Langkah-langkah pengerjaan analisis dengan menggunakan software etabs:

1. Membuka program dengan mengklik icon atau diambil dari start program

Gambar Tampilan awal program

Kemudian membuat grid dan jarak grid sesuai dengan model yang mau dibuat dengan cara mengklik File - New Model – No (new model initialization) – Ok maka akan terlihat tampilan berikut

🚨 ETABS Nonlinear v9.2.0 - (Untitled)	
File Edit View Define Draw Select Assign Analyze Display Design Option	is <u>H</u> elp
〕 ☆ ● ※ ジ・ ○ / ▲ → 日 い タクタク ○ 四 × ◆ 4 4 . ※回 図 ≪ Ⅱ 目 ※ . 또 1 空 ! 四 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34時時 <i>日本</i> ●陸回名、□□戸牙母★●/ 1813日 四冊 聖 9?、□エ 目・王・本・『こ、□ 2 時時分 型・
Building Plan Grid System and Story Data De	finition
Cit Discussion (Disc)	Chara Discussion
Cind Dimensions (Plan)	Story Dimensions
(* Uniform Grid Spacing	(* Simple Story Data
Number Lines in X Direction 4	Number of Stories 4
Number Lines in Y Direction 4	Typical Story Height 3.6576
Spacing in X Direction 7.3152	Bottom Story Height 3.6576
Spacing in Y Direction 7.3152	C Custom Story Data Edit Story Data
C Custom Grid Spacing	
Grid Labels Edit Grid	
Add Structural Objects	
al ^e I I I I I I I I I I I I I I I I I I I	
Clr" Steel Deck Staggered Flat Slab I NB Truss P	flat Slab with Walffle Slab TwoWayor Grid Only erimeter Beams Ribbed Slab
OK	Cancel
+1	
-[4]	
▲ ¥ Ready	Kip-in
🔧 Start 🥚 🥔 🌌 🛛 🔯 Sudah Pasti 🖉 ETABS Nonlinear	v9.2 🗽 ETABS Nonlinear v9.2 🕞 😰 Microsoft Office 🔹 🖉 🗞 10:35 PM

Gambar Tampilan untuk membuat jumlah grid dan lantai serta jarak grid dan

lantai

3. Aturlah satuan sesuai yang dikehendaki. Pengaturan satuan terdapat disudut kanan bawah pada gambar 1. Mendefenisikan material yang mau digunakan untuk menganalisis dengan cara mengklik *Define - Material Properties –* maka akan terlihat tampilan berikut:

Define Materials	
Materials CONC OTHER STEEL	Click to: Add New Material Modify/Show Material Delete Material
	Cancel

Gambar Define Materials

 Lalu klik pada tulisan *Conc* (Tulisan akan berwarna biru bila di klik) – *Modify Show*, diubah nama material pada kotak *material name*, masukkan nilai f_c', f_y dan F_{ys} lalu klik Ok maka akan terlihat tampilan pada gambar berikut :

		Display Color	
Material Name	CONC	Color	
Type of Material		Type of Design	
 Isotropic Orthotropic 	•	Design	Concrete 💌
Analysis Property Data		Design Property Data (ACI 318-0	5/IBC 2003)
Mass per unit Volume	2.246E-07	Specified Conc Comp Strength,	f'c 4.
Weight per unit Volume	8.680E-05	Bending Reinf. Yield Stress, fy	60.
Modulus of Elasticity	3600.	Shear Reinf, Yield Stress, fys	60.
Poisson's Ratio	0.2	Lightweight Concrete	
Coeff of Thermal Expansion	5.500E-06	Shear Strength Reduc. Fac	tor
Shear Modulus	1500.		

Gambar Memasukkan nilai f_c ' sebesar 25 Mpa f_y dan f_{ys} sebesar 400 Mpa

5. Setelah membust nama material, mengisi fc', fy dan fys lalu klik Ok maka tampilan akan terlihat seperti gambar berikut ini :

Define Materials	
Materials	Click to:
BAJA BETON	Add New Material
OTHER	Modify/Show Material
	Delete Material
	OK
	Cancel

Gambar *Define Materials* (Material yang didefenisikan ada didalam kotak material)

 Lalu klik pada tulisan *Steel* (Tulisan akan berwarna biru bila di klik) – *Modify Show*, diubah nama material pada kotak *material name*, masukkan nilai, f_y dan f_u lalu klik Ok maka akan terlihat tampilan pada gambar berikut :

laterial Property Data			
		Display Color	
Material Name	STEEL	Color	
Type of Material		Type of Design	
 Isotropic Orthotropic 		Design	Steel
Analysis Property Data		Design Property Data	
Mass per unit Volume	7.324E-07	Minimum Yield Stress, Fy	50.
Weight per unit Volume	2.830E-04	Minimum Tensile Strength, Fu	65.
Modulus of Elasticity	29000.	Cost per Unit Weight	1.
Poisson's Ratio	0.3		
Coeff of Thermal Expansion	6.500E-06		
Shear Modulus	11153.8462		
	ОК	Cancel	

Gambar Memasukkan nilai f_y sebesar 250 Mpa dan f_u sebesar 410 Mpa

7. Setelah membust nama material, mengis, *fy* dan *fu* lalu klik Ok maka tampilan akan terlihat seperti gambar berikut ini :

Define Materials	
Materials	Click to:
BAJA	Add New Material
OTHER	Modifu/Show Material
	Delete Material
	ок (
	Cancel

Gambar *Define Materials* (Material yang didefenisikan ada didalam kotak material)

8. Langkah berikutnya membuat balok induk dengan cara mengklik Define - Frame

Section, maka tampilannya akan terlihat seperti gambar berikut

Define Frame Properties	
Properties	Click to:
Type in property to find: A-CompBm	Import I/Wide Flange
A-CompBm	Add I/Wide Flange 💌
A-GravCol A-Lat8m	Modify/Show Property
A-TrChdW10 A-TrChdW12	Delete Property
A-Tr/Web8 A-Tr/Web10 A-Tr/Web12	ОК
	Cancel

Gambar Define Frame Properties

9. Klik Add/Wide Flange maka akan terlihat tampilan seperti gambar berikut:

Section Name	IWF.700.300	.15.28
Properties	Property Modifiers	Material
Section Properties	Set Modifiers	BAJA
Dimensions]
Outside height(t3)	700.	
Top flange width (t2)	300.	
Top flange thickness(tf)	28.	3<
Web thickness (tw)	15.	
Bottom flange width(t2b)	300.	
Bottom flange thickness(tfb)	28.	Display Color

Gambar *I/Wide Flange Section* (membuat balok IWF 700.300.15.28)

10. Langkah berikutnya membuat kolom King Cross dengan cara Define - Frame

Section, maka tampilannya akan terlihat seperti berikut

Properties		Click to:
Type in property to find: A-CompBm	_	Import I/Wide Flange
A-CompBm	~	Add SD Section 💌
A-GravBm A-GravCol A-LatBm		Modify/Show Property
A-TrChdW10		Delete Property
A-TrChdW12 A-TrChdW14		
A-TrWeb8		ОК
A-TrWeb12	~	

Gambar Define Frame Properties

11. Kemudian klik – Add SD Section, maka tampilannya akan terlihat seperti berikut

SD Section Data	
Section Name	KC800
Base Material	BAJA
- Design Type	
No Check/Design	
🔘 General Steel Sec	tion
C Concrete Column	
Concrete Column Check	/Design
Reinforcement to t	be Checked
C Reinforcement to b	be Designed
Define/Edit/Show Section	on
Section De:	signer
Displa	y Color

Gambar SD Section Data, Dengan bahan utamanya baja

12. Kemudian klik – Section Designer, maka tampilannya akan terlihat seperti berikut:

Gambar CSISD, menggambar kolom

13. Membuat *PELAT* dengan cara klik *Define – Wall/Slab/Deck Section* maka terlihat tampilan seperti berikut:

Define Wall/Slab/Deck Sec	tions
Sections DECK1 PLANK1 PLAT WALL1	Click to: Add New Deck Modify/Show Section Delete Section OK Cancel

Gambar Define Wall/Slab/Deck Section

14. Ubahlah *Add New Deck* menjadi *Add New Slab* maka akan terlihat tampilan seperti gambar berikut :

Wall/Slab Section
Section Name PLAT
Material BETON 💌
Thickness
Membrane 130.
Bending 130.
Туре
💿 Shell 🔿 Membrane 🔿 Plate
Thick Plate
Load Distribution
Use Special One-Way Load Distribution
Set Modifiers Display Color
OK Cancel

Gambar Wall/Slab Section

Pada kotak *section name* buatlah nama *plat*, isi material sesuai yang mau didesain, dan isi tebal *plat* pada kotak *membrane* dan *bending* serta isi *type* dengan *shell* lalu kemudian klik Ok.

 Penggambaran Balok IWF ke grid dengan cara klik Draw – Draw Area Objects – Draw Lines maka akan tampil gambar berikut:

Properties of Object	
Type of Line	Frame
Property	IWF.700.300.15.28
Moment Releases	Continuous
Plan Offset Normal	0.
Drawing Control Type	None <space bar=""></space>

Gambar Menggambar Lines

16. Penggambaran PELAT ke *grid* dengan cara klik *Draw – Draw Area Objects – Draw Areas* maka akan tampil gambar berikut:

Properties of Object		
Property	PLAT	
Local Axis	0.	
Drawing Control	None <space bar=""></space>	

Gambar Menggambar Pelat Lantai

17. Membuat beban dengan cara *Define – Static Load Cases*, maka akan terlihat tampilan seperti gambar berikut :

Gambar Define Load Case Names

Buat beban sesuai yang didesain, masukkan nama beban pada kotak *Load*, jenis beban pada kota *type*, untuk beban gempa pada kotal *Auto Lateral Load*, jenis bebannya adalah *User Loads*.

18. Pada langkah 18 klik Add New Combo maka akan tampil seperti gambar berikut:

Load Combination Data			
Load Combination Name COMB1			
Load Combination Type			
Define Combination			
Case Name Scale Factor			
DEAD Static Load 💌 1.4			
DEAD Static Load 1.4 SDL Static Load 1.4 Add			
Modify			
Delete			
OK Cancel			

Gambar. Load Combination Data

Isi kotak load combination name dengan nama kombinasi beban (COMB1),

19. Setelah di klik kotak ok pada langkah 19 maka akan tampil seperti gambar berikut:

efine Load Combinations		
Combinations	Click to:	
	Add New Combo	
	Modify/Show Combo	
COMB5 COMB6	Delete Combo	
COMB7 COMB8		
COMB9 COMB10	OK	
JUSTEST M	Cancel	

Gambar. Define Load Combinations

Kombinasi beban yang dibuat akan terlihat pada kotak combinations, jika ingin menambah kombinasi beban maka pada langkah ini klik kembali kotak *Add New Combo*.

20. Membuat response spectrume function dengan cara klik Define – Response Spectrume Function maka akan terlihat tampilan seperti gambar berikut

Define Response Spectrum Functions		
Response Spectra ZONA4LUNAK	Choose Function Type to Add	
	Click to: Add New Function	
	Modify/Show Spectrum Delete Spectrum	
	OK Cancel	

Gambar Define Response Spectrum Function

21. Untuk mengisi *Response Spectra* klik pada kotak *Choose Function Type to Add UBC97 Spectrum* kemudian *Add New Function* maka akan terlihat tampilan seperti gambar berikut:

Gambar Spectrum UBC 97 Function Definition

22. Membuat response spectrume case dengan cara klik Define – Response Spectrume Cases maka akan terlihat tampilan seperti gambar berikut

sponse Spectrum Case Data				
Spectrum Case Name	SPEC1			
Structural and Function Damping	Structural and Function Damping			
Damping	0.05			
Modal Combination				
€ CQC C SRSS C 4	ABS C GMC			
f1 f2				
Directional Combination				
SRSS				
C ABS Orthogonal SF				
Modified SRSS (Chinese)				
Input Response Spectra				
Direction Function	Scale Factor			
	1.15			
U2 🔽				
UZ 🔽				
Excitation angle	0.			
Eccentricity				
Ecc. Ratio (All Diaph.)	0.			
Override Diaph. Eccen.	Override			
ОК	Cancel			

Gambar. Response Spectrume Case Data

Isi nama spesifikasi pada kotak Spectrume Case Name, gunakan Damping sebesar 5%, Modal Combination CQC, Directional Combination SRSS, isi

U1 dengan *Response Spectra* yang sudah didefenisikan pada langkah ke-21 lalu klik kotak Ok. Begitu juga untuk mengisi U2.

23. Setelah di klik langkah 22 maka akan tampil seperti gambar berikut

Define Response Spectra		
Spectra SPEC1 SPEC2	Click to: Add New Spectrum Modifu/Show Spectrum Delete Spectrum OK Cancel	

Gambar. Define Response Spectra

Terlihat pada kotak *Spectra*, *Response Spectra* yang sudah didefenisikan pada langkah ke-22.

24. Menentukan sumber massa klik $Define \rightarrow Mass Source \rightarrow Add jenis massa pada$

bangunan maka akan tampil seperti gambar berikut ini:

Define Mass Source		
Mass Definition From Self and Specified Mass From Loads From Self and Specified Mass and Loads Define Mass Multiplier for Loads Load Multiplier DEAD I		
DEAD LIVE SDL 1 Modify Delete		
 Include Lateral Mass Only Lump Lateral Mass at Story Levels OK Cancel 		

Gambar Devine Mass Source

Dimana koefesien beban hidup di reduksi menjadi 0.3

25. Memasukkan beban ke pelat lantai dengan cara pilih pelat lantai yang mau diberi beban – lalu klik Assign – Shell/Area Loads – Uniform maka akan tampil seperti gambar berikut :

Load Cas	se Name	DEAI	•	Units Kgf-m 💌
Uniform Load	1		Options	
Load	0.		O Add to Exi	sting Loads
			Replace E	xisting Loads
Direction	GRAVITY	-	🔿 Delete Exi	sting Loads

Gambar. Memasukkan Beban

Pada langkah 25 isi jenis atau nama beban pada kotak *Load Case Name*, isi satuan pada kotak *Units*, serta isi pada kotak *Load* besarnya beban. Lakukan langkah 24 kembali bila jenis beban atau nama beban lebih dari 1 yang hendak diinput.

26. Membuat mode dengan cara klik Analyze – Set Analysis Option maka akan tampil seperti gambar berikut:

Analysis Options		
Building Active Degrees of Freedo Full 3D XZ Plane	M YZ Plane No Z Rotation	
🔽 Dynamic Analysis	Set Dynamic Parameters	
🔲 Include P-Delta	Set P-Delta Parameters	
🔲 Save Access DB File	File Name	
ОК	Cancel	

Gambar. Analysis Option

27. Untuk mengisikan jumlah mode maka pada langkah 22 klik *Set Dynamic Parameters*, maka akan tampil seperti gambar berikut:

)ynamic Analysis Parameters		
Number of Modes	18	
Type of Analysis © Eigenvectors C R	itz Vectors	
EigenValue Parameters Frequency Shift (Center) Cutoff Frequency (Radius) Relative Tolerance Include Residual-Mass Mode	0. 0. 1.000E-07	
Starting Ritz Vectors List of Loads Add ->	Ritz Load Vectors	
ОК С	Cancel	

Gambar. Dynamic Analysis Parameters

Pada langkah ini mengisikan jumlah mode pada kotak *Number Of Modes*, jumlah mode diisi sebesar jumlah lantai dikali dengan 3

28. Langkah berikutnya menganalisis model yang dibuat dengan cara me-run program dengan menekan F5 atau mengklik tanda

Gambar. Setelah dilakukan analisis (Run)