STUDI KINERJA JALAN TOL RUAS SADANG - KALIHURIP BAMBANG HERLAMBANG S

NRP: 9721043 NIRM: 41077011970279 **Pembimbing: TAN LIE ING, ST.,MT.**

FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG

ABSTRAK

Dalam perkembangannya jumlah pengguna jasa jalan tol semakin meningkat, sedangkan jumlah ruas jalan tol terbatas, sehingga menyebabkan semakin berkurangnya kenyamanan dalam berkendaraan. Dengan demikian perlu diketahui hal-hal yang berkaitan dengan permasalahan di jalan tol dilihat dari parameter dan kinerja jalan tol tersebut saat ini.

Derajat kejenuhan, kecepatan dan kerapatan merupakan kinerja dari arus lalu lintas. Pada studi kinerja jalan tol, metode yang dipergunakan untuk memperoleh data volume lalulintas adalah metode penghitungan pos pengamat tetap dan untuk memperoleh data waktu tempuh menggunakan metode *floating car*.

Survei dilakukan selama tiga hari yaitu pada hari Sabtu tanggal 26-11-2005, hari Minggu tanggal 27-11-2005 dan hari Senin tanggal 28-11-2005 Waktu survei adalah jam sibuk pagi, siang dan sore yaitu jam 07:00-09:00, jam 11:00 – 13:00 dan jam 16:00-18:00. Parameter yang diukur selama survei adalah volume dan waktu tempuh. Kendaraan yang melintasi di lokasi penelitian di klasifikasikan berdasarkan empat jenis kendaraan yaitu Kendaraan Ringan, Kendaraan Menengah Berat, Bus Besar dan Truk Besar. Pembahasan derajat kejenuhan, kecepatan arus bebas dan kecepatan tempuh menggunakan MKJI 1997 dan untuk analisis Q,U,D menggunakan metode *Greenshields*.

Hasil analisis dari hubungan kecepatan, volume dan kerapatan dengan menggunakan model *Greenshields*, arah Sadang-Kalihurip diperoleh volume maksimum = 1066,44 smp/jam, kecepatan = 87,44 km/jam, kerapatan = 24,39 smp/km, serta derajat kejenuhannya = 0,23 sedangkan arah Kalihurip-Sadang diperoleh volume maksimum = 1121,34 smp/jam, kecepatan = 87,34km/jam, kerapatan = 0,24 smp/km dan derajat kejenuhannya = 0,24. Berdasarkan perhitungan MKJI, arah Sadang-Kalihurip diperoleh volume rata-rata = 1090,79 smp/jam, kecepatan = 85 km/jam, kerapatan rata-rata = 13,58 smp/km, dan derajat kejenuhannya = 0,24 sedangkan arah Kalihurip-Sadang diperoleh volume rata-rata = 1135,88 smp/jam, kecepatan = 86 km/jam, kerapatan rata-rata = 14,11 smp/km, dan derajat kejenuhannya = 0,25.

Berdasarkan hasil analisis, diambil kesimpulan bahwa untuk ruas jalan tol Sadang - Kalihurip masih cukup untuk menampung arus lalu lintas yang terjadi, ini terlihat dari nilai DS < 0,75, disamping itu perbandingan antara MKJI dan *Greenshields* hasilnya tidak terlalu jauh.

KATA PENGANTAR

Pertama-tama penulis ingin mengucapkan puji dan syukur kepada Tuhan Yang Maha Esa, karena hanya atas rahmat dan karunia-Nya, penulis dapat menyelesaikan Tugas Akhir ini.

Sesuai dengan syarat kurikulum yang berlaku pada Fakultas Teknik Jurusan Sipil Universitas Kristen Maranatha, penyusunan Tugas Akhir yang berjudul "STUDI KINERJA JALAN TOL RUAS KALIHURIP – SADANG" disusun sebagai syarat untuk menempuh ujian sidang Tugas Akhir guna memperoleh gelar sarjana Teknik Sipil pada Universitas Kristen Maranatha.

Penulis menyadari bahwa Tugas Akhir ini tidak terlepas dari kekurangan dan kesalahan mengenai kelengkapan dan kesempurnaan isinya, mengingat dari keterbatasan waktu dan kemampuan penulis, oleh sebab itu penulis memohon maaf atas segala kekurangan yang terdapat pada penulisan Tugas Akhir ini.

Pada kesempatan ini, penulis ingin menyampaikan ucapan terima kasih yang sebesar-besarnya kepada:

- Ibu Hanny J.Dani.,ST., MT., selaku Ketua Jurusan Teknik Sipil, Fakultas Teknik Jurusan Teknik Sipil, Universitas Kristen Maranatha.
- Ibu Rini I.R., Ir., selaku Dosen Wali dan Koordinator Tugas Akhir Fakultas
 Teknik Jurusan Teknik Sipil, Universitas Kristen Maranatha, Bandung
- 3. Ibu Tan Lie Ing, ST.,MT., selaku pembimbing Tugas Akhir, tanpa bimbingan dan kesabaran ibu mungkin penulis tidak akan selesai dalam penulisan Tugas Akhir ini sekali lagi terimakasih sebanyak banyaknya.

- Bapak Prof.Ir. Bambang Ismanto S, M.Sc., Ph.D., Bapak V. Hartanto, Ir.,
 M.Sc., dan Ibu Silvia Sukirman, Ir. sebagai penguji Tugas Akhir.
- 5. Ibu Asriwiyanti Ir.,MT. tanpa program khusus yang ibu canangkan dulu mungkin penulis masih menjadi mahasiswa abadi sampai sekarang ini.
- 6. Bapak Herianto Wibowo Ir.,MT. Pandangan, kebijaksanaan dan kesabaran beliau menjadi bekal penulis untuk hidup ditengah tengah kemasyarakatan.
- 7. Ibu Noek Sulandari Ir.,M.Sc. yang selalu tidak bosan bosannya memberikan motifasi dan studi banding, sehingga menjadikan penulis sekarang membuka mata untuk selalu berprestasi ditengah lingkungan masyarakat.
- Staf Tata Usaha, Laboratorium dan Perpustakaan Fakultas Teknik Sipil,
 Universitas Kristen Maranatha, Bandung
- Bapak Mohamad Ramdhan., Ir., MBA., selaku Pimpinan proyek seksi I PT.
 Jasa Marga (Persero) Cabang Jakarta Cikampek, yang membantu dalam pengumpulan data.
- 10. Bapak Baharudin Jusuf Habibie, Terima kasih atas saran, petunjuk dan pandangan wawasan tentang sistem dunia usaha uni eropa sehingga membuat mata dan wawasan penulis menjadi terbuka.
- 11. Bapak Dadang S Mochtar, Drs., Ibu Elly SE.,MBA., selaku Bupati dan Wakil Bupati KARAWANG, terimakasih atas bantuan dan promosinya.
- 12. Seluruh staf dan karyawan PT. TARUMA JAYA UTAMA, terima kasih atas dukungannya selama ini.
- 13. Siti Hafilah, Irvan Adiguna, Tria Amiarsa, Irvan banuya, Regi Hygea, Hadiana, Christianto, Ronald, Andro, wildyanto, Bang Deni Lubis, Dicki, M.Arif, Romy Nugroho, Ahmad Juhara 01, Mulyadi 01, dan segenap KPAD

genk terimakasih telah membantu dan memberi semangat penulis dalam

pembuatan Tugas Akhir ini, tidak ada yang terindah dari sebuah persahabatan

kita semua.

14. Pak Anton, Mas Cris, Pak Ujang Mochtar, Kang Arvan, Pak Boy dan segenap

anak nongkrong geng TU, yang selalu mendukung dan memberi informasi

penting tentang kuliah, selama ini penulis selalu terhibur bila saat nongkrong

bersama di depan TU.

15. Ayah Tercinta di alam barzah yang selalu sabar menunggu kelulusan penulis

hingga akhir hayat dikandung badan, serta Emak tersayang, Cecep, Teh Elie,

Teh Dede, Mas Arie, Bang Rudi, Anton dan Eneng Iis, semoga penulis dapat

memenuhi segala harapan orang orang tercinta ini setelah lulus dalam

menyelesaikan Tugas Akhir ini.

Akhir kata, semoga Tugas Akhir ini dapat bermanfaat baik bagi

penulis sendiri, teman-teman mahasiswa, universitas, dan yang lainnya.

Bandung, 5 Juli 2006

Penulis

DAFTAR ISI

			Н	alaman
SURAT 1	KETER	RANGAN	TUGAS AKHIR	i
SURAT 1	KETER	RANGAN	SELESAI TUGAS AKHIR	ii
ABSTRA	λ K			iii
KATA P	ENGA	NTAR		iv
DAFTAI	R ISI			vii
DAFTAI	R NOT	ASI DAN	SINGKATAN	xi
DAFTAI	R TABE	EL		xiii
DAFTAI	R GAM	BAR		xiv
DAFTAI	R LAM	PIRAN .		xvi
BAB 1	PEN	DAHUL	UAN	
	1.1	Latar B	selakang	1
	1.2	Tujuan	Penelitian	2
	1.3	Lingku	p Pembatasan	2
	1.4	Sistema	atika Pembahasan	3
BAB 2	TINJ	AUAN F	PUSTAKA	
	2.1	Elemen	ı Arus Lalu Lintas	5
	2.2	Parame	eter Lalu Lintas	6
		2.2.1	Volume Lalu Lintas (Q)	7
		2.2.2	Kecepatan Lalu Lintas (U)	10
		2.2.3	Kerapatan Lalu Lintas (D)	13

2.3	Hubungan Antara Kecepatan – Volume – Kerapatan 1			
2.4	Studi Hubungan Kecepatan, Volume, dan Kerapatan Model			
	Greens	hields	15	
	2.4.1	Hubungan Antara Kecepatan (U _s) dan Kerapatan (D).	16	
	2.4.2	Hubungan Antara Volume (Q) dan Kecepatan (U_s)	16	
	2.4.3	Hubungan Antara Volume (Q) dan Kerapatan (D)	17	
2.5	Analisi	s Persamaan Regresi Linier	19	
2.6	Kondis	i Arus Lalu Lintas	21	
2.7	Jalan B	ebas Hambatan	21	
2.8	Karakte	eristik Jalan Bebas Hambatan	22	
	2.8.1	Geometrik	22	
	2.8.2	Arus, Komposisi dan Pemisah Arah	23	
	2.8.3	Pengaturan Lalu Lintas	23	
	2.8.4	Pengemudi dan Populasi Kendaraan	23	
2.9	Metode	Perhitungan Volume Lalu Lintas	24	
	2.9.1	Metode Pos Penghitung Tetap	24	
	2.9.2	Metode Mobil Pengamat Bergerak	24	
2.10	Metode	Pengukuran Kecepatan	26	
	2.10.1	Metode Pengukuran Kecepatan Bintik	26	
	2.10.2	Metode Mobil Mengambang	27	
2.11	Penentu	uan Kinerja Jalan Tol dengan Metode MKJI 1997	28	
	2.11.1	Kapasitas	28	
	2.11.2	Derajat Kejenuhan	30	
	2.11.3	Kecepatan Arus Bebas	31	

		2.11.4 Kecepatan dan Waktu Tempuh	33		
BAB 3	MET	CODOLOGI PENELITIAN			
	3.1	Diagram Alir	36		
	3.2	Pemilihan Lokasi Survei	36		
	3.3	Parameter yang Diukur	37		
	3.4	Waktu Survei	37		
	3.5	Metode Survei	42		
BAB 4	PEN	GOLAHAN DAN ANALISIS DATA			
	4.1	Data Volume Lalu Lintas	44		
	4.2	Pengolahan Data Volume Lalu Lintas	47		
	4.3	Hasil Kecepatan Rata-Rata Ruang	47		
	4.4	Menentukan Kapasitas Jalan, Derajat Kejenuhan, Kecepatan			
		Arus Bebas dan Kecepatan Tempuh Menggunakan MKJI			
		1997	49		
	4.5	Hasil Perhitungan Kerapatan Lalu Lintas	50		
	4.6	Hubungan Parameter Lalu Lintas Tanggal 26,27,28-Nov 05	53		
		4.6.1 Arah Sadang - Kalihurip	53		
		a. Hubungan Kecepatan (U_s) dan Kerapatan (D)	53		
		b. Hubungan Volume (Q) dan Kecepatan (U_s)	54		
		c. Hubungan Volume (Q) dan Kerapatan (D)	55		
		4.6.2 Arah Kalihurip – Sadang	56		
		a. Hubungan Kecepatan (U_s) dan Kerapatan (D)	56		
		b. Hubungan Volume (Q) dan Kecepatan (U_s)	57		
		c. Hubungan Volume (Q) dan Kerapatan (D)	58		

	4.7	Pembahasan	59
BAB 5 KESIMPULAN DAN SARAN		IMPULAN DAN SARAN	
	5.1	Kesimpulan	61
	5.2	Saran	63
DAFTAR PUSTAKA		64	
LAMPIR	AN		65

DAFTAR NOTASI DAN SINGKATAN

AADT = Volume lalu lintas harian rata-rata tahunan

ADT = Volume lalu lintas harian rata-rata

C = Kapasitas

 C_0 = Kapasitas dasar

D = Kerapatan

d = Jarak

Dj = Kerapatan pada saat maksimum

Dm = Kerapatan pada saat volume maksimum

DS = Derajat kejenuhan

det = Detik

emp = Ekivalensi mobil penumpang

FC_w = Faktor penyesuaian lebar jalan

FC_{SP} = Faktor penyesuaian pemisah arah (hanya untuk jalan tak terbagi)

FV = Kecepatan arus bebas kendaraan ringan pada kondisi lapangan

 FV_0 = Kecepatan arus bebas dasar kendaraan ringan pada jalan yang

diamati

FV_W = Penyesuaian kecepatan untuk lebar jalan

FFV_w = Penyesuaian untuk lebar jalur lalu lintas dan bahu jalan

HV = Kendaraan berat

kend = Kendaraan

km = Kilometer

LB = Bus Besar

LT = Truk Besar

LV = Kendaraan ringan

m = Meter

MHV = Kendaraan menengah berat

N = Jumlah Kendaraan

 N_a = Jumlah kendaraan yang berpapasan ketika mobil pengamat

bergerak berlawanan dengan arus

 N_y = Jumlah kendaraan yang menyiap dikurangi kendaraan yang

disiap

n = Banyaknya kendaraan yang diamati

Q = Volume lalu lintas

Qm = Volume maksimum

r = Koefisien korelasi

smp = Satuan mobil penumpang

T = Waktu pengamatan

t = Waktu tempuh

t_a = waktu mobil pengamat selama bergerak berlawanan arus

t_w = waktu mobil pengamat selama bergerak searah dengan arus

U = Kecepatan

Uf = Kecepatan rata-rata ruang keadaan arus bebas

Um = Kecepatan pada saat volume maksimum

Us = Kecepatan rata-rata ruang

Ut = Kecepatan rata-rata waktu

W_C = Lebar jalur lalu lintas

DAFTAR TABEL

Tabel 2.1	Ekivalensi Mobil Penumpang (emp) untuk Jalan Bebas Hambatan	
	Tipe Jalan Dua-Lajur Dua-Arah Tak Terbagi (2/2 UD)	9
Tabel 2.2	Ekivalensi Mobil Penumpang (emp) untuk Jalan Bebas Hambatan	
	Tipe Jalan Empat-Lajur Dua-arah Terbagi (4/2 D)	10
Tabel 2.3	Kapasitas Dasar Jalan Bebas Hambatan (C ₀)	29
Tabel 2.4	Faktor Penyesuaian Kapasitas Akibat Lebar Jalur Lalu Lintas	29
	(FC _w)	
Tabel 2.5	Faktor Penyesuaian Kapasitas Akibat Pemisahan Arah (FC_{SP})	30
Tabel 2.6	Kecepatan Arus Bebas pada Jalan Bebas Hambatan	32
Tabel 2.7	Penyesuaian Akibat Pengaruh Lebar Jalur Lalu Lintas dan Tipe	
	Alinyemen pada Kecepatan Arus Bebas Kendaraan Ringan	
	(FFV _w)	32
Tabel 4.1	Hasil Perhitungan Volume Lalu – Lintas	46
Tabel 4.2	Hasil Perhitungan Rata-rata Volume Q pada Jam Sibuk	47
Tabel 4.3	Hasil Perhitungan Kecepatan di lapangan	48
Tabel 4.4	Hasil Perhitungan Kerapatan	51
Tabel 4.5	Hasil Perhitungan Rata-rata Kerapatan D pada Jam Sibuk	52
Tabel 4.6	Hasil Perhitungan Tingkat Kinerja Ruas Jalan Tol	52
Tabel 4.7	Hasil Uji Statistik	60
Tabel 4.8	Hasil Analisis Data	60
Tabel 4.9	Tabel perbandingan tingkat kinerja jalan tol ruas Sadang –	

DAFTAR GAMBAR

Gambar 2.1	Hubungan Kecepatan (Us), Volume (Q), dan Kerapatan (D)	14
Gambar 2.2	Hubungan Antara Kecepatan (Us) dan Kerapatan (D)	16
Gambar 2.3	Hubungan Antara Volume (Q) dan Kecepatan (Us)	17
Gambar 2.4	Hubungan Antara Volume (Q) dan Kerapatan (D)	18
Gambar 2.5	Kecepatan sebagai Fungsi dari Derajat Kejenuhan pada Jalan	
	Bebas Hambatan Dua-Lajur Dua-Arah Tak Terbagi	33
Gambar 2.6	Kecepatan sebagai Fungsi dari Derajat Kejenuhan pada Jalan	
	Bebas Hambatan Empat/Enam-Lajur Dua-Arah Terbagi	
		34
Gambar 2.7	Derajat Iringan (hanya pada Jalan Bebas Hambatan 2-lajur 2-	
	arah) sebagai Fungsi dari Derajat Kejenuhan	34
Gambar 3.1	Diagram Alir Penelitian	38
Gambar 3.2	Ruas Tol Kalihurip – Sadang	39
Gambar 3.3	Potongan Melintang Jalan 4/2 D	40
Gambar 3.4	Ruas Tol Kalihurip - Sadang	41
Gambar 3.5	Lokasi Pos Pengamatan	43
Gambar 4.1.	Hubungan Kecepatan (Us) dan Kerapatan (D) Arus Lalu	
	Lintas Arah Sadang – Kalihurip	53
Gambar 4.2.	Hubungan Volume (Q) dan Kecepatan (Us) Arus Lalu Lintas	
	Arah Sadang - Kalihurip	54

Gambar 4.3.	Hubungan Volume (Q) dan Kerapatan (D) Arus Lalu Lintas	
	Arah Sadang – Kalihurip	55
Gambar 4.4.	Hubungan Kecepatan (Us) dan Kerapatan (D) Arus Lalu Lintas	
	Arah Kalihurip – Sadang	56
Gambar 4.5.	Hubungan Volume (Q) dan Kecepatan (Us) Arus Lalu Lintas	
	Arah Kalihurip – Sadang	57
Gambar 4.6.	Hubungan Volume (Q) dan Kerapatan (D) Arus Lalu Lintas	
	Arah Kalihurip – Sadang	58