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Abstract. Many public cryptography schemes rely on the use of prime numbers like for encryption and
decryption. A prime number is one number that is widely used and large and consists of hundreds of digits,
s0 it takes time to test whether the numbers are prime or not. Miller-Rabin is one algorithm that could be
used to test prime number. Simulation to show how to test non-prime number elimination process can be
used to determine the workings of the Miller-Rabin algorithm and also could be used as a media learning
for students and lecturers to know how prime number test and generation.

1 Introduction

In mathematics, prime numbers are natural numbers that
only have two factors, namely the divisor is 1 and the
number itself [1]. The uniqueness of prime numbers is
widely used in cryptographic algorithms especially on key
generation [2—4], the strength of a cryptography al gorithm
depends on the key used [5-7] and prime number is one
of the factors that determine the strength of security [8—
10]. Few algorithms using a prime number for the key is
RSA, RC4 and Blowtfish algorithm using the prime
number in p and q key for encryption and decryption
process [11-14], this prime numbers become essential not
only in mathematics but also In computer science.

The problem that arises is that the prime number is
infinite. Not only that, many numbers are glimpsed like
primes, but in reality they are not [1,15]. This problem
causes the search for prime numbers takes longer time for
using as key in cryptography algorithms. An alternative
that can be used to overcome this problem is to use the
prime test algorithm [15].

One of the prime number tests is Miller-Rabin
algorithm. The algorithm works by utilizing the Fermat
method where each number tested will go through the
process of elimination based on the probability of the
prime rate of that number [16]. The output of the Miller-
Rabin algorithm is entirely accurate, and the workflow is
casy to follow, this reason makes Miller-Rabin algorithm
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suitable to be implemented in the form of a prime
generator software, especially simulation software and
also it can be used for security and education purpose.

2 Methodology

2.1 Prime Numbers

The prime number is a positive integer a, where a > 2 can

only be divided by 1 and the number itself. The nature of

division of integers gives birth to the concepts of prime

numbers and modulo arithmetic [1,15,17-19]. Most

public-key algorithms use prime numbers as one of their

parameter values [20,21]. There are several important

properties that only prime numbers have:

a.  All prime numbers are odd numbers, except 2.

b. The number of primes that will not exceed x is @
(x)=x.

c. Hadamard Poussin's theorem states that approach
expresses the number of primes for x — oo:

7 (x) =x / (Il (x))

d.  Any positive integer more than one has a prime
divisor.

e. Ifnis a composite number, then it has a prime factor
not greater than n,

f.  Any integer greater than 1 can be denoted singly as a
result of multiplication of prime numbers.
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g. If the prime number p divides the positive integer n
al, a2, .., an, then there ai, 1 <1 < n, such that p
divides ai.

h. Two consecutive odd numbers p and p + 2, both of
which are prime numbers, are called twin prime pairs.
The pair (3.5), (5.7), (11,13), (17,19), (29,31), etc. are
the twin prime pairs.

2.2 Miller-Rabin

The Miller-Rabin algorithm is based on Fermat's theorem

states that a®~' = 1 mod n if n is a prime and a root or

solution x of x* (mod n) having at least four roots if n is

complex [22,23].

Miller-Rabin algorithm work flow can be described as
follows:

a. Take arandom located at interval 1 <a <n-1 and
then count using equation T = a™mod n if T=+ 1,
then it is concluded n may be prime.

b. IfT?= 1, then it is concluded n compound, and the
algorithm stops. If T? = -1, then n may be primed. If
T? £ 1, proceed to step 3.

c. CaleulateT?” = a?*¥™ mod n. If T2* = 1 then it is
concluded n compound and algorithm will be
stopped. If T * (2 # 2) = -1 then concluded n may be

prime. If T2 # +1 the process (step 3) is repeated
until T27X™ if until the last iteration is obtained
7257 5 (T # £1), concluded n compound.

3 Results and Discussion

The simulation of the prime generator using Miller-Rabin
algorithm is performed by generating and testing
randomly generated numbers, and a simple experiment
was to count 13 is it prime or not.
a. Calculating the Value of s and d
Before calculating the value of s and d, first
calculated the value of N-1, where N is the number to
be checked the primes value, from the case example,
we get V-1 as follows:
N-1=13-1
=12
Next is calculated the value of s and 4 by using the
formula d * 2° = N-1, where d is a positive odd
number, d= 0 and s = 1.
b. Determining the Level of Accuracy
The process of testing prime numbers will do the
generation of random numbers that serve as test
numbers. The amount of generation of this test
number will determine the accuracy of the results of
primes
c. Generating Test Numbers
The Miller-Rabin algorithm uses a random number a,
which will be used to find the value of x through the
following equation: x = a“ mod N. If the value of x =
1 or the value of x = N-1, then this step will result in
a True wvalue for the test number a.
If the value of x does not meet the above
requirements, search for the next x value by using the

. . . i L
following equation: x = a®** mod N, where i is

(5]

any value from 1 to s-1. If any of the values are x =
N-1, then this step will result in a True value for the
test number a

d. Testing Prime Numbers
Afier obtaining the value of s, d and a, the next step
is to test the number N. In this case, for example, will
be tested N = 19 with k = 4 accuracy level used.
For k1, we get the test number a= 10. The value of x
obtained is:
x = 109 mod19
= 1000000000 mod 19
=18
Since the value of x = N-1, then the first test 15 True.
For k2, we get the test number a = 18. The value of x
obtained is:
x= 189 mod 19
= 198359290368 mod 19
=18
Since the value of x = N-1, then the second test is
True. For k3, the test number obtained a = 17. The
value of x obtained is:
x=179mod 19
= 118587876497 mod 19
=1
Since the value of x = 1, then the third test is True.
For k4, the test number a = 9. The x values obtained
are:
x=99mod 19
=387420489 mod 19
=1
Since the value of x = 1, then the third test is True.
Since all tests from k1 to k4 are true, it can be
concluded that number 19 is a prime number.

The Miller-Rabin algorithm simulation created using
Java Netbeans displays the result of prime numbers of n
with varying amount of time, the designed app displays
the numbers that are prime numbers and the required
processing time as follows:
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Fig.1. Application Simulation.

Figure 1 is a simple example of displaying a prime
number of n, the number of n is randomly generated and
then tested by using the prime algorithm individually
stored in the array and then displayed the result, some
other tests as in Figure 2-5 with the value large enough
with varying process time.
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Fig.2. A sample of 10000 number.
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Fig.3. A sample of 100000 number.
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Fig.4. A sample of 500000 number.
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Fig.5. A sample of 1000000 number.

The experiment shows the number of primes as much
as n number, based on the test that has been done the more
prime numbers generated and tested using Miller-Rabin
algorithm then it takes a relatively long time, one example
is to generate and test as many as 100000 prime numbers
require time 13 second but for 1000000 primes takes 3

minutes, for some experiment can be seen in table 1

below:

Table 1. Prime Number Experiment.

Miller-Rabin

No Prime Number (Second)

10 0:0:0.109

10000 0:0:1.204

100000 0:0:13.532

500000 0:1:36.078

| s | | =

1000000 0:3:18.750

Based on table 1 it will like this figure 6 below where

the process will take exponential in time.

Process Time Miller-Rabin
1500000 04:19.2
1000000 02:52.8

500000 01:26.4

0 00:00.0
1 2 3 4 5

BN Time  ssPrime Number

Fig.6. Graph Miller-Rabin process.

The prime numbers generated in the application are

numerous, whereas the use of p and g keys in
cryptography requires only 2 pieces and must use large
number, assuming the key value of p and g above 500000
<10000000 then the required time will not be up to 3
minutes to get value of p and g.

4 Conclusion

Testing prime numbers using the Miller-Rabin algorithm
can be done well and the results are also entirely accurate
even up to 1 million prime numbers can be completed by

3

minutes, the Miller-Rabin algorithm is very appropriate

as an additional algorithm in the cryptographic process so
that the determination of the key p and q which are
generally prime numbers in cryptography like RSA, RC5,
Pohlig-Hellman can be generated quickly.
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