Integrating program and
algorithm visualisation for
learning data structure
implementation

by Rossevine Arthanathasya Oscarkarnalim, Mewatiayub

Submission date: 12-Aug-2021 01:05PM (UTC+0700)

Submission ID: 1630524659

File name: Integrating_program_and_algorithm_visualisation_for_|learning.pdf (3.06M)
Word count: 8032

Character count: 44221



Egyptian Informatics Journal 20 (2019) 193-204

journal homepage: www.sciencedirect.com

gnntants lists available at ScienceDirect

Egyptian Informatics Journal

Integrating program and algorithm visualisation for learning data 1)

structure implementation

Check for
updates

éossevine Artha Nathasya, Oscar Karnalim *, Mewati Ayub

ity of Information Technology, Maranatha Christion University, Indonesia

ARTICLE INFO

ABSTRACT

ﬂkfe history:

Received 4 December 2018
Revised 3 April 2019
Accepted 13 May 2019
Available online 20 May 2019

Keywonds:

Educational tool
Program visualisation
Algorithm visualisation
Data structure

Algorithm Visualisation {AV) tool is commonly used to learn data structures. However, since that tool
does not address technical details, some students may not know how to implement the data structures.
This paper integrates the AV tool with Program Visualisation (PV) tool to help the students understanding
the data structures' implementation. The integration (which is implemented as a tool named DS-PITON)
works similarly as a PV tool except that the data structures are visualised with the AV tool. Through quasi
experiments, it can be stated that DS-PITON helps students to get better assessment score and to com-
plete their assessment faster (even though the impact on completion time can work in reverse on
slow-paced students). Further, according to a questionnaire survey, the students believe that DS-PITON
helps t learning data structure materials.

@© 2019 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo

Computer science education

University. This is an open access article under the CC BY-NC-ND license (http:/creativecommons.org/

licenses/by-nc-nd|4.0/).

1. Introduction

Student retention defines the success of universities [ 1]; higher
retention leads to higher success rate. Consequently, several strate-
gies are proposed to keep the retention high [ 2|. Some of them are:
the use of persuasive social media [3], Student Success Course [4],
and the integration of educational technologies [5].

To keep the student retention high in Computing education,
educational technologies are often applied to help students learn-
ing a particular topic. These technologies typically rely on auto-
mated visualisation as their main feature; a particular topic is
explained through intuitive graphics and animation. Program Visu-
alisation (PV) tool [6]| and Algorithm Visualisation (AV) tool | 7] are
two of the most common ones. The former focuses more on visual-

- 3

# Corresponding author at: E:ulty of Information Technology, Maranatha
Christian University, Prof. Drg. Surya Sumantri Street No.G65, Bandung, West Java
40164, Indonesia.

E-mail addresses: pscarkarnalim@itmaranathaedu (0. Kamalim), mewati

gl b@it.maranatha.edu (M. Ayub).

er review under responsibility of Faculty of Computers and Information, Cairo
University.

ELSEVIER Production and hosting by Elsevier

gps:.’.’dui.urg.'1U.lﬂlﬁf_i.ei_i.zuw.ub.ﬂﬂl

ising how a particular program works while the latter focuses on
visualising how algorithms and data structures work.

When learning data structures, most AV tools explain them
without providing the technical details about how they are repre-
sented and behave in a real program. As a result, the students may
know how the data structures theoretically work but may not be
able to use them for solving a programming task. In other words,
it enlarges the gap between students’ theoretical and practical abil-
ity, which affects the students’ problem solving skill (a part of
employability attributes for university graduates [8]).

One of the possible solution to mitigate the gap is to let the stu-
dents learn the technical details with a PV tool. However, the PV
tool's visualisation can be challenging to understand since the data
structures are treated like standard objects. The visualisation may
not suit the structures’ theoretical visualisation and will be mixed
up with other in-program variables’.

To mitigate the gap between students’ theoretical and practi-
cal ability related to data structures, this paper integrates PV with
AV tools. This integration — represented as a tool named DS-
PITON — works in similar manner as a PV tool except that some
predefined data structures will have their own visualisation
through the AV tool. In such a manner, the data structures’ visu-
alisation will be similar as their theoretical visualisation and dis-
played separately, which make them easy to understand at
implementation level. To the best of our knowledge, no works
have attempted to combine PV and AV tools for learning the
implementation of data structures.

1110-8665(@ 2019 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo University.
This is an open access article under the CC BY-NC-ND license (http:{fcreativecommons orgflice nses/by-nc-nd/4.0/).




194 RA Nathasya et al / Egyptian Informatics Journal 20 (2019) 193-204

Our proposed tool (DS-PITON) is developed on the top of PITON
(a programming educational tool which was previously created in
the same institution with two shared authors between them [9]).
PITON was originally created to help students completing their
programming laboratory assessment at introductory programming
level. PITON can act as a PV tool in addition to a standard program-
ming workspace. In such a manner, when the students get con-
fused about how their code works, they can activate the
visualisation to get better comprehension. It is true that PITON's
goal is not related to DS-PITON; the former aims to help students
learning how to code at introductory programming while the latter
focuses more on learning how data structure implementation
works. However, its PV tool mode can be used to achieve DS-

ON's goal. Currently, DS-PITON covers 7 data structures: array,
inked list, stack with array, stack with linked list, queue with
array, queue with linked list, and priority queue with linked list.

2. Related works

In Computing domain, educational tools are common to explain
programs, algorithms, and data structures through visualisation.
Generally speaking, these tools can be classified to three cate-
gories: Program Visualisation, Algorithm Visualisation, and others.
This section will discuss educational tools for each of those cate-
gories. Further, we will also explain a brief overview of PITON, an
educational tool which acts as a basis of our proposed tool.

2.1. Program visualisation tools

Program Visualisation (PV) tools help learners to learn how a
particular program works. Each of them visualises all variables
and execution states of the program while running [6]. Jeliot 3
|10] is a matured example of it. This tool is a Java-targeted PV tool
that has been evolved several times from Elliot, Jelliot 1, and Jeliot
2000 [11,12].

Since programming language varies, some PV tools facilitate the
integration of new target programming languages. That integration
can be through either a mapping between the new languages and
known language [13] or an embedding mechanism which requires
some instructions written on the new languages [ 14].

Besides language-independence, some unique features are also
proposed on existing PV tools. CodeChella [ 15] supports real-time
tutoring and collaborative learning. JavlinaCode [16] displays a
Unified Modeling Language's class diagram in addition to its stan-
dard visualisation. OmniCode [ 17] introduces a live programming
mechanism. PITON [9] has an IDE-like programming workspace
to assist learners writing their own program. PlayVisualizerC [ 18]
handles capability, installability, and usability issues on existing
PV tools. PythonTutor [19] covers various programming languages
with an online architecture. SeeC [20] has human-language expla-
nation assisting its visualisation.

2.2, Algorithm visualisation tools

Algorithm Visualisation (AV) tools help learners to learn how
algorithms and data structures work [7]. They commonly cover
basic algorithms and data structures such as sequential data struc-
tures (e.g., array, stack, queue, and linked list) [21,22] and search-
ing & sorting algorithms [23-25].

Considering some learners face difficulties in advanced topics,
several AV tools cover complex algorithms and data structures.
Some of these topics are recursion, [26,27], strategic algorithms
(e.g., backtracking, greedy algorithm, and dynamic programming)
128,29,22], and graph-related algorithms (e.g., Dijkstra’s algorithm,
and convex hull) [30].

Apart from classical topics, some AV tools cover domain-specific
algorithms and data structures. For example, a work in [31] covers
algorithms for network optimization problems. Other two exam-
ples are a work in [32] that covers SHA-512 algorithm and a work
in [33] that covers matrix multiplication algorithm.

As the number of AV tools is increased, AlgoViz [34] was pro-
posed. It works as a digital repository for AV tools where AV cre-
ators and users meet. On there, the success of an AV is
measurable as the users can provide a feedback about it.

2.3. Other educational tools

For some learners, learning programming is not an easy task.
Hence, Visual Programming (VP) tools are introduced as an alter-
native of Program Visualisation (PV) tools. Instead of writing a pro-
gram code directly, a VP tool acts as a connector between the
learners and their code. It removes some technical details so that
the learners can focus on the algorithmic side of their program.
Greenfoot [35] enables drag-and-drop feature for some program
parts. Alice [36] and Scratch [37] let the learners to drag and drop
their syntaxes instead of writing them directly. RAPTOR [38] and
SFC Editor [39] display a flowchart to learners instead of program
code.

VP and PV tools are not the only ones to help slow-paced learn-
ers in programming. Verificator [ 40|, for example, is an educational
tool which is also focused on such direction. It utilises a kind of
traffic light system that limits the number of modifications applied
on learner's program code. Upon reaching a limit, the learner
should compile their code first before they can make further mod-
ification. This mechanism is expected to mitigate the number of
displayed errors.

Some educational tools aim to explain the characteristics of
algorithms. A work in [41] proposes Complexitor, a tool to learn
algorithm time complexity in practical manner. It then inspires a
work in [42] that proposes JCEL, which is similar to Complexitor
except th has simpler inputs and focuses on Java programming
language. A work in [43] proposes GreedEx, a tool for learning the
characteristics of greedy algorithms. It is then expanded to Gree-
dExCol |44 | with collaborative features on board.

24. PITON - Python integrated workspace and visualization

PITON (Python InTegrated wOrkspace and visualizatioN) [9] is a
programming educational tool which combines programming
workspace with Program Visualisation (PV) tool. Consequently,
this tool does not only enable the direct development of source
code but also the visualisation of the code. PITON is aimed to assist
undergradumtudents for completing their Python programming
assessment 1n the introductory programming course. When the
students are given an assessment, they are required to complete
it using PITON. They should write the source codes on PITON and
submit the resulted project.

During the assessment, if the student wants to check the cor-
rectness of their source code, they can execute the code through
one of three modes. The first one is standard compile & run that
works similarly like most programming workspaces; It displays
the code's program outputs which can be as a response of the
code's program inputs. The other two are related to visualisation,
and commonly used when the student needs to understand their
own code further. Step-by-step visualisation is an execution mode
where a program created by the code is visualised and the student
should press next or previous button to control the visualisation.
Time-based visualisation is quite similar to the step-by-step visu-
alisation except that the animation will be automatically updated
instead of relying on user interaction.

Fig. 1 depicts the layout of PITON [9]. It consists of 7 panels:




RA. Nathasya et al /Egyptian Informatics Journal 20 (2019) 193-204 195

Fig. 1. The layout of PITON [9].

+ Command toolbar (A), a panel to navigate the visualisation and
manage source code projects.

+ Working directory observer (B), a panel displaying source code
projects.

« Input panel (C), a panel to provide inputs for a particular pro-
gram execution.

+ Source code editor (D), a panel where the student can write
their source code for a programming assessment.

+ Output panel (E), a panel to display the outputs of a particular
program execution.

« Error panel (F), a panel to display the errors of a particular pro-
gram execution.

« Variable content display panel (G), a panel for showing the con-
tent of all variables during the visualisation.

3. The tool: DS-PITON

When learning data structures, students are required to under-
stand the data structures’ implementation. In order to do that,
these students can utilise a Program Visualisation (PV) tool; they
can get the implementation (written in a particular programming
language) from external resources, and feed it to the tool for visu-
alisation. Nevertheless, existing PV tools' visualisation can be hard
to understand; the data structures are treated like standard
objects. The visualisation may not suit the data structures' theoret-

DS-PIICH - DWTA STRUCTLRE PYTHON INTEGRATED WESKSPACE AND VELALETION

ical visualisation. Further, in terms of presentation, it will be mixed
up with other in-program variables’.

As a solution, this paper integrates PV with AV tools; the inte-
gration works similar as a standard PV tool except that, when a
data structure is being visualised, its visualisation is handled by
the AV tool. Consequently, the data structure will be visualised at
algorithmic level, which can be easier to understand. Further, its
visual will be separated from the standard variables and functions,
which can provide more clarity. To our knowledge, this is the first
attempt to combine PV and AV tools for learning data structure
implementation.

3.1. Main architecture

The proposed combination between PV and AV tools is called
DS-PITON. It is built on the top of PI |9], and covers seven data
structures for visualisation (array, linked list, stack with array,
stack with linked list, queue with array, queue with linked list,
and priority queue with linked list). Since PITON is developed for
Python programming language, D5-PITON will only cover that pro-
gramming language.

Fig. 2 shows the layout of DS-PITON. Since it is derived from
PITON, the layout is quite similar to Fig. 1 except the right-
bottom panel. That panel will display the data structures’ visualisa-
tion. It is called data structure display.

Fig. 2. The Layout of DS-PITON.




196 RA Nathasya et al / Egyptian Informatics Journal 20 (2019) 193-204

If the student wants @earn the implementation of a particular
data structure, they can simply use the data structure on their code
(by creating an object). They are not required to copy and paste the
data structure's implementation on their code as it has been
embedded on DS-PITON.

Prior starting the visualisation (either through PITON's step-by-
step or time-based visualisation), the student can choose whether
they want to see in-data-structure visualisation by ticking a check-
box. If that checkbox is checked, each time a data structure's
method is invoked (see Table 1 for covered data structure meth-
ods), it will pop up a window visualising how that method works
before continuing to the next instruction. An example of that win-
dow can be seen on Fig. 3. It contains three panels called source
code editor, variable content display panel, and data structure dis-
play. They are referred as A-C respectively on that figure. Source
code editor will display the method's code (written in Python).
Variable content display will show all local variables involved on
that method's execution. Data stru display will show the
method's data structure's condition. It 15 important to note that
this in-data-structure visualisation will be based on the invoked
method's parameters.

Table 1
Covered Methods for Built-In Data Structures.

Data Structure Covered Methods

Array initialise, insert, remove, isEmpty, isFull, traversal,
countElement, and search
inked List initialise, insertFirst, removeFirst, insertLast,
removelast, isEmpty, traversal, countElement, and
search
Stack with Array initialise, push, pop, peek, isEmpty, isFull, traversal,

countElement, and search
Stack with Linked initialise, push, pop, peek, isEmpty, traversal,
List countElement, and search
Queue with Array initialise, enqueue, dequeue, isEmpty, isFull, traversal,
countElement, and search
Queue with Linked initialise, enqueue, dequeue, isEmpty, traversal,
List countElement, and search
Priority Queue with  initialise, enqueue, dequeue, isEmpty, traversal,
Linked List countElement and search

For further understanding, DS-PITON enables multiple data
structures to be shown at once (see Fig. 4). These structures are dif-
ferentiated based on their variable name.

In terms of data structure visualisation, DS-PITON has three
kinds of visualisation: array-based, list-based, and priority queue
representation. Array-based representation is used to visualise
array, stack with array, and queue with array. An example of it

be seen on Fig. 5. List-based representation is used to visualise
inked list, stack with linked list, and queue with linked list. lts
example can be seen on Fig. 6. Priority queue representation is
used to visualise priority queue with linked list. It is similar to
list-based representation except that its elements has three com-
ponents: priority value, content, and next element's reference.
Fig. 7 shows an example of it.

When the student wants to see the full implementation of our
built-in data structures, they can click a button called "Data Struc-
ture Codes" placed at the top of source code editor (see Fig. 2).
When that button is clicked, a pop-up window (as seen in Fig. 8)
will be displayed. The student can select which data structure's
implementation they want to see on the provided combobox. The
code editor below that combobox will then display the implemen-
tation of that data structure. Unique to this feature, the implemen-
tation will be written with declarative comments so that the
student can learn it comprehensively.

3.2. Functionality evaluation

The functionalities of DS-PITON were evaluated in threefold.
The first one was a black-box testing conducted by the first author
of this paper. The second one was an usability testing with five
teaching assistants. The third one was an analysis of processing
time by the second author of this paper.

Black-box testing was conducted by performing 15 scenarios
related to the functionalities of DS-PITON. According to that test-
ing, all features work correctly and no bugs are found.

Usability testing was conducted by asking five teaching
assistants to complete two data structure assessments with
DS-PITON. The former assessment is related to linked list while

In-Data-Structure Visualisation

insertPQ(self,prioc, info):
P = PriorityNode (prio,info)
{self.head == sel
self.head = P;
self.tail = Py

prevg =
Q = self.head
(Q.next!=
prevd = Q
Q = Q.next
(P.prio >= Q.pric):
{self.head==
self.head = P

self.tail

"
m

self.tail.nex
self.tail = P
(0 == self.head):
F.next = self.head
saelf.head = P
p=

C = self.head
(@ != prevQ):
@ = Q.next
F.next Q.next
Q.next P

Head

4

BN B

Fig. 3. An Example of Pop-Up Windows.




RA. Nathasya et al /Egyptian Informatics Journal 20 (2019) 193-204 197

DS-FITON - DATA STRUCTURE PYTHON INTEGRATED WORESPRCE AND VISLIALIZATION -
=l 8 I = Duta Strucsare Coden — b CE X
¢ || e
=] E
l{: =i -
= [~
1
Top Fl
¢
S e s i
1
Fig. 4 An Example of Visualising Multiple Data Structures.
head the assistants to predict a data structure condition on a particular

tail

Fig. 5. An Example of Array-Based Representation: A Queue with Array.

Head

4
nRofo

Tail

Fig. 6. An Example of List-Based Representation: A Queue with Linked List.

the latter is related to stack with array. To align with the goal of the
tool (which is helping students for learning data structure imple-
mentation), each assessment has two types of questions, repre-
sented as 4 questions each; both types are about the behaviour
of a given data structure in a program. The first question type asks

Head

program state. Whereas, the second type asks the assistants to
rearrange a list of data structure conditions under a sequence of
program instructions. In addition to completing the assessment,
they are also required to act as their students to find potential bugs
and provide some feedback (if any).

According to our evaluation, all DS-PITON's functionalities work
as expected. The assistants could complete both assessment tasks
without finding any difficulties, even though they acted as their
students. In fact, there was a bug found when a shortcut to close
a window (alt + F4) had been still able to close the data structure
visualisation window. However, that bug has been fixed upon the
usability testing.

In terms of provided feedback, they can be categorised to
three categories. The first one is to assure that a pop-up window
is always displayed on top of the main window. It should always
be the main focus till it is closed. The second one is to enlarge
data structure display. The third one is to optimise the technical
details of visualisation. All of them have been fulfilled at the
final implementation of DS-PITON (that is proposed in this
paper).

Considering DS-PITON is a combination between PV and AV
tools, it is expected that the visualisation takes more processing
time when compared to the standard PV or AV tool. In DS-PITON,
several PV tool's outputs are passed to the AV tool for further pro-
cessing. Regardless of the used data structure, DS-PITON's visuali-
sation can be up to 100% slower than the standard tools, assuming
that all PV tool's outputs are passed to the AV tool. For example, if a
typical PV or AV tool requires 0.1 s to visualise a linked list, DS-
PITON may require 0.2 s to do that. Nevertheless, according to
our experience using the tool, that up to doubled processing time
is not an issue since the students and authors do not experience
any significant delay during visualisation. The real time required
for visualising covered data structures is typically small since the

v
_9_9*

Tail

Fig. 7. An Example of Priority Queue Representation.




198 RA Nathasya et al / Egyptian Informatics Journal 20 (2019) 193-204

@ DS-PITON - Data Structure Python Workspace and Vi . m} X
Data Structure : Stack with Array v
TF Definisi fungsi isFull -
# Kondisi stack g
isFull (self)
self.top == self.Nmax
$ -k
-

Fig. 8. A Pop-Up Window Displaying Data Structure Codes.

tool is used in academic environment where the amount of visu-
alised information is limited.

4. The learning methodology

DS-PITON can be used to learn data structure implementa-
tion in both supervised and unsupervised manner. Supervised
learning means at least one lecturer or tutor accompanies the
students in the process. This kind of learning commonly hap-
pens in a class session where the students are asked to learn
about the implementation of some data structures. Prior using
the tool, the students are informed about how to use DS-
PITON and what goals to achieve (e.g., understanding how a
linked list is implemented). Afterwards, the students will use
the tool by writing a piece of Python source code which main
focus is to see how some data structures’ implementation looks
like and behaves.

If the students have no access to computers, D5-PITON can be
displayed on a computer operated by the lecturer or tutor, and
therefore used as a supportive resource for teaching session. The
use of DS-PITON in this mode is quite similar to the use of a pro-
gramming workspace while teaching programming; the lecturer
or tutor uses it to show that a particular code (which aims to
explore the characteristics of data structure implementation in
our case) works as expected.

Unsupervised learning, on the contrary, relies on no lecturer or
tutor during the process. It typically occurs when the students are
taking an online course or completing an assessment related to
data structure implementation. When this kind of learning is used,
it is important to make the tool accessible through e-learning so
that when they need it, they can easily download it. Further, the
detailed tutorial about how to use the tool and what goals need
to be achieved with that tool should also be described on the e-
learning. In terms of usage, the students can utilise the tool in a
similar manner as supervised learning with computer access; they
can write a Python source code aiming to learn the implementation
of some data structures.

5. Measuring the impact of learning with DS-PITON

The impact of DS-PITON for learning data structure implemen-
tation was measured by comparing it with the textbook-based

learning (where the student learn a particular information from a
given textbook). The textbook-based learning is chosen as the
baseline since it is the conventional (and most common) strategy
for learning data structure implementation. By comparing those
two, we believe that our findings can be more relevant to the cur-
rent condition of learning data structure implementation.

The impact of DS-PITON is not compared with the impact of its
predecessor (PITON) due to two reasons. Firstly, the conventional
strategy for learning data structure implementation is based on
the textbook instead of an educational tool like PITON. Secondly,
DS-PITON and PITON are not comparable when used for learning
data structure implementation. The latter is not specifically
designed for that task. It is focused on teaching introductory pro-
gramming instead of data structures. Forcing it will benefit the for-
mer; PITON does not group the data structures’ attributes and does
not simplify their visualisation. Further, since PITON is not embed-
ded with the source codes of data structures, it requires the stu-
dent to embed that codes on their own code each time they
want to visualise these structures, which can be quite demanding.

The comparison between D5-PITON-based and textbook-based
learning relied on quasi-experiments [45] with two aspects on
board: score and time outcome. It involved two groups of students:
moderate-paced and slow-paced students. The first group con-
tained 15 moderate students (S1-515). They had completed Basic
Algorithm and Data Structure (i.e., a course in our faculty which
covers DS-PITON's built-in data structures) with a grade higher
or equal to C in their previous semesters. The second group con-
tained 15 slow-paced students (S16-530). When they participated
on the experiment, they were still completing Basic Algorithm and
Data Structure course and their mid-test score on that course is
lower than 55 (a minimum threshold to get a C grade in our fac-
ulty). It is worth to note that the experiment of slow-paced stu-
dents were performed twice due to the limited number of
participating students at the first attempt. The first experiment
only involved five students (S16-520) while the latter experiment
involved the rest (521-530).

Two quasi-experiments were conducted on moderate-paced
students. For each experiment, the students should complete two
data structure assessments about the same topic (either priority
fERue with linked list or queue with array). These assessments
are similar in terms of the number of questions (which is eight)
and difficulty level. DS-PITON aims to help learners for learning
some data structure implementations. Hence, these assessments’




RA. Nathasya et al /Egyptian Informatics Journal 20 (2019) 193-204 199

questions are about the behaviour of a given data structure in a
program. The questions ask the learners to either predict a data
structure condition on a particular program state or rearrange a list
of data structure conditions under a sequence of program
instructions.

Per experiment, the students would act as a control group when
completing the first assessment and as an intervened group when
completing the second assessment. Both sessions would be con-
ducted in 30 min each. For the first assessment, the students
should rely only on a data structure textbook (textbook-based
learning). Whereas, for the second assessment, they should rely
only on DS-PITON. The use of DS-PITON is beneficial if a
statistically-significant improvement occurs between the control
and intervened groups in terms of scores and/or completion time
(measured using a two-tailed paired t-test).

For slow-paced students, three quasi-experiments were con-
ducted. The experiments behaved similarly as the experiments
on moderate-paced students except that they cover different mate-
rial set. In this context, these experiments cover priority queue
with linked list, queue with linked list, and stack with array. Fur-

Table 2
Rating Questions.

series  series Survey Statement

1D

1 In-data-structure visualisation helps me to understand how a given
program works.

02 In-data-structure visualisation helps me to understand the
behaviour of a particular data structure.

Q3 Data structure display helps me to understand howa given program
works.

Q4 Data structure display helps me to understand the behaviour of a
particular data structure.

Q5 Variable content display panel on in-data-structure visualisation
helps me to understand how a given program works.

Q6 Variable content display panel on in-data-structure visualisation
helps me to understand the behaviour of a particular data structure.

Q7 A Combination of PV and AV helps me to understand how a given
program works.

Q8 A Combination of PV and AV helps me to understand the behaviour
of a particular data structure.

Q9 Compared to learning from a data structure textbook, learning with
DS-PITON is more effective for understanding how a given program
works.

Q10 Compared to learning from a data structure textbook, learning with
DS-PITON is more effective for understanding the behaviour of a
particular data structure.

o1 Compared to learning from a data structure textbook, learning with
DS-PITON is more time-efficient for understanding data structure
materials.

ther, our experiments have fewer questions for assessments (three
questions per assessment with 33.33% score contribution per ques-
tion). Each experiment should be completed in 30 min (15 min per
assessment). It is worth to note that the number of questions and
completion time are modified so that slow-paced students would
not be feel burdened.

To gather student perspectives, a questionnaire survey involv-
ing 20 students (51-520 from the quasi experiments) was con-
ducted. To mitigate bias, the students were asked to answer the
survey right after they had used DS-PITON (in our case, after they
had participated on the quasi experiments).

Our survey contains eleven rating questions and one open-
ended question. Rating questions ask the students’ agreement
tow some statements where their agreement is represented
as 5-point Likert scale (1 = strongly disagree, 2 = disagree, 3 = neu-
tral, 4 = agree, and 5 = strongly agree). Open-ended question asks
the students’ feedback toward DS-PITON; they should answer it
with free-formed sentences.

Table 2 shows the details of our rating questions. In general,
these questions ask whether D5-PITON helps the students in terms
of understanding how a givepogram works and the behaviour of
a particular data structure. IT 1s important to note that the last
three questions compare DS-PITOM-based with textbook-based
learning.

5.1. Score outcome results for moderate-paced students

Fig. 9 shows that, for moderate-paced students, DS-PITON is
more helpful than a data structure textbook to learn priority queue
with linked list. Two thirds of the students achieved higher score
when DS-PITON is on board. Further, in average, the score of DS-
PITON-based learning (80.833 with 16.275 as its standard devia-
tion) is higher than textbook-based learning (65.833 with 17.970
as its standard deviation). When measured using a paired t-test,
its improvement is statistically significant since its p-value
(0.0363) is lower than the maximum threshold for significance
(0.05).

When queue with array is used as the material, DS-PITON
shows more significant improvement (see Fig. 10). With DS-
PITON, most students (12 of 15) achieved higher score and no stu-
dents achieved lower score. This finding is strengthened by the fact
that its improvement (31.666, which is resulted by subtracting the
average score of DS-PITON-based with textbook-based learning) is
higher than such improvement on priority queue material (15). ltis
important to note that the improvement on queue with array
material is also statistically significant since its t-test's p-value is
0.002.

Moderate-Paced Students' Scores for Priority
Queue with Linked List Material

m Textbook m DS-PITON

X

=
(=]

Student Score

[~
(=]

100
0 i III'I i
S1 S2 S3 S4 S5 S6 S7 S8

59 510 S11 512 513 514 515

Students

Fig. 9. Moderate-Faced Students' Scores for Priority Queue with Linked List Material.




200

RA Nathasya et al / Egyptian Informatics Journal 20 (2019) 193-204

Moderate-Paced Students' Scores for Queue with
Array Material

m Textbook
100
80
@
E &0
Wi
£
= 40
2
20
o
51 52 53 5S4 55 S8 57

= DS-PITON

il

58 59 510 511 512 513 514 515

Students

Fig. 10. Moderate-Paced Students’ Scores for Queue with Aray Material.

5.2. Score outcome results for slow-paced students

Fig. 11 depicts that, for slow-paced students, DS-PITON affects
positively for learning priority queue with linked list. In average,
DS-PITON-based learning yields 44.44 higher score. Its average
score is 84.44 with 21.33 as its standard deviation. Whereas,
textbook-based learning only has 40 as its average score
with 18.69 as its standard deviation. When measured using
t-test, its improvement is statistically significant since its
p-value (0.00005) is lower than the maximum threshold for

On queue with linked list material (see Fig. 12, DS-PITON also
affects positively. The average score of DS-PITON-based learning
(95.56 with 11.73 as its standard deviation) is 35.56 points higher
than the average score of textbook-based learning (60 with 33.81
as its standard deviation). Further, D5-PITON's improvement is
statistically significant (its p-value is 0.001).

Fig. 13 shows that DS-PITON's impact is also statistically
significant on stack with array material (p-value=0.043).
DS-PITON-based learning (with 86.67 average score and 27.60
standard deviation) leads higher score than the textbook-based

significance. one (with 62.22 average score and 27.79 standard deviation).

Slow-Paced Students' Scores for Priority Queue
with Linked List Material

m Textbook m DS-PITON
100
80
w
5
S 60
T a0
&
20 I
0
516 S17 S18 519 520 S21 S22 523 S24 S25 S$26 527 S28 S29 S30
Students
Fig. 11. Slow-Paced Students’ Scores for Priority Queue with Linked List Material.
Slow-Paced Students' Scores for Queue with
Linked List Material
u Textbook ™ DS-PITON
100
80
5
2 60
g
S 10
&
20
0

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
Students

Fig. 12. Slow-Paced Students’ Scores for Queue with Linked List Material,




RA. Nathasya et al /Egyptian Informatics Journal 20 (2019) 193-204 2m
Slow-Paced Students' Scores for Stack with Array
Material

m Textbook w DS-PITON

O‘I I

516 S17 S18 S$19 S20 S21 S22 523 S24 525 S26 S27 528 S29 S30
Students

£ @ -3
(=] (=} =1

Student Score

=]
(=]

Fig. 13. Slow-Paced Students' Scores for Stack with Array Material.

the change is statistically significant, as its p-value (0.0214) is
lower than 0.05 (a maximum threshold for significance).

For assessment about queue with array, D5-PITON is still more
time-efficient than a data structure textbook. As seen on Fig. 15,

5.3. Completion time results for moderate-paced students

Fig. 14 shows that, in terms of completing assessment about
priority queue with linked list, DS-PITON is more time-efficient

than a data structure textbook for moderate-paced students. Most
of the students (11 of 15) completed that assessment faster, which
is 141.33 s faster in average. DS-PITON-based learning yields 465 s
in average with 129 s as its standard deviation. Textbook-based
learning, on the other, yields 608 s in average with 229 s as its
standard deviation. This finding is strengthened by the fact that

eleven students completed the assessment faster with DS-PITON.
In average, DS-PITON's scenario's completion time is 202.67 s fas-
ter than the textbook's scenario’s completion time. It takes 585 s in
average with 256 s standard deviation. Whereas, textbook scenario
takes 746 s in average with 193 s standard deviation. According to
t-test, that change is statistically significant (its p-value is 0.0115).

Moderate-Paced Students' Completion Time for
Priority Queue with Linked List Material

w Textbook w DS-PITON

1200

600
400
-1 11T
(4]

55 56 58 59 510 511 512 513 514 515
smdsnts

g
(=]

Student Completion Time

Fig. 14. Moderate-Paced Students’ Completion Time for Priority Queue Material.

Moderate-Paced Students' Completion Time for
Queue with Array Material
= Textbook = DS-PITON
1200

1000

(M i

54 55 59 510 511 512 513 514 Si15
Studems

8

Student Completion Time
2

Fig. 15. Moderate-Paced Students’ Completion Time for Queue with Array Material




202 RA Nathasya et al / Egyptian Informatics Journal 20 (2019) 193-204

5.4. Completion time results for slow-paced students

According to our experiments, DS-PITON does not reduce the
completion time of slow-paced students, and it is possible to affect
in reverse. This statement is strengthened by the fact that two
experiments (which are about priority queue and queue with
linked list on Fig. 16 and Fig. 17 respectively) show no statistically
significant reduction (their p-values are 0.186 and 0.357 respec-
tively), and one experiment (which is about stack with array on
Fig. 18) shows that DS-PITON increases completion time in a statis-
tically significant manner (with p-value = 0.007). One of the possi-

ble reasons is the limited adaptability of the slow-paced students;
they experienced some difficulties while operating the tool.

5.5. Questionnaire survey results

Fig. 19 sho he average scores for the rating questions. All
questions were responded positively; their average score is higher
than 4 (which represents agree). Among these questions, Q1 and
Q10 achieve the highest average score while Q4 and Q9 achieve
the lowest. However, since their scores are slightly different to
each other, no additional findings can be obtained.

Slow-Paced Students' Completion Time for
Priority Queue with Linked List Material

m Textbook m DS-PITON

S00
800
700
600
500
400
3
2
1

Student Completion Time

888

nnhlnlii“.

S16 517 518 519 S20 S21 S22 523 S24 525 S26 527 S2B S29 S30
Students

0

Fig. 16. Slow-Paced Students' Completion Time for Priority Queue with Linked List Material.

Slow-Paced Students' Completion Time for
Queue with Linked List Material
= Textbook ® DS-PITON
600
500

400

ittt

516 517 518 519 520 521 S22 523 524 525 526 527 528 529 530
Students

3

g

2i

E]

1

g

Student Completion Time

Fig. 17. Slow-Paced Students' Completion Time for Queue with Linked List Material.

Slow-Paced Students' Scores for Stack with Array
m Textbook m DS-PITON

Material
| Iiii |i|i‘ ii
B | I I

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
Students

F @ -]
k=1 k=1 (=1

b
=]

Student Completion Time

Fig. 18. Slow-Paced Students' Completion Time for Stack with Array.




RA. Nathasya et al /Egyptian Informatics Journal 20 (2019) 193-204 203

The Average Scores for Rating Questions

50
45
40
35
g
g 30
2 s
k) .
#
z 20
< s
1.0
05
0.0
a @ @ W «Q 7 08 03 Qo aQu
Questions
Fig. 19. The Average Scores for Rating Questions.
The Standard Deviation of Students' Rating
Scores
08
0.7
E 06
£ 05
3
® 04
203
B 02
0.1
0
Qa2 Q3 Qi Q 7 08 a9 0w an

Questions

Fig. 20. The Standard Deviation of Students' Rating Scores.

As seen in Fig. 20, all rating questions have a low degree of vari-
ations; their standard deviation is between 0.5 and 0.75. The high-
est degree of variation occurs Q11 while the lowest one occurs on
Q2 and Q6. Considering the difference between the highest and the
lowest degree is low, no additional findings can be concluded.

The open-ended question collects two kinds of feedbacks. The
first one is to optimise DS-PITON more as some laboratory comput-
ers have limited specification. The second one is to integrate DS-
PITON with the data structure textbook (as inspired by [46]).

6. Conclusion and future work

This paper integrates Program Visualisation (PV) with Algo-
rithm Visualisation (AV) tools with the aim to help learners under-
standing data structure implementation. The integration is
represented as a tool called DS-PITON. It works similar to a stan-
dard PV tool except that, when visualising prec?wd data struc-
tures, it utilises an AV tool for visualisation. According to our
evaluation, three findings can be deducted. First, it helps both
moderate-paced and slow-paced students getting better assess-
ment score. Second, it helps moderate-paced students completing
their assessment faster while being possible to add more comple-
tion time for slow-paced students. Third, the students believe that
DS-PITON helps them to understand data structure materials.

For future works, we plan to fulfill the students' feedback from
our survey. We plan to reevaluate DS-PITON' implementation com-
prehensively and optimise some components if possible. Further,
we plan to integrate a data structure textbook to DS-PITON.

glmowledgement

This work was supported by Maranatha Christian University,
Indonesia.

References

[1] Wild L, Ebbers L Rethinking student retention in community colleges.
Cummunlry Cullege 1 Res Pmcnce 2002 126(6): 503-19 hLLQ;,""dui urg"

1080/ ZNL;HUZJUU‘HBM
[2] Hone KS, El Said GR. Exploning the factors affecting MOOC retention: a survey
smdy Curnpul: Educ 2016:98:157-68.  htps:dojorg 101016/
. URL: https:| jwww.sciencedirect.com/science/farticle
pu.SUSbUBISIbSUUIJS
Zheng 5, Han K, Rosson MB, Carroll M. The Role of Social Media in MOOCs:
How to Use Social Media to Enhance Student Retention. In: Proceedings of the
Third (2016) ACM Conference on Learning @ Scale - L@S '16. New York, New
York, USA: ACM  Press; 2016, p. 419-28. hups:/doiorg/10.1145]
2760342876047, URL: http://dLacm.org/citation.cfm?doid=2876034.
2876047,
Kimbark K, Peters ML, Richardson T. Effectiveness of the student success
course on  persistence, retention, academic achievement, and student
engagement. Community College | Res Practice 2017:41(2):124-38. hitps://
doi.org/10. 1080/ 10668926 2016.1166352, URL: https:/|
www.tandfonline com/doi/fullf 10.1080/ 10668926.2016.1 166352,
[5] Truong HM. Integrating leaming styles and adaptive e-learning system:
Current developments, problems and Dppurmmnes Curnpul: Hum Behav
2016:55:1185-93. 5 [ URL:  https://
www.suemedlreu.cum.sclence.anlcle.pu.SUMbbSZbUUl120
Urquiza-Fuentes ], Velizquez-lturbide JA. A survey of successful evaluations of
program visualization and algunl:hm arurnal:lun systems. ACM Trans Comput
Edu  2009:;9(2):1-21. : URL:
http://portal.acm.orgfcitation.cdfm?doid=1538234. 1538236,

13

[4

[6




204

[7]

18

19]

[10]

(1]

2]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

RA Nathasya et al / Egyptian Informatics Journal 20 (2019) 193-204

Shaffer CA, Cooper ML, Alon AJD, Akbar M, Stewart M, Ponce 5, Edwards SH.
Algorithm \flsu.allzal:lnn I:he 5|:a|:e of I:he ﬁeld ACM Trans Comput Edu 2010:10
(3):1-22, [ 949 . URL: http:(/portal.acm
ur_g.LlLﬂLlun.cfm?duld-lSZlJJb.lSZlJJx’.
Osmani M, Weerakkody V, Hindi NM, Al-Esmail R, Eldabi T, Kapoor K, Irani Z.
Identifying the trends and impact of graduate attributes on employability: a
literature review. Tert Educ Manag 2015:21{4):367-79. https://doiorg]
10.1080/13583883. 20151114139, URL: http:f/
www.tandfonline.com/doi full [10.1080{13583883.2015.1114139.
Elvina E, Kamalim O, Ayub M, Wijanto MC. Combining program visualization
with programming workspace to assist students for completing programming
laboratory task. | Technol Sci Edu 2018;8(4):268. https:/[doiom/10.3926/
jotse 420, URL: http:/fwww. jotse orgfindex.phpfjotse/article fview/420.
Moreno A, Myller N, Sutinen E, Ben-Ari M. Visualizing programs with Jeliot 3.
In: Proceedings of the working conference on Advanced visual interfaces - AVI
‘04, New York, New York, USA: ACM Press; 2004, p. 373. hitps://doiorg/
10.1145/989863.989928,  URL: http://portal.acm.orgfcitation.cfm?doid=
O80863.980028,
Ben-Ari M, Bednarik R, Ben-Bassat Levy R, Ebel G, Moreno A, Myller N, Sutinen
E. A decade of research and development on program animation: the Jeliot
experience. | Visual Lang Comput 2011:22(5):375-84. https://dojorg/ 10,1016/
LIVLC.2011.04.004, URL: https: [fwww.sciencedirect.com/sciencefarticle/piif
$1045926X11000310.
Ben-Bassat Levy R, Ben-Ari M, Uronen PA. The Jeliot 2000 program animation
system. Comput Educ 2003;40{1):1-15. https://doiorg/10.1016/50360-1315
(02100076-3, URL: https: ffwww. sciencedirect.com/sciencefarticle/piif
S0360131502000763.
Rajala T, Laakso M-J, Kalla E Salakoski T. VILLE: a language-independent
program visualization tool. Proceedings of the Seventh Baltic Sea Conference
on Computing Education Research, vol. 88, Darlinghurst: Australian Computer
Society; 2007. p. 151-9. URL: https://dLacm.org/citation.cfim?id=2449340.
Sulistiani L, Karnalim 0. An embedding technique for language-independent
lecturer-oriented pn:lgrarn \flsuallzal:u:ln EM[TTER Inl: | Eng Technol 2018:6
(1):92-104, . URL: http: [femitter.
pens.acidfindex php/emitter/article fview/234,
Guo PJ, White ), Zanelatto R. Codechella: Multi-user program visualizations for
real-time tutoring and collaborative learning. 2015 IEEE Symposium on Visual
Lan,gu.a,ges and Human- Cenl:nc Cnmpul:ln,g (VL/HCC). IEEE: 2015. p. 79-87.
. URL: http: [fieeexplore ieee.

org/document/ 7357201/
Yang ], Lee ¥, Hicks D, Chang KH. Enhancing object-oriented programming
education using static and dynamic visualization. 2015 IEEE Frontiers in

Education Conference (FIE). IEEE; 2015. p. 1-5. https://dojorg/10.1109/
EFIE2015.7344152, URL: http:/ ieeexplore.ieee.org/document(7344152/,
Kang H, Guo P|. Omnicode: a novice-oriented live programming environment
with always-on run-time value visualizations. In: The 30th ACM Symposium
on User Interface Software and Technology.

Ishizue R, Sakamoto K, Washizaki H, Fukazawa Y. PVC: Visualizing C Programs
on Web Browsers for Novices. Proceedings of the 49th ACM Technical
Symposium on Computer Science Education - SIGCSE '18. New York, New

York, USA: ACM Press; 2018, p. 245-50. https:[/dojor) 45/
3159450,3159566. URL: http:/{dlL.acm.orgfcitation.cfm? doid=3159450,
3159566,

Guo PJ. Online python tutor: embeddable web-based program visualization for
cs education. Proceeding of the 44th ACM technical symposium on Computer
science educal:u:ln SIC(‘SE 13. New Yclrk Neanrk USA: ACM Press; 2013, p.
579, URL:  http://dl.acm.org/
citation. Lfm?duld 244_11_1&244_13&8

Egan MH, McDonald C. Program visualization and explanation for novice C
programmers. In: Proceedings of the Sixteenth Australasian Computing
Education Conference - Volume 148, Auckland: Australian Computer Society
Inc: 2014, p. 51-7.

Christiawan L, Karnalim O, AP-ASD1: An Indonesian Desktop-based
Educational Tool for Basic Data Structure Course, Jurnal Teknik Informatika
dan Sistem Informasi 2 (1) http:/fjutisi. maranatha.edu/index php/fjutisif
article fview/(422.,

Halim S, Chun KOH £, Bo Huai LOH V., Halim F. Learning algorithms with
unified and interactive web-based visualization. Olympiads Inform
2012:6:53-68. URL: https:/fwww.miilt/olympiads_in_informatics/pdf]
INFOLO99 pdf.

Vrachnos E, Jimoyiannis A. Design and evaluation of a web-based dynamic
algorithm visualization environment for novices. Procedia Comput Sci
2014;27:229-39, https:fidoiore10.1016/.PROCS 2014 02.026. URL: https:f/
www sclencedirect com/science (articlefpii/ $1877050914000283,

Avancena AT, Nishihara A, Kondo C. Developing an algorithm learning tool for
hlgh schclcll |n|:n:|duc|:c|ry camputer science. Educ Res Int 2015:2015:1-11.
¥ URL: http:/fwww hindawi.com/

joumals fedrif2015/840217/.

Yohannis A, Prabowo Y. Sort Attack: Visualization and Gamification of Sorting
Algorithm Learning. 2015 7th International Conference on Games and Virtual
Worlds for Senclus Appllcal:lclns {\."'S Cames). [EEE; 2015, p. 1-8. https://doi.
URL: http: [fieeexplore ieee,

ur_g.dutu[nem. 7205785/
Velizquez-lturbide JA, Pérez-Carrasco A, Umuiza-Fuentes ]. SRec:: an
animation system of recursion for algorithm courses. Proceedings of the

[27]

13th annual conference on Innovation and technology in computer science
education - IT't"SE '08 vol. 40 New Yclrk New York, USA: ACM Press; 2008. p.
2325, . 2. URL: http:(/portalacm.orgf
ciLﬂLiun.cfm?duld—13842a’1.1384332.

Hamouda S, Edwards SH, Elmongui HG, Ernst |V, Shaffer CA. RecurTutor: An
interactive I:uI:UnaI I'clr Iearmn,g recursion. ACM Trans Comput Educ 2018:19
(1):1-25, w1l 5/ . URL: http:/{dLacm.org/citation.
cfim?doid=3282284.3218328.

[28] Jonathan FC, Karnalim O, Ayub M. Extending The Effectiveness of Algorithm

[29]

[30]

131]

132]

133]

[34]

135]

[36]

137]

[38]

[39]

[40

[41]

[42]

[43]

[44]

[45]

[46]

Visualization with Performance Comparison through Evaluation-integrated
Development, in: Seminar Masional Aplikasi Teknologi Informasi (SNATI),
2016. http:ffwww jurnaluiiac.id/index.php/Snatifarticlefview/6263..

Zumaytis S, Karnalim O. Introducing an educational tool for learning branch &
bound strategy. | Inform Syst Eng Business Intell 2017:3(1):8. hitps:/[doiorz/
Teresco D, Fathi R, Ziarek L, Bamundo M, Pengu A, Tarbay CF. Map-based
algorithm visualization with METAL highway data. In: Proceedings of the 49th
ACM Technical Symposium on Computer Science Education - SIGCSE 18, New
York, New York, USA: ACM Press; 2018. p. 550-5. https://doiorg/101145/

3159450,3159583, URL: http:/{dLacm.org/citation.cfm?doid=3159450.
3159583,
da Silva Lourengo W, de Araujo Lima ), Alves de Aradjo 5. TASNOP: a tool for

teaching algorithms to solve network optimization problems. Comput Appl
Eng Educ 2018:26(1):101-10. https://doiorg/10.1002/cae 21864, URL:
https:/ fonlinelibrary. wiley.com/doi/full [10.1002 cae.21864.

Ma |, Tao |, Keranen M, Mayo |, Shene C-K, Wang C. SHAvisual: a secure hash
algorithm visualization tool. In: Proceedings of the 2014 conference on
Innovation & technology in computer science education - [TiCSE '14. New
York, MNew York, USA: ACM Press: 2014, hitps://doiorg/101145]
2501708.2602663. pp. 338-338, URL: http://dLacm.org/citation.cfm?doid=
2591708.2602663.

Desai S, Kulkarni S, Vasant Vaibhav M, Varalakshmi P Mohamed. VPMM
visualization of parallel matrix multiplication algorithms. | Comput Sc
Colleges 2002;33(1):24-31.

Shaffer CA, Maps TL, Rodger SH, Edwards SH. Building an online educational
community for algorithm visualization. Proceedings of the 41st ACM technical
symposium on Computer science education - SICCSE"IU New Yclrk New Yclrk
USA: ACM Press; 2010, p. 475, 5
URL: http: {/portalacm.org/citation.cfm?doid=1734263.1734421,
Kolling M. Michael, The Greenfoot Pn:lgrammln,g El'l\fIrUI'lI'UEI'lL ACM Tmns
Comput Educ 2010;10(4):1-21. 1 .
URL: http: (/portalacm. ur_g.LlLﬂLlun.cfm?duld-leSSgS.leSSbl.

Cooper 5, Dann W, Pausch R. Alice: a 3-D tool for introductory programming
concepts. | Comput Sci Colleges 2000;15(5):107-16. URL: https: [[dlacm.org/
citation.cfm?id=364161.

Resnick M, Silverman B, Kafai ¥, Maloney ], Monroy-Hemadndez A, Rusk N,
Eastmond E, Brennan K, Millner A, Rosenbaum E, Silver |. Scratch:
programming for all. Commun ACM 2009:;52(11):60. https://dojlorg/101145]
1502761,1592779, URL: http:ffportalacm.org fctation.cfm?doid=1592761.
1582774,

Carlisle MC, Wilson TA, Humphries W, Hadfield SM. RAPTOR: a visual

programming environment for teaching algorithmic problem solving. ACM
SIGCSE Bull 2005;37(1):176-80. URL: https://dLacmorg/citation.cim?id=
1047411,
Watts T. The SFC editor a graphical tool for algorithm development. | Comput
Sci Colleges 2004;20(2):73-85. URL: https://dLacmorg/citation.cim?id=
1040158,

RadoSevic D, Orehovacki T, Lovrentic A, Verificator: educational tool for
leaming programming, informatics in education 8 (2), 2009, http://citeseerx.
ist.psu.edufviewdoc/summary?doi=10.1.1.148.9441.

Elvina E, Karnalim O. Complexitor: an educational tool for leaming algorithm
time complexity in practical manner, ComTech: Computer. Math Eng Appl
2017;8(1):21. https:fjdoiorg/10.21512/comtech.vB8i1.3783. URL:  http://
journal binus.acid{index. phpfcomtechfarticlefview/3783.

Kumiawati G, Karnalim O. Introducing a practical educational tool for

correlating algorithm time complexity wn:h real pn:lgrarn execul:lcln 1 Inl'clrrn
Technol Comput Sci 2018:3(1):1.
URL: http:(fjitecs.ubacid/index.php/ |1Lec5..1rLlcle.vlew.4U.
Veldzquez-lturbide A, Pérez-Carrasco A. Active learning of greedy algorithms
by means of interactive experimentation. Proceedings of the 14th annual ACM
SIGCSE conference on Innovation and technology in computer science
education - ITiCSE '09, vol. 41. New York: ACM Press; 2009, p. 119, [ttps:j]
doiore/101145/1562877,1562917.
Debdi 0, Paredes-Velasco M, Velizquez-Iturbide JA GreedExCol, A CSCL tool
for experimenting with greedy algorithms. Comput Applic Eng Educ 2015:23
(5):790-804. URL: https:/ fonlinelibrary.wiley.com/doifull[10.1002/cae.
21655,
Creswell JW. Educational research: planning, conducting,
guantitative and qualitative research. Pearson; 2012,
Fouh E, Karavirta V, Breakiron DA, Hamouda S, Hall §, Naps TL, Shaffer CA.
Design and architecture of an interactive eTextbook - The OpenDSA system.
Scl Cclrnpul: Program 2014:88:22-40.  htps://dojorg10.1016/]
X URL:  https:| fjwww.sciencedirect.com/science/farticlef pii/
SUIU}"M2313UU333X.

and evaluating




Integrating program and algorithm visualisation for learning
data structure implementation

ORIGINALITY REPORT

Dy

SIMILARI

4o, 3%

TY INDEX INTERNET SOURCES PUBLICATIONS

2%

STUDENT PAPERS

PRIMARY S

OURCES

.

coek.info

Internet Source

T

o

leaprog.blogspot.com

Internet Source

(K

e

onlinelibrary.wiley.com

Internet Source

T

www.tandfonline.com

Internet Source <1 0/0
rtsa.ro

Internet Source <1 %

H Submitted to UC, Boulder <1
Student Paper %
Submitted to Barry Universit

Student Paper y y <1 %

E Oscar Karnalim. "IR-based technique for 1

<l%

linearizing abstract method invocation in
plagiarism-suspected source code pair",



Journal of King Saud University - Computer
and Information Sciences, 2019

Publication

n Ariel Budiman, Oscar Karnalim. "Automated <1 o
Hints Generation for Investigating Source ’
Code Plagiarism and ldentifying The Culprits
on In-Class Individual Programming
Assessment”, Computers, 2019
Publication

Lisan Sulistiani, Oscar Karnalim. "ES-Plag: <'I o
Efficient and sensitive source code plagiarism ’
detection tool for academic environment",

Computer Applications in Engineering
Education, 2019

Publication

Www.ejmste.com

Internet Soquce <1 %

ccl.northwestern.edu <1
Internet Source %
docplayer.net

Internthog/rce <1 %
jaydeeppatil.com

Jlnte}:net SOlPGCe <1 %
oro.open.ac.uk

InternetSEurce <1 %




Andrew Luxton-Reilly, Judy Sheard, Claudia
Szabo, Simon et al. "Introductory
programming: a systematic literature review",
Proceedings Companion of the 23rd Annual
ACM Conference on Innovation and
Technology in Computer Science Education -
ITICSE 2018 Companion, 2018

Publication

<1%

Exclude quotes Off Exclude matches Off
Exclude bibliography On



