MANAJEMEN LALU – LINTAS SIMPANG SURAPATI –

SENTOT ALIBASA DAN SEKITARNYA

Feny Febrianty. H

Nrp: 0021087

Pembimbing: Budi Hartanto, Ir., MSc

FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG

ABSTRAK

Pada umumnya persimpangan merupakan titik rawan untuk terjadinya kemacetan lalu lintas, terlebih pada simpang – simpang yang saling berdekatan seperti pada studi simpang Surapati - Sentot Alibasa dan Sekitarnya.

Survei dilakukan pada hari Rabu tanggal 22 Oktober 2003 dan waktu pelaksanaan survei adalah jam 15.45 – 16.45 WIB dan jam 16.45 – 17.45 WIB. Melalui survei volume lalu lintas pada simpang – simpang tersebut maka dapat dilihat kinerja simpang yang saling berdekatan itu.

Adapun hasilnya pada simpang bersinyal yaitu volume lalu lintas maksimum terjadi pada arah B1 yaitu 982.4 smp/jam dan minimum terjadi pada arah B1 besarnya 346.7 smp/jam. Kapasitas maksimum terjadi pada arah B1 besarnya 1254.0563 smp/jam dan kapasitas minimum terjadi pada arah S besarnya 551.1928 smp/jam. Derajat kejenuhan maksimum terjadi pada arah B-RT besarnya 1.1491 dan minimum terjadi pada arah B1 besarnya 0.2765. Sedangkan untuk simpang tak bersinyal yaitu volume lalu lintas maksimum terjadi pada H-E-G besarnya 3257.3 smp/jam dan minimum besarnya pada F-E-G besarnya 2917.7 smp/jam. Kapasitas maksimum terjadi pada H-E-G besarnya adalah 3539.4258 smp/jam dan minimum terjadi pada D-E-G besarnya 2357.3053 smp/jam. Derajat kejenuhan Maksimum terjadi pada D-E-G besarnya 1.2945 dan minimum terjadi pada H-E-G besarnya 0.7664

Berdasarkan hasil perhitungan dapat diambil kesimpulan bahwa untuk simpang bersinyal pada pendekat T, S, DS = 0.75-0.85 mulai jenuh/mulai terjadinya kemacetan, pada pendekat B1,B2, Ds < 0.75 undersaturated/stabil, tetapi pada pendekat B-RT,tidak cukup untuk menampung arus lalu lintas yang terjadi karena DS > 1 over saturated/sangat jenuh/macet. Sedangkan pada simpang tak bersinyal H-E-G DS = 0.75-0.85, mulai jenuh/mulai terjadinya kemacetan, tetapi pada D-E-G dan F-E-G simpang tidak cukup untuk menampung arus lalu lintas yang terjadi karena DS > 1 (over saturated/sangat jenuh/macet) oleh karena itu perlu diadakan perbaikan.

DAFTAR ISI

Halaman
SURAT KETERANGAN TUGAS AKHIRi
SURAT KETERANGAN SELESAI TUGAS AKHIRii
ABSTRAKiii
PRAKATAiv
DAFTAR ISIvi
DAFTAR NOTASI DAN SINGKATANix
DAFTAR GAMBARxiii
DAFTAR TABELxv
DAFTAR LAMPIRANxvi
BAB 1 PENDAHULUAN
1.1 Latar Belakang Masalah1
1.2 Maksud dan Tujuan Penulisan3
1.3 Pembatasan Masalah
1.4 Sistematika Pembahasan
BAB 2 TINJAUAN PUSTAKA
2.1 Persimpangan5
2.1.1 Macam – macam Persimpangan6
2.1.2 Arus dan Konfilk Persimpangan
2.1.3 Karateristik Lalu - lintas
2.2 Persimpangan Bersinyal14
2.3 Lampu Pengatur Lalu – Lintas15

	2.3.1 Macam Sistem Pengaturan	16
	2.3.2 Keuntungan dan Kerugian dengan Lampu Lalu – Lintas	17
2	2.4 Fase (Phasing)	18
2	2.5 Waktu Siklus	19
	2.5.1 Waktu hijau	21
	2.5.2 Waktu Kuning	21
	2.5.3 Waktu Merah	22
	2.5.4 Waktu Merah Semua (All Red)	22
2	2.6 Kapasitas	23
2	2.7 Derajat Kejenuhan	34
2	2.8 Persimpangan	Tidak
В	ersinyal34	
	2.8.1 Kapasitas	35
	2.8.2 Derajat Kejenuhan	40
BAB 3 S	URVEI LAPANGAN	
3	3.1 Program Kerja	41
3	3.2 Pemilihan Lokasi	44
3	3.3 Waktu Survei	48
3	3.4 Pengumpulan Data	48
BAB 4 A	NALISIS DATA DAN PEMBAHASAN	
4	.1 Penyajian Data	50
4	.2 Analisis dan Pembahasan Data	51
	4.2.1 Analisis	51
	4.2.2 Pembahasan	65

BAB 5 KESIMPULAN DAN SARAN

5.1 Kesimpulan	68
5.2 Saran	69
DAFTAR PUSTAKA	70
LAMPIRAN	71

DAFTAR NOTASI DAN SINGKATAN

C = Kapasitas

Co = Kapasitas dasar

c_{ua} = Waktu siklus sebelum penyesuaian

c = Waktu siklus yang disesuaikan

C_o = Waktu siklus optimum

COM = Komersial

CS = Ukuran kota

det = Detik

DS = Derajat Kejenuhan

emp = Ekivalensi mobil penumpang

F = Faktor penyesuaian

 F_{CS} = Faktor penyesuaian ukuran kota

 F_G = Faktor penyesuaian untuk kelandaian

 F_{LT} = Faktor penyesuaian untuk pengaruh belok kiri

 $F_{\rm M}$ = Faktor penyesuaian tipe median jalan utama

F_{MI} = Faktor penyesuaian rasio arus jalan minor

 F_P = Faktor penyesuaian untuk parkir

 F_{RT} = Faktor penyesuaian untuk pengaruh belok kanan

 F_{RSU} = Faktor penyesuaian tipe lingkungan jalan, hamabatan samping, dan

kendaraan tak bermotor

 F_{SF} = Faktor penyesuaian untuk tipe lingkungan, hambatan samping, dan

kendaraan tak bermotor

 F_W = Faktor penyesuaian lebar masuk

FR = Rasio arus

IFR = Rasio arus simpang

g_i = Waktu hijau efektif

GR = Rasio hijau

GRAD = Landai jalan

HV = Kendaraan berat (Heavy Vehicle)

IT = Tipe simpang

kend = kendaraan

L = Jarak

Lp = Jarak kendaraan antara garis henti dan kendaraan yang diparkir

pertama

LTI = Waktu hilang

l_i = waktu hilang fase I

LT = Belok kiri

LTOR = Belok kiri langsung

LV = Kendaraan ringan (Light Vehicle)

m = Meter

MKJI = Manual Kapasitas Jalan Indonesia

MC = Sepeda motor (Motorcycle)

 P_{LT} = Rasio belok kiri

 P_{LTOR} = Rasio belok kiri langsung

 P_{RT} = Rasio belok kanan

P_{MI} = Rasio arus jalan minor

P_{UM} = Rasio kendaraan tak bermotor

PR = Rasio fase

Q = Arus lalu lintas

Qo = Arus melawan

 Q_{RTO} = Arus belok kanan berlawanan

 Q_{TOT} = Total arus lalu lintas

R = Waktu merah total satu siklus

RES = Pemukiman

RA = Akses Terbatas

RT = Belok kanan

S = Arus jenuh

 S_o = Arus jenuh dasar

SF = Hambatan samping

smp = Satuan mobil penumpang

ST = Lurus

Type O = Arus berangkat terlawan

Type P = Arus berangkat terlindung

UM = Kendaraan tak bermotor (Unmotorcycle)

 W_A = Lebar pendekat

 $W_{MASUK} = Lebar masuk$

 $W_{\text{KELUAR}} = Lebar \ keluar$

W_e = Lebar efektif pendekat

 W_{LTOR} = Lebar pendekat belok kiri langsung

W_{AC} = Lebar rata-rata pendekat minor

 W_{BD} = Lebar rata-rata pendekat utama

 W_1 = Lebar rata-rata semua pendekat

DAFTAR TABEL

	пана	man
Tabel 2.1	Faktor Penyesuaian Ukuran Kota (Fcs)	. 30
Tabel 2.2	Faktor Penyesuaian Untuk Tipe Lingkunan, Hambatan Samping	3
	Dan Kendaraan Tak Bermotor (FsF)	30
Tabel 2.3	Variabel – variabel Masukan Model Kapasitas	. 35
Tabel 2.4	Faktor Penyesuaian Median Jalan Utama (F _M)	36
Tabel 2.5	Faktor Penyesuaian Ukuran Kota (Fcs)	. 36
Tabel 2.6	Faktor Penyesuaian Tipe Lingkungan, Hambatan Samping Dan	
	Kendaraan Tak bermotor (F _{RSU})	. 37
Tabel 4.1	Hasil Perhitungan Volume Lalu Lintas Kendaraan	. 65
Tabel 4.2	Hasil Perhitungan Kapasitas Dan Derajat Kejenuhan	. 65
Tabel 4.3	Hasil Perhitungan Volume Lalu Lintas Kendaraan	.66
Tabel 4.4	Hasil Perhitungan Kapasitas Dan Deraiat Kejenuhan	66

DAFTAR LAMPIRAN

	Halaman
Lampiran 1	Data Volume Kendaraan Simpang Bersinyal71
Lampiran 2	Data Volume Kendaraan Simpang Tak Bersinyal85
Lampiran 3	Geometri, Pengaturan Lalu Lintas, dan Lingkungan Pada Simpang
	Bersinyal97
Lampiran 4	Data Arus Lalu Lintas Pada Simpang Bersinyal98
Lampiran 5	Penentuan Waktu Sinyal. Kapasitas, Derajat Kejenuhan.pada
	Simpang Bersinyal
Lampiran 6	Data Arus Lalu Lintas Pada Simpang Tak Bersinyal102
Lampiran 7	Data Geometri, Kapasitas Dan Derajat Kejenuhan pada Simpang
	Tak Bersinyal