

Proceedings of the IEEE Global Engineering Education Conference (EDUCON 2021)

Women in Engineering

Editors Thomas Klinger Christian Kollmitzer Andreas Pester

Proceedings of the 2021 IEEE Global Engineering Education Conference (EDUCON)

Editors

Thomas Klinger Christian Kollmitzer Andreas Pester

Date and Venue 21-23 April, 2021, Vienna, Austria

ISBN

978-1-7281-8478-4

IEEE Catalog Number CFP21EDU-ART

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permission

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2021 by IEEE.

IEEE Catalog Number

CFP21EDU-ART

ISBN

978-1-7281-8478-4

ISSN

2165-9567

Additional copies of this publication are available from

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: +1 (845) 758-0400 Fax: +1 (845) 758-2633 E-mail: curran@proceedings.com

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Developing an application to gather and centralize the information obtained from the innovation competencies assessment in massive project-based courses	1–20
Preferences for Teaching Materials: A Survey on a Multimodal World	21–24
$ar{2}$ Safe environments and female role models: important factors for girls approaching STEM-related careers through robotics initiatives	25–29
ISOLDE unIverSity wOmen LeaDEr	30–35
Digitization of an Electronic Instrumentation Laboratory Practice: Measurement of an LDR with Arduino	36–42
Autonomous Vehicles as a Development Platform: from High School to Faculty	43–49
E The experience of women students in engineering and mathematics careers: a focus group study	50–56
🖗 Using Real-World Problems to Explore and Improve Students' Understanding of Basic Parallelism Concepts	57–62
Multipurpose Use of Quizzes in Teaching	63–67
${\mathbb F}_2^{\mathbb F}$ An attempt to develop students' generic skills by raising their awareness in experimental practice	68–73
Attempts to improve the curriculum based on ongoing research into Generic Skills	74–79
Acquiring an overcoming attitude in students of computer technologies by troubleshooting challenge	80–85
$\frac{5}{2}$ Evaluation of the COVID-19 Shock on STEM Laboratory Courses	86–93
The inclusion of Sustainability in the Electrical Engineering degree: an integrative initiative of the University of The Basque Country (Campus Bizia Lab)	94–98
The Writing Factory: Structured Collaborative Academic Writing in Engineering	99–105
E The Application of a Laboratory Practical Training for Technical Subjects in Engineering Education	106–110
g Development of Inventor Profiles for Engineering Students to Acquire Exclusive Technology Rights	111–115
👸 Women in Engineering: developing entrepreneurial attitudes through learning by doing approach	116–121
Women in science and technology studies. A study about the influence of parents on their children's choice of speciality. And about the trend of the different	122–130
Teamwork with an Automatic Tutoring Environment as Learning Strategy in Programming courses	131–135
Production of remote or virtual laboratories in e-Learning engineering courses	136–143
CS-Students' Behavior in Times of Corona	144–152
Bridging the Gap: Adapting a Security Education Platform to a New Audience	153–159
$\frac{1}{3}$ The Importance of the Campus - A Study of the Effects of the Covid-19 Pandemic in a CS2 Course	160–169
e Creating Learning Environments Within the Constraints of Higher Education - a Case Study of a First-Year Computing Program	170–177
Women in engineering academic programs: a dynamic modelling approach of south Mexico	178–183
2 Quantitative Exploration of International Female and Male Students in Undergraduate Engineering Programs in the USA	184–188

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Title

Building a Truly Inclusive Protocol for Students with Disabilities from an Experience in STEM areas	189–193
Developing Global Engineers through Interdisciplinary PBL and Design Thinking	194–198
Basic Distributed Algorithms Visual Simulations for Distributed Systems Students	199–205
Hands-on teaching with microcontrollers	206–209
Role of Gamification in Engineering Education: A Systematic Literature Review	210–213
Student perceptions of curriculum-based exit exams in civil engineering education	214–218
A Serious Game for Mobile Phones used in a Software Engineering Course: Usability Evaluation and Educational Effectiveness	219–225
Teacher Training during Covid-19: A Case Study of the Virtual STEM Hub Project in Africa	226–234
Widening Young People' Aspirations for STEM and DIGITAL Careers: A Case Study of the DIGISTEM Project	235–243
Specifics of developing and implementing remote classes in chemistry with hearing impaired students at a technical university of a general type	244–251
Widening the Shrinking Pipeline: The Case of Data Science	252–261
Project-based learning and training of in-service teachers in programming: Projects as a bridge between training and practice	262–271
Shifting the Flipped Classroom Online: Experiences from a Postgraduate Course on Usability Evaluation During COVID-19 Lockdown	272–277
Women for Leadership in Engineering: a link Between Students and High-Impact Projects	278–281
Polarizing Effect: Challenges of an Accelerated Digitalization caused by Sars-Cov-2	282–288
Women Engineers Empowerment through Linked Experiences	289–293
IoT based Smart Home Security Education using a Hands-on Approach	294–301
A Stand-Alone Simulation Game for the Participation of Wind Producers in Day-AheadElectricity Markets	302–307
THE IMPACT OF PHYSICAL COMPUTING AND COMPUTATIONAL PEDAGOGY ON GIRLS' SELF-EFFICACY AND COMPUTATIONAL THINKING	308–315
Tec 21: first outcomes of a new integral university framework for long-life education through challenge-based learning	316–321
Pedagogical Innovations With A Gender Approach To Increase Computer Programming Self-Efficacy In Engineering Students	322–328
Development of a BIM-VR application for e-learning engineering education	329–333
Avatars and badges, are there differences between genders?	334–338
Pushing the 5G edge into the Principles of Communications Course based on a blended lab platform	339–343
Towards a 21st century personalised learning skills taxonomy	344–354
How gender affects in the engagement of students in a statistics course?	355–359
Learning Spaces for a Competency-based Model: Post-occupancy Evaluation.	360–365

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Title

Analysis-Design-Justification (ADJ): A Framework to Develop Problem-Solving Skills	366–372
India Industry-University Collaboration - A Novel Approach combining Technology, Innovation, and Entrepreneurship	373–380
A Hybrid and Flexible Teaching Model for Engineering Courses Suitable for Pandemic Conditions towards the New Normality	381–387
Design and conduct of clinical research: Raising awareness of ethical aspects in biopharmaceutics for students of Biotechnology Engineering	388–392
Computer Science Majors' Experiences of Their Distance Education Caused by the COVID-19 Pandemic	393–397
A Proposal for a Hybrid Syllabus Search Tool that Combines Keyword Search and Content Based Classification	398–403
Going Virtual: Teaching Practical Skills of Circuit Design and Programming for Heterogeneous Groups Online	404–412
Metrics Based on Attention Metadata for Learning Resource and Assessment Repository	413–419
A Data Science-based Approach for Identifying Counseling Needs in first-year Students	420-429
Lab Course on Electrical Drive Trains Based on Students' Participation	430–436
Utilization of Existing Resources to Support Active Distance Learning during Covid-19 Pandemic in Developing Country	437–442
The Impact of Combining Storytelling with Lecture on Female Students in Software Engineering Education	443–447
How does the Corona Pandemic Influences Women's Participation in Massive Open Online Courses in STEM?	448–455
Creating Inclusive Engineering and Computer Science Classes – the impact of Covid-19 on Student Experiences and Perceptions of Gender Inclusivity	456–458
A Step that Paves the Way of Teaching Modern Electrical Circuits	459–462
Women engineers' advancement to management and leadership roles: enabling resources and implications for higher education	463–467
Cybersecurity Teaching Expert Development Project by KOSEN Security Educational Community	468–477
SQheLper: A block-based syntax support for SQL	478–481
A Detailed Analysis of Gender Differences in the Course of CS-Studies	482–491
PBL Approach in Online Robotics Competition in Resource-Poor Environments: Maze Solver Robot	492–498
STEM & Gender equity: empowering women in vulnerable environments	499–504
Teaching Software Quality Assurance with Gamification and Continuous Feedback Techniques	505-509
Teaching Efficient Computer Science and Cybersecurity courses amidst the COVID-19 pandemic	510–520
Developing a Real World Escape Room for Assessing Preexisting Debugging Experience of K12 Students	521-529
Findings for Flexible Digital Model (MFD) Courses to enhance women participation in Industrial and Systems Engineering Courses	530–536
Teachers' Readiness for Remote Teaching During COVID-19 Pandemic: The Case of Latvia	537–542
Build your own robot	543–551

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Title

Mentoring program: women supporting women	552–556
Using AR/VR for Technical Subjects in Vocational Training – Of Substancial Benefit or Just Another Technical Gimmick?	557–561
Synchronous Distance Learning: Students and Faculty Experience from a Gender Perspective	562-566
A Study of Using Virtual Currency in a Discrete Mathematics Course	567–576
Student perceptions of emergency remote civil engineering pedagogy	577–581
A Lab of Hands-on STEM Experiments for Primary Teachers at CERN	582–590
Creativity in Criticality: tools for Generation Z students in STEM	591–598
Facilitating learning and startup formation in experience-based courses—A team-centered model	599–608
Validated Undergraduates' Misconceptions about Software Engineering	609–618
Student Experiences of Practical Activities During the Covid-19 Pandemic	619–623
A Remote Robot Based Lab to Develop Competencies in Engineering Students during Covid19 Pandemic	624–630
Greek MOOC of experiments with simple materials for students generates significant findings for teachers and Physics education	631–636
Cloud-based virtual labs vs. low-cost physical labs: what engineering students think.	637–644
Human Rights for Creative and Experimental Immersion Challenge	645–649
Revisit of automated marking techniques for programming assignment	650–657
A runtime execution environment for machine-learning laboratory work	658–663
Word2Mouth – An eLearning platform catered for Low-Income Countries	664–673
Global Experiences in IDEEA Global Projects	674–678
Cultivating entrepreneuship in higher education during a crisis condition: crisis related issues discussed in entrepreneurship literature	679–688
Active learning methodologies in STEM degrees jeopardized by COVID19	689–695
The Design and Evaluation of a Hands-on Course on Cloud Computing Environment	696–700
Improved Power Engineering Curriculum: Analysis in a Year 3 Course in Electrical Engineering	701–705
Intelligent Virtual Reality Tutoring Systems as a New Generation of Simulators: Requirements and Opportunities	706–718
The "Real Images" of Engineering Ethics Education: An Analysis Based on Systematic Literature Review(SLR)	719–725
Boosting the Students and Teachers Cybersecurity Awareness During COVID-19 Pandemic	726–731
Sharing of experience on the organization of secure distance exams in African universities in the context of Covid-19	732–737
Gender and Diversity aspects in Engineering Education and their impact on the design of engineering curricula	738–744

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Title

Experiences from the 1st Women in Data Science Conference in Villach, Austria	745–747
Evaluating a Computational Thinking and Computing Attitudes Instrument for Educational Purposes	748–754
Product validation in creative processes: a gender perspective in industrial design projects.	755–760
Information-Seeking Behavior of Computing Students while Programming: Educational Learning Uses, Satisfaction of Use, and Inconveniences	761–765
Techniques and Technologies for the Administrative Support of Distance Education in Junior High Schools in the Corona Virus Age	766–773
Advanced System to Measure UX in Online Learning Environments	774–777
"Beautiful Patterns 2019" MIT and Tecnologico de Monterrey high-impact IT/K12-STEM transnational initiative for young women students	778–784
Technical trainers overcoming the challenges of rapid methodological change	785–791
Contribution for the continuity of courses at the University of Bangui in the context of COVID-19	792–797
CreaMe: human augmentation platform for the creation of training in educational lakes inherent to dangerous situations	798–807
An Exploration of the Efficacy of Project-based Assessment as a Tool to Promote Basic Research Skills at Undergraduate Level in South African Rural	808–813
Computer Vision and NLP based Multimodal Ensemble Attentiveness Detection API for E-Learning	814–820
A Remote CS0 Workshop Based on Peer Learning: Motivation, Engagement and Self-Regulation of Novice Programmers	821–830
Sentiments and Performance in an Introductory Programming Course Based on PBL	831–840
Teaching Team Collaboration in Cybersecurity: A Case Study From the Transactive Memory Systems Perspective	841–845
Assessing Individuals within Teams in Project-Based Learning Courses – Strategies, Evaluation and Lessons Learnt	846–850
Engineering School Women-Faculty Evaluation in the Tec21 competence educational model	851–856
Analyzing the emotions of students' parents at higher education level throughout the COVID-19 pandemic: An empirical study based on demographic	857–860
The Tec21 model educational and its perception. An educational innovation for student-based learning	861–866
A Structural Engineering Lab Based on Virtual Construction Site Visits to Develop Students' Competencies for the New Normality	867–872
Attack Specification Language: Domain Specific Language for Dynamic Training in Cyber Range	873–879
A survey for the distance education process in the National School of Public Administration and Local Government (ESDDA): a necessity or an opportunity to	880–884
MoalemCorpus: A Large-Scale Arabic Multimedia Corpus for Children Education of Arabic Vocabularies	885–890
Innovative teaching approaches in Conducting a Large Scale Online Synchronous Fresher's Programming Course	891–896
A continuous feedback system during COVID-19 online teaching	897–902
Laboratories 4.0: Laboratories for Emerging Demands under Industry 4.0 Paradigm	903–909
Interest High School Students in STEM Studies, while Preparing STEM Students for Leading Positions	910-914

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Title

Microelectronics Education Environment: Training for the Semiconductors Market	915–923
Evaluating the remote examination process applied by the Hellenic Open University (HOU) during COVID-19 pandemic: Students' opinions.	924–927
Not a Silver Bullet, but a Silver Lining: Metamorphic Marking Administration	928–935
Distributed applications in gamification of the learning process	936–940
Investigating the Situation of Brazilian Undergraduate Students during the COVID-19 Pandemic	941–945
Applying machine learning to a virtual serious game for neuropsychological assessment	946–949
Pilot study on effectiveness of a virtual game training on executive functions	950–954
Coding Club: a K-12 good practice for a STEM learning community	955–963
Dig-Equality FF - A playful approach for researching and fostering gender education in secondary schools	964–967
A Study on Effect of Generic Management Skills on Logical Thinking Skills in Systems Engineering Exploration	968–972
Women and Digital Economy: Culture Change or Perpetuation of Inequalities?	973–982
Apply VR and Simulation-Based Learning for Logistics and Warehouse Design Education	983–988
A Framework for Course-embedded Assessment for Evaluating Learning Outcomes of a Network Programming Course	989–995
An Outcome Based Approach for Applied Mechanics Courses using Bloom's Taxonomy and ABET Criteria	996-1002
Transmedia Ecosystems, Quality of Experience and Quality of Service in Fog Computing for Comfortable Learning	1003–1009
Review of Learning Design Choices of Primary School Programming Courses In Empirical Researches	1010–1018
An Online-Tool for career planning of women in STEM: From research to application	1019–1025
Exploring Educational Practices in Emergency Remote Teaching. The Role of Educational Neuroscience	1026–1034
Learning process of causes, consequences and solutions to climate change of undergraduate students without background in the subject	1035–1039
Analysis of student motivation in the use of a Physics Augmented Remote Lab during the Covid-19 pandemic	1040–1047
The International Impact of COVID-19 and "Emergency Remote Teaching" on Computer Science Education Practitioners	1048–1055
DigiCulture – course for enhancing digital competences	1056-1060
Strengthening of Women's Leadership in STEM educational environment through social NETWORKS: case of success with international network.	1061–1065
Termolabo Project: Design and Implementation of Thermo-Fluids Systems Online Laboratory	1066–1072
Co-creating with TalkTech developing attributes through international digital collaborative projects	1073–1077
Scripting an Integrated Learning and Work Process to Scaffold Online Action-oriented Learning	1078–1086
EMPOWERING YOUNG WOMEN IN THE CARIBBEAN REGION IN STEM	1087–1092

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Title

Page	range
------	-------

Non-Traditional Education to Advance Women in Computing Careers in the St. Louis Metro Region	1093–1097
SpaceMakers: Innovation Space Lab	1098–1101
Synchronous E-learning in Higher Education during the COVID-19 Pandemic	1102-1109
PROCESS THINKING IN ENGINEERING EDUCATION	1110–1115
Enhancing the Student Learning Experience by Adopting TDD and BDD in Course Projects	1116–1125
Work-in-Progress: An agile approach to formative assessment in higher education	1126–1130
Promoting Computational Thinking through Visual Block Programming Tools	1131–1136
Transitioning from Offline to Online Learning: Issues from Computing Student Perspective	1137–1142
Understand My World: An Interactive App for Children Learning Arabic Vocabulary	1143–1148
Face Morphing Attacks: A Threat to eLearning?	1149–1154
BOBShield: An Open-Source Miniature Ball and Beam Device for Control Engineering Education	1155–1161
Work-in-Progress: Syntactic Code Similarity Detection in Strongly Directed Assessments	1162–1166
Development of Network Applications and Services Through Project-Based Learning to Meet 21st Century Skills	1167–1174
Work-in-Progress: Interdisciplinary projects in times of COVID-19 crisis – challenges, risks and chances	1175–1179
Students' Emotions Using an Algorithm Experimentation Tool in the New Normal	1180–1188
A portrait of adopted programming languages of Portuguese Higher Education Institutions	1189–1194
First Preliminary Findings from the Implementetion of a Rhythm based inclusive Program for Students with Special Educational Needs	1195–1201
Problem Based Learning (PBL) in four-week term block mode teaching	1202-1206
A Review on Requirements for Teaching the Relationship Between Business Models and Business Processes	1207–1216
A 3D Rhythm-based Serious Game forCollaboration Improvement of Children with Attention Deficit Hyperactivity Disorder (ADHD)	1217–1225
Towards the Development of a Digital Competency Framework for Digital Teaching and Learning	1226–1232
Work in Progress: Creative Coding and Computer Science Education – From Approach to Concept	1233–1236
Using the PerFECt Framework to Invent Playful Learning Activities for Exploring the Binary System	1237–1246
Student Perceptions of an Asynchronous Online Discussion Board Used to Assess the Professional Skills	1247–1253
Which Virtualization Technology is Right for My Online IT Educational Labs?	1254–1261
Teaching the Digital Transformation of Business Processes: Design of a Simulation Game of Business Process Change	1262-1271
Implementation of Research-based Experiential Learning for Electrical Engineering Master's Students during Covid-19 Pandemic	1272-1276

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Title

Engaging students in COVID times with immersive learning and Self-driven Challenge Based Learning	1277–1281
Eliciting Educators' Needs on the Design and Application of Augmented Reality Educational Board Games on Cultural Heritage: The case of CHARMap	1282–1286
Exploring the Programming Concepts Practiced by Scratch Users: An Analysis of Project Repositories	1287–1295
Work-in-Progress: Data Science Framework for Environmental Protection Education	1296–1300
Work in Progress: An Automated Management System for References in Programming Code	1301–1305
Multimedia as a substitute or complement to an optional lecture	1306–1309
A Serious Gaming Approach for Teaching Environmental Entrepreneurship	1310–1317
Work-in-Progress: A Novel Data Glove for Psychomotor-Based Virtual Medical Training	1318–1321
Female Career Technology and Engineering Education Professionals: A Journey through Reflections	1322–1328
Glassdoor Job Description Analytics - Analyzing Data Science Professional Roles and Skills	1329–1336
Integration of Professional Certifications with Information Systems Business Analytics Track	1337–1344
Developing a Platform for using Game-Based Learning in Vocational Education and Training	1345–1352
Work-in-Progress: Using Autonomous Training Resources for a More Inclusive Approach to the Teaching of Computer Networks	1353–1357
HeatQuiz: An app framework for game-based learning in STEM education	1358–1368
Providing Learning Success as a Service: A Structured Literature Review	1369–1378
Education in Cyber Physical Systems Security: The Case of Connected Autonomous Vehicles	1379–1385
Supporting effective education for special needs children in Saudi Arabia during COVID-19 pandemic	1386–1392
"Work-in-Progress: Road to learn: using the gamification".	1393–1397
Online Teaching amid COVID-19: The Case of Zoom	1398–1406
The engineering social role conception promoted in the engineering courses' advertising: looking from the point of view of women	1407–1415
A Stand-Alone Simulation Game for the Participation of Wind Producers in Day-Ahead Electricity Markets	1416–1421
The Effect of a Pre-Writing Strategy on the Writing Apprehension Levels of Science Students	1422–1423
Work-in-Progress: Analysis of the use of Mentoring with Online Mob Programming	1424–1428
Augmented Reality as a strategy to improve learning in engineering	1429–1433
G-Code Machina: A Serious Game for G-code and CNC Machine Operation Training	1434–1442
Education 4.0: AI empowers smart blended learning process with Biofeedback	1443–1448
Work-in-Progress: Closing the Gaps: Diversity in Programming Education	1449–1453

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Page range 3D Print your Artifacts - 3D Turtle Geometry as an Introduction to Programming 1454-1461 Open-source multi-purpose remote laboratory for IoT education 1462-1468 The role of machine shop sessions in building confidence amongst first year engineering students in Ghana 1469–1474 1475-1479 Studying the Students' Learning in LoT@UNED Code Reuse and Formative Assessment in Secondary Education 1480-1488 Integrating Intrusive and Non- Intrusive Techniques to Detect Real Time Drivers' Fatigue 1489–1494 The influence of students' computer science learning experience on their perception of computational thinking 1495-1496 Work-in-Progress: Pre-college Teachers' Metaphorical Beliefs about Engineering 1497-1501 The Data Management of the Language of Trauma Narrative Communication 1502-1508 Open educational resources for Industry 4.0: supporting the digital transition in an European dimension 1509-1513 Internet of energy: new scenarios, opportunities, challenges and educational solutions 1514-1520 1521-1526 A framework of Malicious Vehicles Recognition in Real Time Foggy Weather Virtual Design Office: Proposition of Problem- and Project-Based Learning Solution in the COVID-19 Era and Beyond 1527-1531 1532-1536 BeA (Blended e-Assessment): Adapting to the COVID-19 world Teaching the Concepts of Servitization using a Serious Gaming Approach 1537-1545 Data science meets standardized game learning analytics 1546-1552 Work in Progress: Pedagogy of Engineering Ethics: A Bibliometric and Curricular Analysis 1553-1557 Pros and cons of Blockchain-based approaches in Education 1558-1564 A Cognitive Style-based Usability Evaluation of Zoom and Teams for Online Lecturing Activities 1565-1570 Online versus Face-to-face Collaborative Learning: Perceptions of Students and Instructors of Technical Writing for Engineers 1571-1581 1582-1586 How to design a competence-oriented study program for data scientists? A Mixed Reality Approach Enriching the Agricultural Engineering Education Paradigm, against the COVID-19 Constraints 1587-1592 Classification and Analysis of Techniques and Tools for Data Visualization Teaching 1593-1599 Work in Progress: Addressing Barriers for Women in STEM in Mexico 1600-1604

Problem-Based Learning in Automation Engineering: Performing a Remote Laboratory Session Serving Various Educational Attainments 1605-1614 iLabs as an online laboratory platform: A case study at Stanford University during the COVID-19 Pandemic 1615-1623 1624-1629 Flipped mastery and gamification to teach Computer networks in a Cybersecurity Engineering Degree during COVID-19

Title

IEEE catalog: CFP21EDU-ART ISBN: 978-1-7281-8478-4

Table of Contents

Title

Gender and STEAM as part of the MOOC STEAM4ALL	1630–1634
Using Augmented Reality in programming learning: A systematic mapping study	1635–1641
Towards a Cloud-Based University Accelerated By the Pandemic	1642–1649
Work-in-Progress: Virtual Reality System for training on the operation and programing of a Collaborative Robot	1650–1653
Adaptation to emergency remote teaching by students with distinct ICT backgrounds	1654–1659
Online Game-Based Learning through Minecraft: Education Edition Programming Contest	1660–1668
Introduction of the gender perspective in the university teaching: a study about inclusive language in Spanish	1669–1673
Cybersecurity Training in the Healthcare Workforce – Utilization of the ADDIE Model	1674–1681
EDISON Data Science Framework (EDSF): Addressing Demand for Data Science and Analytics Competences for the Digital Data Driven Economy	1682–1687
Teaching Operating Systems in the Time of COVID-19	1688–1695
TechCheck-K: A Measure of Computational Thinking for Kindergarten Children	1696–1702
Artificial Intelligence as a Gear to Preserve Effectiveness of Learning and Educational Systems in Pandemic Time	1703–1711
Why students' self-regulation is key towards the new normality?	1712–1716
Research Data Management and Data Stewardship Competences in University Curriculum	1717–1726
Teaching Software Engineering During Covid-19 - Constraint or an Opportunity?	1727–1731
In-Campus Work and Study: Motivation, Challenges, Benefits, Skills Developed and Impact on Studies	1732–1736
Covid-19 contingency plans: the impact on students' future choices	1737–1742
Distance learning during Covid-19: Lessons learned and Case studies from Egypt	1743–1748
A model for experiential learning by replicating a workplace environment in virtual classes	1749–1753
Remote laboratory VISIR: recent advances, initiatives, federation, limitations and future	1754–1757

Transitioning from Offline to Online Learning: Issues from Computing Student Perspective

Maresha Caroline Wijanto Faculty of Information Technology Maranatha Christian University Bandung, Indonesia https://orcid.org/0000-0003-4131-7760

> Hapnes Toba Faculty of Information Technology Maranatha Christian University Bandung, Indonesia https://orcid.org/0000-0003-0586-8880

Abstract— Covid-19 pandemic greatly affects student daily life. Instead of physically attend classes, they need to meet the lecturer and learn the course material via online meeting platform. The transition somehow introduces some issues like the difficulty of maintaining their focus. This becomes worse for computing students given that the assessments are not limited to standard essays. They include programming and hardwarebased assessments which are more difficult to complete at home as students might not have the required software or hardware. This paper reports any issues experienced by 112 computing students in terms of transitioning from offline to online learning. Our study shows that online learning forces the students to allocate more time to study and complete the assessments. Online learning also introduces other issues like higher stress level but still has a few of positive traits like spending less money to physically attend the classes. Many students argue that programming is the most difficult subject to learn in online environment. In response to the issues, some suggestions are provided for computing lecturers.

Keywords— learning issues, online learning, onsite learning, undergraduate students, computing education.

I. INTRODUCTION

Due to the pandemic started in the end of 2019, daily life is drastically changed to practice physical distancing. Many employees work from home, businesses focus on online market, while face-to-face sessions in schools and universities are replaced with virtual meetings. All these adjustments primarily require internet connection [1].

In academia, these adjustments raise some issues for lecturers especially those who are not used to online learning. They typically need more time to prepare their teaching materials while the existing supporting technology might not facilitate all of their needs. Students also experience some issues like more distractions while learning at home and the difficulty to maintain their focus during the teaching sessions [2]. This becomes worse as in some universities, the lecturers are free to use their preferred supporting technologies [3], which require the students to learn those technologies at once. All these issues need to be listed and then addressed for better learning environment in academia, especially when an unprecedented event like the pandemic re-occurs. There are several studies focusing on this matter [1], [2], [3], [4], but to the best of our knowledge, none of them focus on computing student perspective.

Oscar Karnalim Faculty of Information Technology Maranatha Christian University Bandung, Indonesia https://orcid.org/0000-0003-4930-6249 Mewati Ayub Faculty of Information Technology Maranatha Christian University Bandung, Indonesia https://orcid.org/0000-0003-2584-4317

Robby Tan Faculty of Information Technology Maranatha Christian University Bandung, Indonesia https://orcid.org/0000-0001-6218-1482

Computing students are arguably unique as their assessments are not limited to standard essays [5]. To study from home, they typically need computers with higher specification as some assessments require the installation of advanced applications like Visual Studio, Eclipse, SQL server, Adobe Photoshop, etc. Further, they cannot rely too much on their lecturer or tutors for dealing with technical issues given that the lecturer or the assistants cannot completely view and control their computers on most occasions.

In response to the aforementioned gap, this paper reports computing student perspective regarding issues raised by transitioning from offline to online learning via a questionnaire survey. Unique to our study, the survey questions are specifically tailored for computing students (e.g., covering non-essay assessments) and they are based on our informal survey asking computing students to list their issues regarding the transition from offline to online learning (with 72 responses). The findings are expected to help educators in preparing better learning environment, especially the computing ones. The survey contains 16 questions, and it is responded by 112 undergraduate students who have experienced transitioning from offline to online learning. The questions primarily compare offline and online learning, but it also asks specific difficulties raised from such transitioning, suggestions for lecturers, and the most challenging and the easiest subjects to learn during online learning.

The paper is organized as follows: Section 2 describes the literature review; Section 3 explains the method used and details of the survey questions given; Section 4 shows the findings obtained from the survey, discussing time spent on offline or online learning, comparison between offline or online learning; Section 5 summarizes the result in discussion; and finally Section 6 concludes the paper.

II. LITERATURE REVIEW

E-learning (or online learning) can be defined as the use of internet-based technology to educate students without being constrained by time and place [6], [7]. 'E' that starts the terminology is commonly perceived as the abbreviation of 'electronic'. However, El-Seoud et al. [7] argued that it might also stand for 'evolving, enhanced, everywhere, every time, and everybody'.

Elfaki et al. [6] classify e-learning to six categories: (1) elearning with physical attendance but without online communication (face-to-face); (2) e-learning without physical attendance and online communication (self-learning); (3) e-learning without both physical and online attendance, but with online communication (asynchronous); (4) e-learning with online attendance and communication (synchronous); (5) e-learning with occasional physical attendance and online communication (blended/hybrid-asynchronous); (6) e-learning with physical or online attendance and online communication (blended/hybrid-synchronous).

Regardless of the category, e-learning always has four kinds of interaction: student-teacher, student-student, studentcontent, dan student-technology [8]. Student-teacher interaction occurs during physical or virtual meetings; student-student interaction occurs from forum, chat, or messages; student-content interaction occurs from completing assessments; and student-technology interaction occurs when the students interact with learning management system.

According to [9], e-learning has several exclusive benefits: accessibility, flexibility, and affordability. E-learning can be accessed from anywhere at any time, offering flexible schedule for busy learners. It also offers more affordable tuition fee given no physical meeting places are required, and no additional fees for transportation and accommodation. This kind of learning can be combined with offline learning (faceto-face) to facilitate blended learning or flipped classroom, which might attract students to learn more and become longlife learner [6], [10].

Despite the benefits, some studies listed the drawbacks of e-learning, primarily based on the lack of ICT infrastructure (hardware, software, or even internet bandwidth), especially in developing countries [10], [11]. Not all students have computers with sufficient specification for e-learning. Time flexibility can act as a 'double-edged sword' for some learners due to lack of time management skill; e-learning requires the students to have self-regulation and self-discipline [12]. Some students think that e-learning is boring and lacks interaction, especially for some topics strongly related to lab activities [10], [13]. From lecturer perspective, they usually need more time to prepare the teaching materials and it can be burdensome [11].

Due to the pandemic, most universities change their offline learning, that primarily relies on face-to-face meeting, to online learning and the transition is compulsory in many countries. This results in lack of preparedness in both lecturer and student sides, which might reduce the quality of the learning process. In response to this, several studies summarize and report the potential issues, expecting those can be considered by lecturers in preparing better learning environment.

Bao [2] argued that effective online learning can be achieved by considering five factors. First, the consistency of given course material: number of assessments, difficulty, and learning session should be similar with the offline one. Second, teaching method: lecturers should be aware that it is hard for students to maintain their concentration during the online lecturer and it is important to slow down the pace. Third, supporting resources: videos or clear guideline is required to help students learning. If possible, several tutors can be allocated to help the students. Fourth, participation: lecturers need to keep the students engaged and actively participate in the learning process. Fifth, good planning: universities should support the lecturers to provide better learning environment via the implementation of a good and scalable long-term plan.

Martin [14] proposed another set of factors that should be considered for effective online learning. First, instructions: online learning should be facilitated with a clear, ordered, and comprehensive instructions to support the learning process. Second, content: lecturers should carefully prepare the content as students learn the material primarily from that. Third, motivation: students need to be motivated to actively participate in online learning. They need to have good selfmanagement, task-management, planning, and persistence. Fourth, interaction: lecturers are expected to keep interacting with their students with any platforms possible like email and chatting. Good and frequent interaction is expected to support the students in their learning process. Fifth, mental health: if some students are not mentally healthy, they might not be able to learn properly. Supports from their close relatives are encouraged.

Kamal et al. [4] summarized student challenges while transitioning from offline to online learning. They specifically discuss about reasons for students not having full participation in online learning and disagreeing with online learning. They also compile general comments about online learning. However, the study is not specifically designed to capture the perspective of computing students, which might be different to other majors due to their unique assessments [5].

III. METHOD

This paper summarizes issues experienced by computing students while transitioning from offline to online learning as the result of an unprecedented event. A questionnaire survey was distributed to students in our faculty, and it was responded by 112 students. The survey questions were carefully tailored based on our informal survey asking: "what are the difficulties of transitioning from offline to online learning?", which was responded by 72 students.

Our survey is divided to four sections as shown in Fig. 1. The first section records personal data like GPA, total number of academic credits for this semester courses, and gender. We did not ask about name and student ID to keep the survey anonymous. The second section has four questions. These record how many hours spent to study and complete assessments in both offline and online learning. This would be used to verify whether online learning is more time consuming for students. The third section has seven questions comparing online to offline learning.

Each question covers one of these aspects: workload of assignments (C01), clarity of lecture (C02), lecturer-student interaction (C03), difficulty of student collaboration (C04), difficulty of exams (C05), strictness in grading (C06), and stress level (C07). For each question, students need to choose whether that aspect is closely aligned to online learning, moderately aligned to online learning, equally aligned to both, moderately aligned to offline learning, and closely aligned to offline learning.

The fourth section has four questions about online learning (Q01-Q04). The first question asks the students to list any factors inhibiting their success of online learning with 15 predefined options including 'others'. The second question asks about what the lecturers can do to help students succeeding their online learning. Seven predefined options are given with one additional option called 'other'. The third question asks about the benefits of online learning with six predefined options including 'other'. The last two questions ask about the most difficult and the easiest subject to learn during online learning. It is worth noting that all predefined options in the fourth section are extracted from our informal survey. They are not explicitly listed here for conciseness, but substantial ones will be discussed in later sections.

The analysis was split to three parts. The first part is about the comparison of time spent in both offline and online learning (section 2 in the survey). The numbers of hours given by respondent for each category were averaged and the statistical significance was measured with two-tailed paired ttest with 95% confidence rate. To gain more comprehensive findings, the responses were further grouped based on data given in section 1 of the survey (GPA, academic credit, and gender), and analyzed separately. For GPA, the responses were categorized to 'lower than or equal to 2.75 of 4' (GPA LTOE 2.75) and 'greater than 2.75' (GPA GT 2.75). The former represents average students while the latter represents smart students. For academic credit, the responses were categorized to 'take up to 18 academic credits' (AC LTOE 18) and 'take more than 18 academic credits' (AC GT 18). The former represents students who take average number of credits while the latter represents students who take a lot.

The second analysis part is about qualitative comparison between offline and online learning (section 3 in the survey). Student responses for each question was summarized and described. Similar with the first part, the responses were further grouped based on GPA, academic credit (AC), and gender. The third analysis part is about general perspective about online learning, summarizing section 4 in the survey. The process is similar to the second analysis part.

IV. FINDINGS

Among 112 respondents, 97 of them (86.61%) had GPA higher than 2.75 while 15 of them had GPA lower than or equal to 2.75. In terms of academic credit, 70 students (62.5%) took more than 18 academic credits for that semester while the rest only took up to 18 credits. Most of the respondents (90 of them) are male.

A. Time Spent in both Offline and Online learning

Table I shows that in general, students require more time to study in online environment. Though the increase is not

quite substantial (less than one hour), it is statistically significant. The finding is somehow consistent when the students are grouped based on GPA, AC, or gender except on LTOE 2.75 and Female groups. Students whose GPA is lower or equal to 2.75 are average students and unlike the counterpart (i.e., smart students), they typically did not feel the burden to get the highest mark, resulting weaker intention to study more in response to the changing learning environment. Regarding the female group, it is unclear why the increase is insignificant.

It is expected that students who took more than 18 academic credits (GT 18) required more time to study in online environment than the counterpart (LTOE 18). They were enrolled to more courses and they should study for the whole materials.

For completing the assessments, Table II shows that transitioning from offline to online learning results in 1.6 hours more of completion time, and that difference is statistically significant according to two-tailed paired t-test with 95% confidence rate. The significant increase is consistent when the students are broken down to smaller categories based on GPA, AC, or gender except on LTOE 2.75. Students in that category did not feel the burden to get the highest mark like the counterpart (GT 2.75), and they might have weaker intention to complete the assessments as good as possible.

Students who took more than 18 academic credits (GT 18) required about 2.1 hours more to complete assessments in online environment. This is two times higher than that increase for the counterpart (LTOE 18), though the number of credits taken by the former group is not two times higher than the latter. GT 18 students might experience cumulative fatigue and that slowed down their progress of completing the assessments. This can be mitigated by providing assessments that associated one another, so that the students do not need to adapt themselves to a new context for each assessment.

TABLE I. TIME SPENT IN STUDYING PER DAY

Categories	Offline	Online	P-Value
All	2.3 hours	3.1 hours	< 0.001
GPA LTOE 2.75	3.1 hours	3.3 hours	0.63
GPA GT 2.75	2.8 hours	3.1 hours	< 0.001
AC LTOE 18	2.3 hours	2.8 hours	< 0.1
AC GT 18	2.4 hours	3.3 hours	< 0.001
Gender: Male	2.2 hours	3 hours	< 0.001
Gender: Female	2.8 hours	3.4 hours	0.07

Categories	Offline	Online	P-Value
All	3 hours	4.6 hours	< 0.001
GPA LTOE 2.75	3.4 hours	4.6 hours	0.11
GPA GT 2.75	2.9 hours	4.7 hours	< 0.001
AC LTOE 18	3.2 hours	4.2 hours	< 0.01
AC GT 18	2.9 hours	5 hours	< 0.001
Gender: Male	2.9 hours	4.5 hours	< 0.001
Gender: Female	3.1 hours	5.4 hours	0.01

TABLE II. TIME SPENT IN COMPLETING THE ASSESSMENTS PER DAY

In general, online learning requires the students to spend more time in both studying and completing the assessments. This is expected as the interaction between the lecturer and the students is limited. This becomes worse due to lack of guidance from lecturer or tutors. Consequently, computing lecturers are advised to provide the course materials as clear as possible, especially on the assessment specifications given that the students took more time in completing the assessments.

B. Qualitatively Comparing Offline to Online Learning

Fig. 2 shows that more than three quarters of students felt that more workload of assignments was given on online learning (C01). This is consistent even though the students are categorized to smaller groups based on GPA, academic credit, and gender.

There are several justifications for this phenomenon. First, lecturers introduced additional workload to confirm the originality of the student assignments as academic dishonesty might occur. Second, a few assignments were added as 'bonus mark' to help students maintaining their academic performance in this unprecedented event. Third, students were not accustomed to completing some assignments independently given that in offline environment, these assignments had been completed in a classroom with direct supervision by the lecturers and the tutors. Fourth, students are not accustomed to effectively managing their time in online environment that is more dynamic and less strict.

Fig. 2.Student's preferences between offline and online courses for survey question C01 to C07.

The lecture was less clear in online environment for about 75% of the students (see C02 in Fig. 2) and this is consistent when the students are broken down to smaller groups based on GPA, academic semester, and gender. This might be caused by at least two reasons. First, online interaction is far more limited than the offline one. Second, lecturers are still trying to find the best teaching method for online environment, especially for computing-specific materials like programming and algorithms. The former can be easily solved by recording the lecture and posting it online. Students who are unclear about a particular part of the lecture can play the recording. The latter is typically solved by having more experience in teaching online classes. However, to expedite the process, it is expected that the lecturers are either trained by experts or learn the teaching method from universities with online courses.

Many students felt that the interaction between them and the lecturer is far less in online environment (see C03 in Fig. 2). Again, this is consistent when broken down to smaller categories based on GPA, academic credit, and gender. Students might feel inconvenient asking questions via online platforms while the lecturers were too focused on preparing asynchronous lecture material. To compensate these, lecturers are expected to encourage students in asking questions and put more effort in synchronous lecture.

More than half of the students (61.61%) thought that if permitted, collaboration among students is more difficult in online environment. This is expected as most students were not accustomed to use collaboration platforms like Git for programming and Google Docs for text. Further, not all students used the same operating system and devices, which complicates the installation of programming environment, especially for server-oriented software. These became worse with the fact that some students were stressed due to the pandemic and could not maintain their schedule properly.

About half of the students felt that the difficulty of exams is equal in both offline and online environment (see C05 in Fig. 2), which is good since the quality of the exams was consistently maintained. However, about a third of the students felt that the online exams were more difficult. This might be caused by the lack of clarity discussed in C02 and the limited amount of lecturer-student interaction discussed in C03.

Grading is equally strict in both offline and online environment for about half of the students (see C06 in Fig. 2). Again, this is a good thing since the lecturers were able to maintain the quality of the course output despite the transition from offline to online learning. Some lecturers adjusted their assignments to compensate the sudden transition from offline to online environment, like providing longer completion period for the assignments, and focusing the grading on the completion process. However, that seems not to affect the quality of the exams and the grading.

Online learning resulted in higher stress level for about three quarters of the students (see C07 in Fig. 2). This might be caused by higher workload of assignments discussed in Fig. 2, lack of clarity discussed in C02 and the limited amount of lecturer-student interaction discussed in C03. This was worsened by at least four additional notable factors. First, students were not accustomed to independent learning. Second, internet connection problem which might be more pertinent on developing countries. Third, the difficulty of computing-specific installation like programming IDE and server applications. Fourth, occasional errors in running lecturer-provided programs due to different operating system settings.

C. Perspective about Online Learning

Among 16 factors inhibiting the success of online learning in Q01, more than half of top-5 most prominent factors are related to interaction: limited lecturer-student interaction (ranked 1st), limited interaction among course participants (ranked 4th), and limited interaction with tutors (ranked 5th). Students were used to directly ask questions and discuss the material in person. It is expected for lecturers to encourage such interaction in online environment by promoting student participation in the lecture and providing more collaborative assignments.

Limited explanation about the course material is also a prominent issue. In online environment, the lecturer cannot freely use their way of teaching like drawing a diagram in a whiteboard or directly overriding the students' computers when technical issues occur, since some online learning platforms do not simply allow those. Lecturers need to find another way of teaching that is applicable to online learning without reducing the quality of the explanation.

One of top-5 most prominent issues is technical: poor internet connection. Some students did not have stable internet service at home. A few of them needed to go to café or other public places just to get such stable connection. This can be partly solved by providing a particular funding covering internet service cost.

To enlarge their chance of succeeding online learning (Q02), students expect the lecturers to consistently do at least two things: recording the lecture and providing live meeting sessions. The former was voted by 92 of 112 students (82.1%) while the latter was voted by 68 of 112 students (60.7%). The recording might be helpful for students as they can replay the recording if they are unclear about certain part of the lecture. In case they still need further clarification, they can ask that during the live meeting sessions.

When asked about the benefits of online learning compared to the offline one (Q03), most students thought that it is more time efficient (78.5%) as the students are not required to go to the university, which can take about one hour for some students. Online learning is also perceived as less space-constrained (76.7%) given that the lecture can be attended from anywhere including convenient places at home. Last but not least, online learning seems to be more cost-efficient given that no physical transportation is required to attend the lecture.

Students were also asked about the most difficult subject to learn in online environment (Q04). About half of the respondents (56.2%) voted for programming and its number of votes is far higher compared to other subjects (e.g., mathematic was only voted by 17.8% though it is the second highest). Programming is often perceived as a difficult subject given that it involves a lot of computational logic [15]. The difficulty becomes much higher in online environment since at home, the students might face many distractions while they cannot easily seek help from the lecturers, the tutors, or even fellow students. Technical errors while installing the IDEs (or any related software) might also complicate the learning process as sometimes, the students' computers are not compatible with the installed IDEs [16].

Mathematics and algorithms are the 2nd and the 3rd most voted for difficult subjects (with 28 and 14 respondents respectively). It is expected as both are 'learn by doing' subjects that require a lot of exercises and discussions. Given the nature of online learning, lecturers cannot provide a lot of exercises to keep student stress level low. Further, the discussions become more limited as both lecturers and students are not used to do that via online platform.

When asked about the easiest subject to learn in online environment (Q05), 65 students felt that non-computing subjects other than mathematics are the easiest since the materials were easy to understand and high grade could be achieved by just memorizing the materials. The rest of the respondents chose other subjects; they were usually good in that subject, but not in non-computing subjects other than mathematics as they were bad at memorizing. Programming was chosen by 14 respondents, followed by hardware and network subject with 13 respondents. Mathematics was chosen by five respondents and Algorithms was chosen by four respondents.

V. DISCUSSION

Transitioning from offline to online environment can be challenging. Our study shows that students need to spend more time in both studying and completing the assessments. Further they believe that online environment results in higher workload of assignments, less clear explanation, less lecturerstudent interaction, more difficult student collaboration, and higher stress level.

Lecturers are advised to use more images and videos during the teaching session to keep the students engaged while providing clearer explanation. Gamified platforms like Quizziz or Kahoot [17] can also be introduced to make the learning process more fun and hopefully mitigate the students' stress level. In terms of collaboration, online collaborative platforms like Slack [18] and GitHub [19] can be used. It is worth noting that the collaborative platforms might be misused to do collusion [20]. An automated similarity detection tool should be applied to raise suspicion of such misconduct [21].

Many students think that limited interaction (either lecturer-student, tutor-student, or student-student) is a key factor inhibiting their success in online learning. They also suggest the lecturers to record the lecture sessions and provide live discussion sessions. Online learning has a few positive traits like being more cost-efficient given that the students does not need to physically attend the lecture.

Lecturers are expected to pay more attention on programming subject given that it is quite difficult to be learned online. Technical and logical errors might discourage the students as some of them are not able to independently solve the errors. To provide better learning support, the lecturers can introduce additional tutors, use independentlearning tools like program visualization [22], setting more collaborative assessments so that the slow-paced students can learn from the smart ones [23], or using existing hands-on or learning materials specifically tailored for online learning provided by third parties.

VI. CONCLUSION

This paper lists issues transitioning from offline to online learning, experienced by computing students. The study involves 112 respondents via a questionnaire survey in which the questions are carefully tailored from an informal presurvey.

Our study shows that transitioning from offline to online learning requires the students to allocate more time. Further, online learning is believed to have a few benefits like costefficiency. However, the benefits are not comparable to the issues like higher stress level and limited interaction. We have provided some suggestions to deal with those issues.

For future work, we plan to reconduct the survey on students from other universities and verify whether the issues can be generalized. We are also interested to compare student performance in offline and online environment to see whether the transition substantially affect student retention. Last but not least, we plan to further validate our findings via association rules.

REFERENCES

- T. Favale, F. Soro, M. Trevisan, I. Drago, and M. Mellia, "Campus traffic and e-learning during COVID-19 pandemic," Computer Networks, 176, 2020.
- [2] W. Bao, "COVID-19 and online teaching in higher education: A case study of Peking University," Human Behavior and Emerging Technologies, vol. 2, no. 2, pp. 113-115, 2020.
- [3] C. Mercader and J. Gairín, "University teachers' perception of barriers to the use of digital technologies: The importance of the academic discipline," International Journal of Educational Technology in Higher Education, vol. 17, no. 4, 2020.
- [4] A. A. Kamal, N. M. Shaipullah, L. Truna, M. Sabri, and S. N. Junaini, "Transitioning to online learning during COVID-19 pandemic case study of a pre-university centre in Malaysia," International Journal of Advanced Computer Science and Applications (IJACSA), vol. 11, no. 6, pp. 217-223, 2020.
- [5] Simon, B. Cook, J. Sheard, A. Carbone, and C. Johnson, "Academic integrity perceptions regarding computing assessments and essays," in ICER '14: Proceedings of the 10th Annual Conference on International Computing Education Research, Glasgow: ACM, 2014, pp. 107-114.
- [6] N. Elfaki, I. Abdulraheem, and R. Abdulrahim, "Impact of e-learning vs traditional learning on student's performance and attitude," International Journal of Medical Research & Health Sciences, vol. 8, no. 10, pp. 76-82, 2019.
- [7] M. El-Seoud, I. Taj-Eddin, N. Seddiek, M. El-Khouly, and A. Nosseir, "E-learning and students' motivation: A research study on the effect of e-learning on higher education," International Journal of Emerging Technologies in Learning (iJET), vol. 9, no. 4, pp. 20-26, 2014.
- [8] V. Nguyen, "The impact of online learning activities on student learning outcome in blended learning course," Journal of Information & Knowledge Management, vol. 16, no. 4, 2017.
- [9] Di Xu & S. Jaggars, "The impact of online learning on students' course outcomes: Evidence from a large community and technical college

system," Economics of Education Review, vol. 37, pp. 46-57, December 2013.

- [10] S. Dhawan, "Online learning: A panacea in the time of COVID-19 crisis," Journal of Educational Technology Systems, vol. 49, no. 1, pp. 5-22, 2020.
- [11] A. Al-adwan and J. Smedley, "Implementing e-learning in the jordanian higher education system: factors affecting impact," International Journal of Education and Development using Information and Communication Technology, vol. 8, no. 1, pp. 121-135, January 2012.
- [12] Di Xu and S. Jaggars, "Performance gaps between online and face-toface courses: Differences across types of students and academic subject areas," The Journal of Higher Education, vol. 85, no. 5, pp. 633-659, 2014.
- [13] S. Jaggars, "Choosing between online and face-to-face courses: Community college student voices," American Journal of Distance Education, vol. 28, no. 1, pp. 27-38, 2014.
- [14] A. Martin, "How to optimize online learning in the age of coronavirus (COVID-19): A 5-point guide for educators," Sydney: School of Education, UNSW Australia, 2020.
- [15] C. McDonald, "Why is teaching programming difficult?", in Carter J., O'Grady M., Rosen C. (eds) Higher Education Computer Science, pp. 75-93. Springer, 2018
- [16] O. Karnalim, G. Kurniawati, S. F. Sujadi, and R. A. Nathasya, "Comparing the impact of programming assessment type: in-class vs take-home," International Journal of Engineering Pedagogy, vol. 10, no. 4, pp. 125-132, 2020.
- [17] D. O. Göksün and G. Gürsoy, "Comparing success and engagement in gamified learning experiences via Kahoot and Quizizz," Computers & Education, vol. 135, pp. 15-29, 2019.
- [18] B.Lin, A. Zagalsky, M. A. Storey, and A. Serebrenik, "Why developers are slacking off: understanding how software teams use Slack," in CSCW '16 Companion: Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, San Francisco: Association for Computing Machinery, 2016, pp. 333-336.
- [19] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian, "The promises and perils of mining GitHub," in MSR 2014: Proceedings of the 11th Working Conference on Mining Software Repositories, Hyderabad: Association for Computing Machinery, 2014, pp. 92-101.
- [20] R. Fraser, "Collaboration, Collusion and Plagiarism in computer science coursework," Informatics in Education, vol. 13, no. 2, pp. 179-195, 2014.
- [21] O. Karnalim, Simon, and W. Chivers, "Similarity detection techniques for academic source code plagiarism and collusion: a review," in 2019 IEEE International Conference on Engineering, Technology and Education (TALE), Yogyakarta, 2019, pp. 1-8.
- [22] R. A. Nathasya, O. Karnalim, and M. Ayub, "Integrating program and algorithm visualisation for learning data structure implementation," Egyptian Informatics Journal, vol. 20, no. 3, pp. 193-204, 2019.
- [23] M. Ayub, O. Karnalim, Risal, W. F. Senjaya, and M. C. Wijanto, "Utilising pair programming to enhance the performance of slow-paced students on introductory programming," Journal of Technology and Science Education, vol. 9, no. 3, pp. 357-367, 2019.