1.45)	64

Gambar 4.4	Kurva Spektrum Respons Inelastik Desain Untuk Kota Jakarta	
	(Wilayah Gempa 4, Struktur Diatas Tanah Lunak	
	Dengan Koreksi = 1.31)	64
Gambar 4.5	Peta Zona Gempa Pulau Sumatra	65
Gambar 4.6	Peta Zona Gempa Pulau Jawa Dan Bali	66
Gambar 4.7	Peta Zona Gempa Indonesia	67

DAFTAR TABEL

	Halam	nan
Tabel 2.1	Skala Intensitas Modified Mercalli	12
Tabel 2.2	Faktor Koreksi Pengaruh Jenis Tanah/Batuan Setempat	24
Tabel 2.3	Penggolongan Bangunan Pengairan Dan Bendungan	26
Tabel 2.4	Patokan Beban Gempa Untuk Bangunan Pengairan Dan	
	Bendungan	26
Tabel 2.5	Kriteria Jenis Tanah Dan Percepatan Gempa Rencana Untuk	
	Masing-Masing Wilayah Gempa Di Indonesia	28
Tabel 3.1	Besarnya Slip-rate dan Panjang Masing-Masing Patahan	
	Sumatera	39
Tabel 3.2	Besarnya Slip-rate dan Panjang Masing-Masing Patahan Jawa	42
Tabel 4.1	Data Kejadian Gempa Per Kotak 1°bujur dan lintang	44
Tabel 4.2	Analisis Data Gempa Perkotak 1°bujur dan lintang	45
Tabel 4.3	Fungsi Atenuasi Fukushima Dan Tanaka Untuk Data Masukan	
	Program	50
Tabel 4.4	Parameter Patahan Aktif Yang Digunakan Untuk Analisis	
	Resiko Gempa.	53
Tabel 4.5	Percepatan Gempa Dasar Kota Jakarta	58
Tabel 4.6	Contoh Perhitungan Percepatan Gempa Dasar Maksimum Di	
	Permukaan Tanah Dari Peta Zona Gempa Indonesia	60
Tabel 4.7	Contoh Perhitungan Besarnya Percepatan Gempa Desain	
	Yang Telah Dikoreksi Terhadap Pengaruh Jenis Tanah	
	Setempat Untuk Setiap Periode Ulang	60

Tabel 4.8	Contoh Perhitungan Besarnya Percepatan Gempa Desain	
	Yang Telah Dikoreksi Terhadap Pengaruh Jenis Tanah	
	Setempat Untuk Periode Ulang 200 Tahun	62
Tabel 4.9	Perbandingan Percepatan Gempa Dasar (a _c)	66
Tabel 4.10	Perbandingan PGA Untuk Beberapa Kota Di Pulau Sumatera	66
Tabel 4.11	Perbandingan PGA Untuk Beberapa Kota Di Pulau	
	Jawa Dan Bali	68

DAFTAR LAMPIRAN

	Halam	an
Lampiran 1	Peta Indonesia Dilengkapi Dengan Nomor Kotak 1°	
	Bujur Dan Lintang	A
Lampiran 2	Hasil analisis data gempa perkotak	C
Lampiran 3	Gambar grafik hubungan magnitude dan frekuensi kejadian gempa	
	perkotak	G
Lampiran 4	Hasil analisis frekuensi kejadian gempa	I
Lampiran 5	Tabel Parameter Kejadian Gempa Akibat Subduksi	K
Lampiran 6	Data Masukan Program Seisrisk III.	O
Lampiran 7	Data Keluaran Program Seisrisk III.	R
Lampiran 8	Tabel Keluaran Dari Program Seisrisk III Berupa	
	Parameter Percepatan Gempa (g)	U
Lampiran 9	Tabel Rasio Rata-rata Percepatan Gempa Untuk Setiap	
	Koordinat	W