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Abstraci—When checking student programs for plagiarism
and collusion, many similarity detectors aim to capture seman-
tic similarity. However, they are not particularly effective for
strongly directed assessments, in which the student programs
are expected to be semantically similar. A detector focusing on
syntactic similarity might be useful, and this paper reports its
effectiveness on programming assessment tasks collected from
algorithms and data structures courses in one academic semester.
Our study shows that syntactic similarity detection is more
effective than its semantic counterpart in strongly directed assess-
ments, with some irregular similarity patterns being useful for
raising suspicion. We also tested whether take-home assessments
have higher similarity than in-class assessments, and confirmed
that hypothesis. Consistency of the findings will be further val-
idated on other courses with strongly directed assessments, and
a syntactic similarity detector specifically tailored for strongly
directed assessments will be proposed.

Index Terms—syntactic similarity, programming, assessment,
plagiarism, collusion

[. INTRODUCTION

Some students might be tempted to cheat — an act that
has been characterised as a desperate act of help-seeking [1]
— if the potential benefits far outweigh the drawbacks and
they have an opportunity to do so [2]. Two of the more
common forms of cheating in programming are plagiarism
and collusion [3]. Both are about illegitimately reusing other
people’s programs; the difference is in whether the authors of
the original work are involved in the copying, as is generally
the case with collusion.

Detecting plagiarism and collusion in programming is often
aided by a similarity detection tool such as JPlag [4] or
MOSS [5]. First the tool reports program pairs that display
undue similarity, then the pairs are examined by the lecturer
to determine whether they are suspicious [6], [7].

Each time suspicion is raised, it needs to be supported
by sufficient evidence, demonstrating that the similarity has
not arisen by coincidence [8]. Typically, the unduly similar
segments of the suspected programs would represent irregular
patterns such as unusual surface structure, program flow, or
use of libraries.

At this point it will be helpful to distinguish three levels
of similarity that a pair of programs might display: surface,
syntactic, and semantic similarity. They are derived from Roy

et al.’s classification of code clones [9]. Surface similarity oc-
curs when two code segments are verbatim or they differ only
in terms of comments and/or white space (type I code clone).
Syntactic similarity occurs whem/o code segments share the
same program statements with variations in identifiers, string
literals, data types, comments, and white space (type II code
clone). Semantic similarity occurs when two code segments
have the same functionality regardless of variation in the
program statements and/or syntax (type III and type IV code
clone). We do not directly use Roy et al.’s classification since
the terms are less self-explanatory for computing educators.

Most code similarity detection tools are designed to capture
semantic similarity, assuming that each assessment task can
have many possible semantically distinct solutions. Before
checking for semantic similarity, the tools will typically nullify
non-semantic variation: for example, by gellising identifier
names [4], removing string constants [10], replacing program
module calls with the code of the module’s body [11], or
replacing combined variable declarations with multiple in-
dividual variable declarations [12]. Some of the tools even
conduct the program comparisons on direct semantic represen-
tations such as program dependency graphs [13] or executable
program binaries [14].

However, not all programming assessments are open to
multiple semantically distinct solutions, especially in early
programming courses when most aspects of the solutions
are semantically similar by default [15]. Many of those are
either trivial and/or strongly directed. Trivial assessments are
expected to be easy and can be completed in a short time.
Strongly directed assessments require the students to satisfy
constraints such as following a particular structure, and this
limits the variation among solutions.

There are at least three differences between these types of
assessment. First, strongly directed assessments are not always
trivial, and vice versa. For example, implementing a heap in an
array is strongly directed but might be challenging if students
are only given a high-level algorithm that regards the heap
as a tree. Second, strongly directed assessments often require
a higher level of prior programming knowledge than trivial
assessments as some of the assessment constraints are quite
technical. Third, strongly directed assessments typically give
rise to longer solutions than trivial assessments.




Imposing the use of semantic similarity detection tools on
those assessments might result in all programs being suspected
of plagiarism or collusion as they share the same semantics.
The report is unhelpful to the lecturer, who then needs to
examine all program pairs, with many of the similarities
unlikely to be evidence of misconduct.

In response to this issue, some detection tools focus on
syntactic and/or surface similarity. Kustanto and Liem [16] and
Sulistiani and Karnalim [17], for example, propose detection
tools that consider syntactic variation in measuring program
similarity; their approach is simply to tokenise student pro-
grams prior to comparison, with no further preprocessing. This
approach is partly followed by Inoue and Wada [18], whose
approach considers comments, white space, and unusual code
patterns. Joy and Luck [8] propose a tool that can compare
student programs based on multiple representations, starting
from the original textual forms and culminating in token
strings in which some of the tokens are generalised based
on their corresponding types. Karnalim and Simon [19] and
Nichols et al. [20] propose detection tools that capture more
syntactic information by comparing student programs based
on their syntax trees and parse trees respectively.

This paper compares the effectiveness of a syntactic and
a semantic similarity detection tool for detecting plagiarism
and collusion in strongly directed assessments, which were
collected from two algorithms and data structures courses
(basic and advanced) in one academic semester. Existing
studies have only conducted such comparisons on trivial
assessments. We also report any irregular pattems that are
useful for raising suspicion in such assessments in addition to
syntax similarity, and this is expected to enrich the perspective
of computing lecturers in investigating undue similarity among
student programs.

Programming collusion (and probably plagiarism) might
arise more frequently in take-home than in lab assessments
since take-home assessments are typically less supervised [21],
which might expose the students to more temptation to cheat.
Since code similarity is often used as the basis for raising
suspicion of academic misconduct [6], we hypothesise that
designing programming assessments as homework might result
in higher levels of similarity, and we test the hypothesis in our
data set by comparing each take-home assessment task with
a comparable assessment completed in ‘:aflb (in a previous
offering of the course) in terms of average degree of similarity.
To the best of our knowledge, this hypothesis has not been
tested in existing studies.

This study thus covers three research questions:

RQ1 Is syntactic similarity detection more effective than se-
mantic similarity detection in strongly directed assess-

ment tasks?

RQ2 Which irregular patterns are useful for raising suspicion
in strongly directed assessment tasks?
RQ3 Do take-home assessment tasks result in higher similarity

across student submissions than supervised lab assess-
ment tasks?

II. METHOD

The three research questions were addressed based on
student programs collected at Maranatha Christian University,
Indonesia, from two algorithms and data structures courses:
basic and advanced, both offered in the first semester of 2020.
In total, there are 1034 student programs collected from 55
undergraduate students (age 18 to 20) over 69 programming
assessment tasks.

Basic algorithms and data structures (BDS) is a compulsory
course for information technology undergraduate students of-
fered in the second semester of their study. The course mainly
covers linear data structures and some sorting algorithms. It
is available only to students who have passed introductory
programming. Two classes of the basic algorithms and data
structures course are considered in this study: class A, with
29 students, and class B, with 17 students. While these classes
cover the same course material, they are taught independently
by different teachers, and so are worth considering as distinct
offerings. One to three Python programming assessments were
given each week, with a total of 20 assessments in each class
over one academic semester. Initially, aB«lssessmems were
designed to be completed in 100 minutes in a laboratory with
direct supervision by the lecturer and the tutors. However, due
to an unprecedented global health event, from the sixth week
of semester the assessments were issued online as homework
and were to be completed within a day.

Advanced algorithms and data structures (ADS) is another
compulsory course for information technology undergraduate
students, offered in the third semester of their study. As it
continues the series of algorithms and data structures courses,
covering non-linear data structures, it is available only to
students who have taken the BDS course. One ADS class is
considered in this study, with only nine students enrolled. One
to three programming assessments were given weekly, with a
total of 29 assessments over the semester. Most assessments
(25) were to be completed with the help of an unpublished
code generation tool that facilitates a smooth transition from
Python, the first language taught, to Java or C#, programming
languages in subsequent courses. The tool introduces two non-
Python concepts: variable declaration and non-white-space
delimiters (braces and semicolons). In each assessment, the
tool would generate Java template code, which students were
then to complete with generalised syntax from both Java and
C#. The remaining four assessments were to be completed
entirely in Java or C# to give the students more experience
with their future programming languages.

The first research question (RQ1), whether syntactic sim-
ilarity detection is more effective than semantic detection in
strongly directed assessments, was addressed by comparing
the performance of a syntactic similarity detector with that
of JPlag [4], a tool that detects semantic similarity via the
application of program statement generalisation.

To make the detectors comparable, the syntactic similarity
detector is derived from JPlag by excluding program sl;mlenl
generalisation. The detector works in four stages. First, student




programs are converted to token strings with ANTLR [22], a
process that includes removing comments and white space.
Second, tokens representing identifiers, string literals, con-
stants, and numeric data types are generalis@ to a form that
is based on their corresponding type. Third, the token strings
are pairwise compared using running Karp-Rabin greedy string
tiling [23]. Finally, the program pairs are sorted according to
their average similarity [4].

Both JPlag and the syntactic similarity detector are set to
have two as the minimum matching length and 75% as the
minimum similarity threshold for suspicion, as suggested by
Karnalim and Simon [19]. Their effectiveness was measured
with top-k precision and average degree of similarity of
program pairs.

Top-k precision, a metric from the field of information
retrieval [24], is the proportion of copied program pairs that
appear in the top-k suspected program pairs. In our context, k
is the number of program pairs that are actually copied for an
assessment la, Precision is often considered in conjunction
with recall, the proportion of program pairs that are both
copied and suspected to all copied program pairs. However,
by this definition, top-k recall would be defined by exactly the
same formula as top-k precision.

Copied program pairs for each assessment were selected
by the laboratory lecturer via observation of a pairwise sim-
ilarity report generated by the syntactic similarity detector.
The investigation started from program pairs with the highest
similarity, followed by other pairs in descending order. The
lecturer deemed a program pair to be suspicious via a complex
reasoning process involving task difficulty, expected code
variance and length, and whether the code can be readily
copied from acceptable sources such as lecture material. We
are aware that this selection mechanism is not guaranteed to
detect all copied programs. However, it is more time efficient
and less labour intensive than entirely manual checking. For
each assessment task, the lecturer would need to manually
check up to 406 program pairs for BDS class A, up to 136
program pairs for BDS class B, and up to 36 program pairs
for ADS. JPlag was not used to select the copied program
pairs since our initial investigation shows that the tool reports
many program pairs as verbatim copies although they are
syntactically different.

Out of 69 assessment tasks, 44 are considered in this study.
Twenty-three have no copied program pairs, and so cannot
be used to measure top-k precision as the formula would
have a denominator of zero. Two more required the use of
C#, a language that is not covered by our syntactic similarity
detection tool.

Syntactic similarity detection is expected to have higher
top-k precision in strongly directed assessments, but lower
average degree of similarity as it does not employ program
statement generalisation. We measured the average precision
of all assessment tasks within the data, and the average degree
of similarity of all pl‘ogramnirs in the data set. The statistical
significance of each metric was tested with a two-tailed paired
t-test with 95% confidence rate.

The second research question (RQ2), listing useful irregular
patterns for raising suspicion in strongly directed assessment
tasks, was addressed by asking the laboratory lecturers to
record any interesting patterns while selecting the copied
program pairs of each assessment task. The patterns were then
filtered and summarised by the authors.

The third research question (RQ3), whether take-home
assessments result in higher similarity across student submis-
sions than lab-based assessments, was addressed by comparing
all take-home assessments from our data set (week 6 onward)
to another set of assessments addressing the same tasks but
completed in labs, taken from past offerings of the courses.
A past offering of BDS had four classes with a total of
59 students. A past offering of ADS had one class with
16 students. We used the syntactic similarity detector to
measure the average degree of similarity of the assessment
tasks from the past and current offerings. We were not able to
measure precision for the past offerings because we have no
information about which program pairs were copied.

Statistical significance tests with 95% confidence rate were
performed for each comparison at the level of individual
assessment tasks. Since the comparison involves two different
data sets, the t-test used was selected according to whether the
data set variances were equal or unequal.

ITI. RESULTS AND DISCUSSION
A. Comparing syntactic to semantic similarity detection

This section compares syntactic to semantic similarity de-
tection in terms of their effectiveness in strongly directed
assessments. Two metrics are considered: top-k precision and
average degree of similarity.

Figure 1 shows that syntactic similarity detection is more
effective than semantic similarity detection as performed by
JPlag. On most tasks, syntactic detection results in at least
the same top-k precision, as the delta value (syntactic top-
k precision — semantic top-k precision) is non-negative. On
avera?._ the syntactic top-k precision (82%) is higher by 18%
and the difference is statistically significant (p<0.001). This
is expected as semantic similarity detection ignores syntactic
variation, leading to some difficulties in distinguishing copied
pairs as most of the programs are expected to be semantically
similar in strongly directed assessments.

Having nullified syntactic variation, semantic emarily
detection results in higher degree of similarity (Table I).
Although the difference is statistically significant (p<0.001),
it is not substantial in our data set (less than 1% on average).
This is expected since many of the assessment tasks imposed
a particular class and method structure, and that resulted in
larger proportion of similar code segments. Further, syntactic
variation was applicable only to some parts of the solution.

B. Useful irregular patterns for raising suspicion

This section lists irregular patterns that might be useful for
raising suspicion as they are unlikely to be coincidental. The
patterns are based on the copied program pairs in our data set,
as identified by the laboratory lecturers.




100% . L e
80% .
60%
40% e, .
20%

i

-20%
-40%

-80%
-100%

BDS ADS

Assessment tasks

Fig. 1. Difference in top-k precision between syntactic and semantic detection
on assessment tasks, calculated by subtracting semantic top-k precision from
syntactic top-k precision

TABLE I
DEGREES OF SIMILARITY FOR S YNTACTIC AND SEMANTIC SIMILARITY
DETECTION ON ALL PROGRAM PAIRS (9468)

Syntactic detection | S tic detection
Average | Bl1.4% 82.3%
Variance | 2.5% 2.7%

The most obvious pattern occurs when one program is a
verbatim copy of another at surface level, including identifier
names, white space, and/or comments. However, this pattern
is applicable only when the expected solution is not trivial
and most of the program contents are neither automatically
generated nor copiable from legitimate sources.

Some shared similarities become irregular and suspicious
when they are uncommon and probably out of context at
surface level. In an assessment task, for example, a number of
students used the unexpected name bigpower for an instance
of the class power.

Irregular patterns can also arise from incompleteness or
over-completeness of student programs. If some similar pro-
grams do not cover one or more task requirements that are
easy to fulfill, they are suspicious. For instance, a few copied
programs have the same distinct output which is different from
that specified by the task. The suspicion also applies when
some similar programs have additional features that are not
relevant to the task requirements, such as unnecessary program
statements or unused methods.

Although this is rare, it is interesting to see that some
perpetrators neglect to remove the original author’s identity
in the copied program, and this will clearly be evidence
for suspicion of collusion. In two assessment tasks, a few
perpetrators changed the file names but neglected to change the
student IDs within the copied files. In three other assessment
tasks, another group of perpetrators failed to rename the
project directory, whose name is based on the student ID.

C. Comparing take-home to lab assessments
This section compares average similarity degree of take-
home assessments with that of lab assessments. Each consid-

ered assessment is given an ID by concatenating the course
ID (BDS or ADS) with a chronological sequence number. For
example, the third considered assessment task from the Basic
Algorithms and Data Structures is given an ID of BDS03.

On average, BDS take-home assessments have an average
degree of similarity that is 4% higher than that of lab assess-
ments. Figure 2 plots the comparison for each assessment task,
showing that the increases are all significant; the populations
share unequal variances.
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As seen in Figure 3, take-home assessments also result
in higher degrees of similarity in ADS, where the average
increase 1s two and half times greater (10%) than that in
BDS. The larger increase is expected since the assessments
in ADS have more copied program pairs than those in BDS
while having fewer total programs. The increase is statistically
significant on all assessments except ADS02 and ADS13, the
two in which the lab assessment results in a higher average
degree of similarity.
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To summarise, in our data set, take-home assessments have
more code similarity than lab assessments, and thus give
rise to more suspicion of plagiarism and/or collusion. This




might be taken into consideration when designing subsequent
assessments. More comprehensive prevention and detection
strategies might be required for take-home assessments, as the
code similarities might be the result of academic misconduct.

It is possible that the differences might be simply a result
of comparing two different cohorts of students, one of which
has more academic misconduct, although the data are drawn
from the same courses offered in the same major at the
same university. Further investigation is required to test this
possibility.

IV. CONCLUSION

This paper reports the effectiveness of syntactic similar-
ity detection in strongly directed assessments. According to
our study, the use of syntactic code similarity detection is
suggested as an alternative to semantic similarity detection
since the former outperforms the latter by 18% in terms of
precision. Suspicion can be strengthened by observation of
some irregular patterns including verbatim copying, irregular
surface similarities, incompleteness or over-completeness of
the submitted programs, and inadequate de-identification.

Our study also shows that take-home assessments result in
higher similarity than lab assessments. Computing lecturers
should consider introducing more comprehensive prevention
and detection strategies for take-home assessments, as the
higher degree of similarity might be the result of breaches
of academic integrity.

Possible threats to the validity of our conclusions include the
limitation of our study to three classes at a single institution,
and the comparison of two different cohorts in those courses
when comparing take-home and lab assessment tasks. With
regard to the latter point, it is possible that the differences
we have found merely indicate that the more recent cohort
includes more students who are inclined to copy from one
another.

The study is not yet complete since only algorithms and
data structures courses are considered. We plan to validate the
consistency of our findings on other courses with strongly di-
rected assessments, such as object-oriented programming and
application-oriented programming. We also plan to propose
a syntactic similarity detector that is specifically tailored for
strongly directed assessments. Finally, we intend to further
investigate whether take-home assessments result in higher
degrees of similarity than lab assessments within the same
cohort of students.
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