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A B S T R A C T

Acetaminophen (APAP) is a widely used analgesic, but it may cause liver injury (hepatotoxicity) via oxidative
stress that induced by N-acetyl-p-benzoquinone imine (NAPQI) in long term usage or overdose. Multiple in-
flammatory mediators were also found to contribute for this effect. Many medicinal plants was known for its
antioxidant and anti-inflammatory activities and one of them is Red betel (Piper crocatum Ruiz and Pav) from
Indonesia. In this study, the red betel leaves extract (RBLE) protective effect against APAP-induced HepG2 cells
was determined. APAP-induced HepG2 as hepatotoxicity cell model was treated with RBLE at 25 and 100 μg/mL.
Protective effects of RBLE toward hepatotoxicity were evaluated by several parameters: tumor necrosis factor-α
(TNF-α) concentration, reactive oxygen species (ROS) level, live cells percentage, apoptotic cells percentage,
necrotic cells percentage, death cells percentage, CYP2E1 and GPX gene expression. The RBLE treatments (both
25 and 100 μg/mL) increased CYP2E1 and GPX gene expression also live cells percentage, while decreased ROS
level, TNF-α concentration, also the percentage of death and necrotic cells. Red Betel leaves ethanol extract has
hepatoprotective effect via anti-inflammatory, anti-necrotic, and antioxidant potency in liver injury model.

1. Introduction

For many problem of drugs use, liver injury was continues to be a
problem. It was represents a major challenge in designing potential
therapies (Noh et al., 2015). Acetaminophen (paracetamol, APAP) is
considered as first line analgesics. However, excessive use of APAP leads
to liver injury even liver failure in human (Ganey et al., 2007; Ni et al.,
2012). In small percentage, the cytochrome P450 2E1 (CYP2E1) enzymes
was oxidizing the APAP and form N-acetyl-p-benzoquinone imine
(NAPQI), a highly reactive intermediate, which is detoxified by covalent
binding with glutathione (GSH). However, in APAP poisoning, it will
generates excess NAPQI which evokes the GSH depletion that binds to
macromolecules triggering oxidative stress, mitochondrial dysfunction,
and ultimately resulting in hepatocellular death (Salminen et al., 2012;
Uzi et al., 2013; Yuan et al., 2016). Although the mechanisms underlying
hepatotoxicity that induced by APAP still unclear, some evidences was
indicate that inflammation mediators such as tumor necrosis factor-α

(TNF-α) also oxidative stress was contribute to the APAP-induced acute
liver damage pathology process (Uzkeser et al., 2012; Dragomir et al.,
2012).

One of betel in Indonesia namely red betel (Piper crocatum Ruiz and
Pav) has medicinal function and used as medicine since its introduce as
medicinal plants producer in Blunyahrejo (Rinanda and Alga, 2012). It
can be used to treat diabetes, gout, hepatitis, hypertension, and eye
inflammation (Anugrahwati et al., 2016). In previous study, red betel
leaves were found to have some secondary metabolite content like fla-
vonoids, alkaloids, tannins, saponins, triterpenoids steroids, quinones,
polyphenolics, and essential oil groups (Arambewela et al., 2005;
Wulandari et al., 2018). In addition, red betel contains phenolic com-
pounds in the form of hydrochavicol, cavibetol acetate and eugenol
(Swapna et al., 2012; Dervis et al., 2017). In previous studies, red betel
leaves extract (RBLE) was shown have anti-inflammatory properties
(Misra et al., 2009); antioxidant activity (Lister et al., 2019a); and also
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have anticancer activity especially cervical cancer (Widowati et al.,
2013) and breast cancer (Zulharini et al., 2018).

In this study, RBLE potential to suppress liver injury in APAP-induced
HepG2 cells was conducted. The parameters that observed in this study
was Reactive Oxygen Spesies (ROS) level; TNF-α level; Cytochrome P450
Family 2 Subfamily E Member 1 (CYP2E1) and Glutathone Peroxidase
(GPX) gene expression; apoptotic, necrotic cells, and death cells
percentage.

2. Materials and methods

2.1. Preparation of red betel leaves extract

The red betel (P. crocatum Ruiz and Pav) leaves that used in this study
was obtained from Pabuaran Cilendek Timur, Indonesia and has been
identified by Herbarium Bogoriense, Botanical Field Research Center for
Biology-Indonesian Institute of Science, Indonesia. RBLE preparation was
done by using maceration method. RBLE was obtained from our previous
research and stored at -20 �C (Lister et al., 2019a, 2019b).

2.2. HepG2 cells culture and APAP-Induced HepG2

The cells that used in this study is human hepatocellular carcinoma
(HepG2) cell line (ATCC, HB-8065™) from Aretha Medika Utama Bio-
molecular and Biomedical Research Center, Bandung, Indonesia. It was
grown in complete medium with composition: Modified Eagle Medium
(MEM) (Biowest, L0416-500), fetal bovine serum (FBS) (Biowest, S1810)
as much as 10% (v/v), antibiotic-antimycotic (Gibco, 15240062) as
much as 1% (v/v), also nanomycopulitine (Biowest, LX16) addition) as
much as 1% of (v/v). Acetaminophen (Sigma Aldrich, A7085) with
concentration at 40 mMwas used to induce the hepatotoxicity. When the
cells were confluent, it was rinsed using PBS and detached using trypsin-
EDTA (Gibco, 25200072) with incubation at 37 �C. In 6 well plates, the
cells was seeded (5 � 105 cells/well) and then incubated at the same
temperature with 5% of CO2 for 24 h. The cells was induced by RBLE and
incubated again for 24 h. According to the treatment, it was divided into
5 groups: I) Normal Cells; II) DMSO1%; III) APAP 40 mM; IV) APAP 40
mM þ RBLE 25 μg/mL; V) APAP 40 Mm þ RBLE 100 μg/mL. Then it was
centrifuged at 1600 rpm for 10 min. The supernatant was collected as
sample for the Elisa assay (Luo et al., 2016; Aouache et al., 2018; Lister
et al., 2019b).

2.3. Total protein assay

Bovine Serum Albumin (BSA) (Sigma Aldrich, A9576) was used as
standard in this method. Briefly standard solutions as much as 20 μL also
same volume for the samples was mixed with Quick Start Dye Reagen 1X
(Biorad, 5000205) as much as 200 μL into each well in 96 well plate. The
mixture then incubated at room temperature for around 5 min. The
wavelength at 595 nm was used to determine the mixture absorbance by
using microplate reader (Multiskan™ GO Micro plate Spectrophotom-
eter, Thermo Scientific, 51119300) at 595 nm. The result from this assay
was used for normalization of TNF-α data calculation (Pluemsamran
et al., 2012; Widowati et al., 2019a).

2.4. TNF-α assay

This assay was measured using ELISA assay (BioLegend, 421701) and
done according to the manufacturer's kit manual. Based on the manual,
wavelength at 450 nm was used to determine the absorbance using
microplate reader (Widowati et al., 2019a).

2.5. Apoptotic activity assay

The assay was conducted using methods that reported by Widowati
et al. (2019b). Treated and control HepG2 cells were washed using PBS
1x and harvested using trypsin-EDTA for apoptotic assay. The pellet was
washed using Annexin Binding Buffer 1X (Miltenyi Biotec, 130-092-820)
500 μL and stained with Annexin V-FITC (BioLegend, 79998) and Pro-
pidium Iodide (BioLegend, 79997). Cells were incubated at 37 �C for 30
min in the dark. Cells were later suspended in Annexin Binding Buffer 1x.
The HepG2 cells apoptotic percentage were analyzed using MACSquant
Analyzer 10 (Miltenyi Biotec).

2.6. Reactive oxygen species (ROS) assay

HepG2 cells were digested with trypsin-EDTA after cultured around 7
days and 2.5 � 104 cells/0.5 mL were incubated for 45 min in 20 μM
DCF-DA at 37 �C and incubated again for 4 h in RBLE. Based on Pra-
hastuti et al. (2019) and Girsang et al. (2019), the 20,
70–dichlorofluorescin diacetate (DCFDA)–Cellular Reactive Oxygen Spe-
cies Detection Assay Kit (Abcam, ab113851) was used to measured
intracellular ROS with modifications.

Table 1. RT-PCR details of β-Actin, CYP2E1, and GPX gene.

Gene
Symbols

Primer Sequences (50 to 30)
Upper strand: Sense
Lower strand: Antisense

Annealing (�C) Cycle References

β-Actin 50-TCTGGCACCACACCTTCTACAATG-30

50-AGCACAGCCTGGATAGCAACG-30
63 40 Widowati et al. (2019b)

Afifah et al. (2019)

CYP2E1 50-GTTCTTTGCGGGGACAGAGA-30

50-GAGGGTGATGAACCGCTGAA-30
59 40 Kim et al., 2003

GPX 50-CCAAGCTCATCACCTGGTCT-30

50-TCGATGTCAATGGTCTGGAA-30
59 40 Ugusman et al. (2011)

Table 2. RNA concentration and purity.

No. Sample Concentration (ng/μL) Purity (Absorbance 260/280)

1. Control cells 92.90 2.3212

2. Positive control 90.10 2.0904

3. Positive control þ RBLE 25 μg/mL 36.20 1.9676

4. Positive control þ RBLE 100 μg/mL 40.00 2.0366
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2.7. The expression of GPX and CYP2E1 gene assay

Cells that has been harvested was processed for RNA isolation that
will be used for futher assay. It was done by using the Aurum™ Total
RNA mini Kit (Bio-Rad, 732-6820). RT-qPCR (Clever, GTC96S) was used
to analyze the gene expression include the β-actin gene that constitu-
tively expressed (Afifah et al., 2019; Widowati et al., 2019b). Table 1 was
shown the primer sequence and Table 2 was shown RNA concentration
and purity.

2.8. Statistical analysis

All data were obtained after doing it in triplicate. When the data has
normal distribution, it was analyzed using ANOVA and Post Hoc Test
using Tukey HSD with p < 0.05 while data didn't has normally distrib-
uted were analyzed with Kruskal Wallis and Post Hoc Test Mann Whitney
using SPSS software (version 20.0). The data were presented as mean �
standard deviation.

Figure 1. RBLE treatment effect toward TNF-α con-
centration in APAP-induced HepG2 cells as hepato-
toxicity model. (A) TNF-α concentration (pg/mL) on
hepatotoxicity model. (B) TNF-α concentration (pg/
mg protein) on hepatotoxicity model. *Data was
included as mean � standard deviation. I) Normal
cells as negative control; II) Normal cells þ DMSO 1%
as vehicle control; III) APAP-induced cells (Positive
control); IV) Positive control þ RBLE 25 μg/mL; V)
Positive control þ RBLE 100 μg/mL. Significance
among treatments toward TNF-α concentration was
presented as different letters (a,b) based on Tukey
HSD post hoc test (P < 0.05).

Figure 2. RBLE effect toward apoptotic, necrotic,
dead cells in hepatotoxicity model. (A) Live cells on
hepatotoxicity model. (B) Early apoptotic on hepato-
toxicity model. (C) Late apoptotic on hepatotoxicity
model. (D) Necrotic on hepatotoxicity model. *Data
was included as mean � standard deviation. I) Normal
cells as negative control; II) Normal cells þ DMSO 1%
as vehicle control; III) APAP-induced cells (Positive
control); IV) Positive control þ RBLE 25 μg/mL; V)
Positive control þ RBLE 100 μg/mL. There are sig-
nificant different between all groups based on
Kruskal-Wallis Test (P < 0.05) and Mann-Whitney
Test (P < 0.05). It was marked as single star (*)
marks for the statistical difference between positive
control and negative control while the hashtag (#)
mark for statistical difference between treatment and
positive control.
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3. Result

3.1. RBLE effect towards TNF-α concentration in APAP-induced HepG2
cells

APAP was increased the TNF-α concentration in HepG2 cells. When
RBLE treatment was added, it was found can decrease the TNF-α con-
centration (Figure 1). Based on the result, RBLE has potential to supress
the TNF-α production in HepG2 cells that induced by APAP.

3.2. Effect of RBLE towards apoptotic, necrotic, and cell death in APAP-
induced HepG2 cells

APAP decreased live cell percentage compare to normal HepG2 cells
(Figure 2A). RBLE treatment decreased the percentage of apoptotic and
necrotic significantly in APAP-induced HepG2 cells (Figure 2B–D). RBLE
treatment can increase the live cells percentage also reduce the per-
centage of necrotic and dead cells in HepG2 cells that induced by APAP.

3.3. RBLE effect towards ROS level in liver injury model

ROS level increased significantly after APAP induction and reduced
significantly when injured HepG2 cells were treated with RBLE
(Figure 3). RBLE had potential to decrease ROS level in liver injury
model.

3.4. RBLE effect on CYP2E1 and GPX gene expression in liver injury model

CYP2E1 gene expression decreased significantly in APAP-induced
HepG2 cells. RBLE treatments increased the CYP2E1 gene expression
significantly compare to the APAP-induced HepG2 cells group (Figure 4).
GPX gene expression decreased in APAP-induced HepG2 cells. RBLE
treatments could increase the GPX gene expression significantly
(Figure 5). RBLE treatments had ability to increase the CYP2E1 and GPX
gene expression.

4. Discussions

Betel leaves had been known to contain many active compounds,
mainly hydrochavicol, cavibetol acetate and eugenol (Begam et al.,
2018). Based on previous study, it had been demonstrated that red betel
leaves extract, along with its active constituents: eugenol and hydrox-
ychavicol, can scavenging H2O2 and DPPH also reducing FRAP and ABTS
radicals that indicated their antioxidant activity (Lister et al., 2019a).
Eugenol also had been reported could decrease the ALT and AST activ-
ities and LDH level in liver injury model that induced by APAP (Lister
et al., 2019b).

The presence of APAP toxic metabolite NAPQI caused Kupffer cells
activation that leads to TNF-α release (Legert et al., 2015). TNF-α, one of
inflammatory cytokine, involved in oxidative stress injury (Barman et al.,
2016; Jaeschke et al., 2012). It was mediated death receptor pathway
apoptosis by activating caspase 3 that act as a central effector to cleave
various cellular substrates and trigger cell apoptosis eventually (Nagase
et al., 2002; Truong et al., 2016). While apoptosis and necrosis frequently
coexist in liver pathological conditions and the cell death balance may be
dictated by the particular insult (Antoine et al., 2010).

RBLE treatment was found can decrease the TNF-α level in liver injury
model based on the study result. One of active compound in RBLE,
eugenol, had been studied have effect on reduction of inflammatory cells
infiltration and generation of cytokines from Kupffer cells include ability
to suppress TNF-α level in liver injury model (Yogalakshmi et al., 2010).

Figure 3. RBLE effect toward ROS level in hepatotoxicity model. *Data was
included as mean � standard deviation. I) Normal cells (Negative control); II)
Normal cells þ DMSO 1%; III) APAP-induced cells (Positive control); IV) Posi-
tive control þ RBLE 25 μg/mL; V) Positive control þ RBLE 100 μg/mL. Based on
Kruskal-Wallis Test (P < 0.05), there are significant different among groups. It
was marked as single star (*) for statistical difference between positive control
and negative control also hashtag (#) for statistical difference between treat-
ment and positive control.

Figure 4. RBLE effect toward the expression of CYP2E1 gene in hepatotoxicity
model. *Data was included as mean � standard deviation. I) Normal cells as
negative control; II) Normal cells þ DMSO 1%; III) APAP-induced cells (Positive
control); IV) Positive control þ RBLE 25 μg/mL; V) Positive control þ RBLE 100
μg/mL. Based on ANOVA (P < 0.05) and Games-Howell (P < 0.05), there are
significant different among all groups. It was marked as single star (*) marks for
the difference between positive control and negative control also hashtag (#)
mark for the difference between treatment and positive control.

Figure 5. RBLE effect toward the expression of GPX gene in hepatotoxicity
model. *Data was included as mean � standard deviation. I) Normal cells
(Negative control); II) Normal cells þ DMSO 1%; III) APAP-induced cells (Pos-
itive control); IV) Positive control þ RBLE 25 μg/mL; V) Positive control þ RBLE
100 μg/mL. Based on Kruskal-Wallis Test (P < 0.05) and Mann-Whitney Test (P
< 0.05), there are significant different between group. It was marked as single
star (*) marks as difference between positive control and negative control while
hashtag (#) mark as difference between treatment and positive control.
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Phenolic compound had anti-inflammatory effect as another study from
Yuan et al. (2016) also stated that a phenolic compound ferulic acid could
decrease the TNF-α level in mice induced with APAP.

Figure 2 shows that the APAP induction increased the apoptotic,
necrotic, and death cells percentage, while RBLE treatments had suc-
cessfully reduce death cells and maintain live cells at higher level. This
data was in line with previous research that less apoptotic cells were seen
in ferulic acid treatment in injury liver model (Yuan et al., 2016).

In APAP-induced hepatotoxicity model, oxidative stress played an
important role and it was characterized by ROS accumulation (Nagi et al.,
2010; Du et al., 2016). NAPQI, a reactive metabolite formed from APAP,
could react rapidly with GSH and aggravating oxidative stress in con-
juction with mitochondrial dysfunction that induced hepatocellular
damage (Smith et al., 2016; Kang et al., 2017). The enzymatic antioxi-
dant defense system known can detoxified ROS. Previous study exhibited
that RBLE had antioxidant potential (Lister et al., 2019a). Based on the
result, RBLE proved to suppress the ROS level in liver injury model, this
result was in line with Parikh et al. (2015) that found phenolic com-
pounds in Brassica juncea hydromethanolic extract such as quercetin and
cathecin could reduce the ROS level in APAP-induced HepG2 cells. Thus,
the RBLE hepatoprotective mechanism might result from diminishing
generation of ROS.

In the metabolism of endogenous and exogenous compounds wide
variety, CYP2E1 has important functions that relevant to chemical
toxicity and carcinogenesis in liver (Gonzalez, 2007). ROS was one of
compounds that generated by CYP2E1 that increase mitochondrial
membrane permeability and lipid peroxidation, which induce apoptosis
via pro-apoptotic factors release and activate caspase 3 (Lee and Wei,
2007). Based on the result, RBLE treatments decreased CYP2E1 gene
expression in APAP-induced HepG2 cells, probably by its high phenolic
compounds. This result was in line with previous research that in
APAP-induced hepatotoxicity, the ferulic acid could inhibit the
up-regulation of CYP2E1 expression (Yuan et al., 2016).

The enzymatic antioxidant defense system primary part against
oxidative stress is GPX that directly eliminating ROS (Truong et al.,
2016). When free radicals formed rapidly, GPX functions will become
inefficient and leads to hepatocytes damage (Roh et al., 2018). GPX level
can be used as indicator of the oxidative stress response (Wang et al.,
2016). Based on the result, it was shown that APAP could decrease the
GPX expression, however RBLE treatments could counter this effect. It
was indicated that RBLE can protects cells/livers from APAP-inducer
through an antioxidant defense system enhancement. Truong et al.
(2016) also stated that a phenolic compound, mainly quercitrin could
restore GPX expression and attenuates APAP-induced liver damage.

Based on this study, RBLE was shown have antioxidant, anti-necrotic,
and anti-inflammatory activities. It mechanism as hepatoprotective agent
in live injury was shown in Figure 6 that proposed by us based on the
study result and literature review.

5. Conclusion

Red betel leaves extract treatments could reduce TNF-α level, reduce
cell's apoptosis and increase live cells percentage, reduce intracellular
ROS, reduce CYP2E1 and increase GPX level in HepG2 cells. This marked
the hepatoprotective potential of RBLE through antioxidant, anti-
necrotic, and anti-inflammatory activities. Further research on in vivo
model is needed to confirm current result.
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